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THE ITERATED GALERKIN METHOD FOR INTEGRAL EQUATIONS OF
THE SECOND KIND

I.H. Sloan

1. INTRODUCTION

Consider the integral equation of the second kind

(1.1) y(t) = £(t) + J k(t,s)y(s)da(s) , t€Q,
Q
where § is either a bounded domain in :Rg with a locally Lipschitz
boundary or the smooth d -dimensional boundary of a bounded domain in
d+1

R , and do(s) is the element of volume or surface area, as appropriate.

Writing the equation as

(1.2) y=£f + Ky ,

N

we shall assume that for each p in 1 p £ ® K 1is a compact linear
operator in LP , fE Lp , and the corresponding homogeneous equation has
no non-trivial solution in Lp . It follows then from the Fredholm theorem
that a (unique) solution y € Lp exists for each £ € Lp .

The Galerkin method, in which an approximate solution Yy is sought
in a finite-dimensional space Sh C L, (see Section 2 for details), is a

well understood numerical method for the solution of (1.1). Here we are

more concerned with the iterated variant of the Galerkin method, i.e. with

(1)

the approximation 7y

obtained by substituting the Galerkin approximation

Yy into the right-hand side of the integral equation, giving
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(1)

(1.3) Yy

= £ + Kyh B

Higher iterates may be defined by

i+l i R
yg ) = f + Kyé ) A i=1,2, ... .

It is by now well known that the approximation yél) often converges
to the exact solution faster than Yy that is, it exhibits 'supercon-
vergence'. The earliest results of this kind [7, 8] did not give guantitat-
ive estimates for the improvement in the rate of convergence, but quantitat-
ive results are now available for many cases, including smooth kernels and
Green's function kernels in one dimension [1, 2, 3], weakly singular kernels
in one dimension [4, 5], and smooth kernels in higher dimensions [6]. In
all of these cases the approximating spaces Sh were assumed to be of
finite-element character, and that assumption will be continued here.

Recently, superconvergence results have been obtained by V. Thomée
and myself [10] for some relatively formidable integral equations in higher
dimensions. This paper gives a brief introduction to the methods and

results of [10], with the emphasis on clarity and brevity rather than on

generality or completeness.

2. SUPERCONVERGENCE THEORY

In this section p is a fixed number in 1 < p £ ® , and g is the

]

conjugate index defined by 1/p + 1/g =1 , with 1/« o .

The first step is to define the finite-dimensional space Sh . The

details of the construction are not important here, but Sh is assumed to

have an approximation property typical of piecewise-polynomial spaces of

degree < r-1 , where r is a fixed positive integer. Specifically,

letting h be the maximum diameter of a sub-region, Sh is assumed to be
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such that
(2.1) inf Mg - xI_ < ch®lgl . ¢ S=0, ..ot ,
€s W
X=5Sy q q
for all g in the Sobolev space W: . (In this paper c¢ denotes a

generic constant, which may take different values in different places, but
which is always independent of h and of functions such as g .)

The Galerkin approximation v, belongs to Sh , and satisfies

(2.2) (yh - £ - Kyh,x) =0 for all X € Sy v

where (¢,°) is the inner product

(u,v) = f u(s)v(s)do(s) .
Q

Letting P._ denote the L2 projection onto S with respect to this

h h

inner product, we shall assume that "PhK - KHL +0 as h ~+ O+ .

p
Then it is well known that the Galerkin approximation Yy exists and is

uniqué for h sufficiently small. Thus vy and the iterated Galerkin

(1)

approximation vy

defined by (1.3) are well defined.
In the following theorem KX* is the adjoint integral operator

defined by
K*v(t) = f k(s,t)v(s)do(s) , t€Q.
Q

The theorem, which is a simplified version of a result stated in [10],

links the superconvergence of yél) to the smoothing properties of K* .
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THEOREM l. Assume that

* <
lx*vll o < c“v"L ,

W
q g

IA

for some & in 0< & < r . Then

"y}gl) -yl s ch'Q'Ilyh -yl
P P

PROOF. From (1.2) and (1.3) we have

(1)

Yy fy=K(yh-y) ’
and hence
(K(y,y) ,v) |
(1) _ _ | h
(2.3) Hyh yHL = IlK(yh y)llL = igp ol
b P vEelL L
q q
: ly. -yl Ix*vll
h -
| (tyy, = 9) s K*0) | wt W
= sup < sup b 4
T~ I+l
vEL L vEL L
g9 q q g9
< cly, -yl ,
h W—l
p
where

- Lgw]|
gl _g = sSup Tol .

2
S
Wp w Wq Wﬁ

It remains to show that “yh -yl g has a suitable fast-convergence

b
property. For w € Wi we have
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(v,77s@) = ((I-K) (y,=9) , (1K) ")

((Z-K) (g, ~y) , (T-K%) Ha-x)

where ¥ is an arbitrary element of Sh , with the last step following from
the defining property (2.2) for the Galerkin method. Then using the Holder

inequality we have

(2.4) | G-y | < II-K) (y, =), inf ﬂ(r-K*)’lw—an
p XEs, q

< clly -yl n¥l (z-x*) "Ll .

P '

q

2
< ey, -yl Il ,
bW,

where in the second-last step we have used the approximation property (2.1),
and in the last step the fact that (I—K"‘)_l is a bounded operator in the
space Wﬁ . To show the latter, first observe that the operator I-K is
one~to-one in Lp , from which it follows, using the Fredholm theorem, that
I-K* is one-to-one in Lq , and hence in Wi . By the assumption in the
theorem, I-K* maps Wi into itself. To show that this map is onto, let

v € Wi . Then v € Lq , and from the Fredholm alternative in L there

exists z € Lq such that (I-K*)z = v . But 2z = v+K¥z, which belongs to
Wi because K* maps Lq to Wé . Thus I-K* has a bounded inverse in
WR .

9

It follows from (2.4) that

2
Hyh—yﬂ _gSch llyh—yllL ,
Wp P

and hence, from (2.3), that
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by Pyl < en®ly, vl O
p

P

Similar arguments are used in [10] to obtain a superconvergence result

for “yél)—y" , m=20, i21.

3. AN EXAMPLE

Consider the integral equation

1
(3.1) () = £(t) + AJ log|t-s|y(s)as , t € [o,1} ,
0
with A not a characteristic value of the eguation, and £ € Wi . Here K

is the integral operator

Kv(t) = A fl loglt—slv(s)ds.
0
and K¥* = K . In considering this example we shall assume that the approxi-
mation property (2.1) holds for all g in 1 < g < ® , with c¢ independent
of g .
Letting D denote the (weak) derivative, DK is the principal-value

integral operator,
L 1
DKv(t) = A p.v. [ —— v(s)ds .
0 t-s

If g is any fixed number satisfying 1 < g <« , it is known, from a
celebrated theorem of M. Riesz, that the principal-value integral operator

is a bounded operator from Lq to Lq . It follows that

* =
(3.2) Iexvll | = lxvll | < clvl,

W W
d q 4
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so that Theorem 1 can be applied with £ = 1 . We conclude that for this

example
(1)
(3.3} hy, = =yl < ehly, -yl
P P
if p is any fixed number satisfying 1 < p < . A similar application

of the more general theorem in [10] yvields, for the W; norm of the error,

;
é_)“yﬂ = c"yh—yﬂL .
W P

p

(3.4) iy

The above argument breaks down if p = ® , because then g = 1 , and
the result of M. Riesz does not hold. However, in [10] it is shown that a
similar L estimate can be obtained, at the expense of introducing a
logarithmic factor: one obtains

(1)

(3.5) Iy, vl swlmiw%w% .
(2] [e+]

Briefly, the argument is as follows. With { an interval, as in the

present example, it is known that for large p

Iol, < cliviy ™R 7e

o W
P e

with ¢ independent of p . Thus

1 " 1 1-1/1 1 1
uyé )—ykL < clly! )—yﬂL /Pnyé )yl {P.

Now we can use (3.3) and (3.4), the only catch being that the constants in
those expressions are not independent of p . An examination of the con-

stant 1in the M. Riesz thecrem shows that the constant in (3.2}, and hence
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also the constants in (3.3) and (3.4), grow proportionally to p for large
p , thus we obtain

&5 o l-l/pp oo 1-1/p
"Yh y“L < cph “yh y“L < cph "yh

-yHL
(o] p fee)

for large p , with ¢ independent of p . The result (3.5) now follows
on setting p = log(l/h) .
Similar arguments are used in [10] to obtain an L error estimate

for the Galerkin approximation itself: it is shown that

1

- < —_
“yh yHL < ch log i el 10
. )

feel

provided P is bounded in L uniformly in h . Thus finally we con-

h
clude for this example that

(3.6) “y}(ll)

2. 21
—y“L < ch®log” Il ] -
o W

(ee]

The examples discussed in [10] include the case of a logarithmic
kernel in two dimensions, and the single-layer and double-layer operators
over a smooth boundary which arise in the boundary-integral method for the
solution of the Laplace equation in ZR3 . A summary of the results for
these examples, without any theory, has been given in another recent

report [ 9].
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