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THE ITERATED GALERKIN METHOD FOR INTEGRAl EQUATIONS OF 

THE SECOND KIND 

I.H. Sloan 

l. INTRODUC'riON 

Consider the integral equation of the second kind 

(l.l) y(t) f(t) + f k(t,s)y(s)do(s) , 

n 

where n is either a bounded domain in 
d 
~ with a locally Lipschitz 

boundary or the smooth d -dimensional boundary of a bounded domain in 

JRd+l, and dO(s) is the element of volume or surface area, as appropriate. 

Writing the equation as 

(L2) y f + Ky , 

we shall assume ·that for each p in l ,; p ,; oo K is a compact linear 

operator in L 
p 

f E L 
p 

and the corresponding homogeneous equation has 

no non--trivial solution in L 
p 

tha·t a (unique) solution yEL 
p 

It follows then from the Fredholm theorem 

exis-'cs for each f E L 
p 

The Galerkin method, in which an approxima·te solution yh is sought 

in a fini>ce-dimensional space s11 C L00 (see Section 2 for details) , is a 

well understood numerical method for the solution of (l.l). Here vJe are 

more concerned with the iterated variant of the Galerkin method, Le. wi'ch 

the approximation obtained by substituting the Galerkin approximation 

yh into 'che right-hand side of the in·tegral equation, giving 



(1.3) 

Higher iterates may be defined by 

(i+l) f + K (i) 
yh 
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i l, 2' . . . . 

It is by now well known that the approximation often converges 

to the exact solution faster than yh - that is, it exhibits 'supercon

vergence'. The earliest results of 'chis kind [ 7, 8] did not give quanti tat-

ive estima"tes for "the improvement in "the rate of convergence, but quantitat-

ive resul"tS are now available for many cases, including smooth kernels and 

Green's function kernels in one dimension [l, 2, 3], weakly singular kernels 

in one dimension [4, 5], and smooU1 kernels in higher dimensions [ 6]. In 

all of these cases the approximating spaces were assumed to be of 

finite-element character, and "that assumption will be continued here. 

Receirtly, superconvergence results have been obtained by V. Thomee 

and myself [10] for some relatively formidable integral equations in higher 

dimensions. This paper gives a brief introduction to the methods and 

results of [10], with the emphasis on clarity and brevity rather than on 

generality or completeness. 

2. SUPERCO:NvERGENCE THEORY 

In this sec"tion p is a fixed number in 1 s p s co and q is the 

conjugate index defined by 1/p + 1/q ~ l , with ljro 0 

The first s'cep is to define the finite-dimensional space Sh • 'I'he 

details of the cons"truction are not important here, but Sh is assumed to 

have an apprmd.ma"tion property typical of piecewise-polynomial spaces of 

degree s r-l , where r is a fixed positive integer. Specifically, 

letting h be the maximum diameter of a sub-region, Sh is ass~~ed to be 



such that 

(2 .1) 

for all g 

llg - xll 
L 

q 

in the Sobolev space 
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s 

(In this paper c denotes a 

generic cons-tant, which may take different values in different places, but 

which is always independent of h and of functions such as g .) 

The Galerkin approximation yh belongs ·to Sh , and satisfies 

(2. 2) 0 

where (•,•) is the inner product 

(u,v) f u (s) v (s) do (s) 

rl 

for all x E sh 

Letting Ph deno'ce the L2 projection on\:o Sh \vith respect to this 

inner product, we shall assume that IIPhK - Kll + 0 as h + 0+ 
. L 

p 
Then it is well kno~m that the Galerkin approximation yh exists and is 

unique fm: h sufficiently small. 'l'hus v 
"'h 

and the iterated Galerkin 

approximation 
(l) 

yh defined by (L 3) are well defined. 

In the following theorem K* is the adjoint integral operator 

defined by 

K*v(t) 
(-~ J k(s,t)v(s)do(s) tEQ. 

rl 

The 'cheorem, which is a simplified version of a result stated in 

links the superconvergence of to the smoothing properties of K* 



THEOREM 1. Assume that 

for some ~ in 0 ~ ~ ~ r . Then 

PROOF. From (1.2) and (1.3) we have 

(l) 
yh - y = Kiyh - y) ' 

and hence 

(2. 3) 
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= sup 
vEL 

q 

I ( (y, - y) ,K*vl j 
n 

where 

llgli _0 
w ~ 

p 

sup 
vEL 

q 

sup ~ 
wEw 

q 

I (g,w) I_ 
llwll~ 

q 

J (K(yh -y) ,v) I 
JlvJIL 

q 

llyh -yll _n IIK*vll 0 
w }C w"' 

~ sup 
vEL 

q 

p q 

It remains to show ·that llyh - yll has a suitable fast-convergence 
w-~ 

property. For wE w~ we have 
q 

p 
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-1 
{ (I-K) (yh-y), (I-K*) w) 

( (I-K) (yh-y), (I-K*) -lw-xl 

where X is an arbitrary element of Sh , <flith the last step follmving from 

the defining property (2.2) for the Galerkin method. Then using the Holder 

inequality we have 

(2 .4) II (I-K) (yh-y) IlL inf 
P xEsh 

,.; cllyh-yiiL 
p 

h£11 (I-K*) -lwll 
wt 

q 

fl., 
s ch lly1 -yiiT llwll 0 , 

1. ~P w"' 
q 

-1 
w-xll 

L 
q 

where in cthe second-last step we have used the approximat.ion property (2 .1), 

and in the last step the fac·t that (I-K*) -l is a boui!ded operator in the 

0 
w~ . 

q 
space To show ·the latter, first observe tha·t the operat.or I-K is 

one-to-one in from which it follows, using the Fredholm theorem, ·that 

I-K* is one-to-one in L , and hence in w/" . By the assumption in the 
q q 

·theorem, I-K* maps into itself. To show t.hat this map is ~nt.o, let 

Then v E L 
q 

and from the Fredf>..olm al terna ti ve in L 'chere 
q 

exists z E L such that (I-K'') z = v . But z = v+K1'z, which belongs to 
q 

because K* maps L 
q 

to 

It follows from (2.4) that 

lly -yli < chQ,IIv -vii h -.2,- - "h .z L 
wp P 

a.nd hence, from (2. 3), ·that 

Thus I-K* has a bow:~ded inverse .in 
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0 

Similar arguments are used in [ 10] to obtain a superconvergence result 

for II (i)- II 
yh y r? 

p 

3. AN E~PLE 

m <'= 0 , i ;?: 1 . 

Consider the integral equation 

(3.1) y(t) f(t) +A I: loglt-sly(s)ds , t E [0,1} , 

with A not a characteristic value of the equation, and 

is the integral operator 

Kv(t) A I: loglt-slv(s)ds , 

Here K 

and K* = K . In considering this example we sha.ll assume that the approxi-

mation property (2.1) holds for all q in 1 ~ q ~ oo , with c independent 

of q 

Letting D denote the (weak) derivative, DK is the principal-value 

integral operator, 

DKv(t) A p.v. Il 1 

0 t-s v(s)ds 

If q is any fixed number satisfying 1 < q < 00 , it is known, from a 

celebrated theorem of M. Riesz, that the principal-value integral operator 

is a bounded operator from L 
q 

to L 
q 

(3.2) IIK*vll = IIKvll 1 ~ cllviiL 
w1 w q 
.q q 

It follows that 
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so that Theorem 1 can be applied with 2 1 • We conclude that for this 

example 

(3. 3) 

if p is any fixed number satisfying 1 < p < oo • A similar application 

of the more general theorem in [10] yields, for the norm of the error, 

(3.4) 
(1) 

llyh -yll 1 $ 

w 
p 

The above argument breaks down if p = oo , because then q = 1 , and 

the result of M. Riesz does not hold. However, in [ 10] it is shown that a 

similar L00 estimate can be obtained, at the expense of introducing a 

logarithmic factor: one obtains 

(3.5) 

Briefly, the argument is as follows. With Q an interval, as in the 

present example, it is known that for large p 

with c independent of p . Thus 

Now we can use (3.3) and (3.4), the only catch being that the constants in 

those expressions are not independent of p • An examination of the con-

stant in theM. Riesz theorem shows that the constant in (3.2), and hence 



160 

also the constants in (3.3) and (3.4), g-.cow proportionally to p for large 

p , thus we obtaiB 

(l) -vii 
- lo 

co 

for large p , with c independent of p . The resul·t (3.5) now follows 

on setting p = log(l/h) . 

Similar arguments are used in [ 10] ·to obtain an L error estimate 
00 

for the Galerkin approximation itself: it is shown that 

provided 

lly -yll 
h · L 

00 

1 
s; ch log h llfll 1 

~'1co 

is bounded in L00 uniformly in h . Thus finally we con-

elude for this exa,"'!tple that: 

(3.6) 
(l) lly. -yll 

1'1 L 
co 

2 2 l 
s; ch log il fll 

h ·wl 
00 

The exa1nples discussed in [ 10] include the case of a logarithmic 

kernel in tv-ro dimensions, and ·the single-layer and double-layer operators 

over a smooth boundary which arise in ·the bou.ndary-integrc.l method for the 

solution of the Laplace equa'cion in :tR3 • A summary of the results for 

these examples, without any theory, has been given in another recent 

report [ 9] " 
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