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THE EXISTENCE OF MAXIMAL SURFACES

R. Bartnik

The minimal surface (Plateau) problem is well-known - one seeks
a surface with minimal area amongst all surfaces spanning a given boundary.
Instead we ask the analogous question in a Lorentzian space, so in the
simplest case we are considering spacelike surfaces in flat Minkowski

.1 . Lo . . . .
space 113 which maximise area. Recall that 313 1 is the 4-dimensional

.2
Euclidean space with metric Ei ax* —-dt2 and that a vector (x,t) is

2
spacelike/timelike/null according as |x| --t2 >0 / <0/ =0 respectively.
A surface M = graphszu, u€c®@Q, Q‘:Ii3 is spacelike if all its tangent

vectors are spacelike. This means that the induced metric gij is

Riemannian,
(1) g..=26,. - u.uj >0,

where u; = éﬂi , and hence ]Dul < 1. The maximal surface equation is
0x

the Euler-Lagrange equation arising from the induced area functional:

—
-

(2) Area (M) = vdet gij dx = v 1-|Du|4 dx ,

and in Minkowski space can be written

Diu DAii 2
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v/ 1-|Du 2 J l—IDuI J

(3)

Like the minimal surface equation, this is a nonlinear, non-

uniformly elliptic equation and apriori estimates for [Du[ are needed
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in order to prove existence theorems. Quite good estimates are now
available [BS], [G], [B], but before describing these I'll discuss some
applications.

Lorentzian manifolds are of interest because of general relativity,
where they are called space-times. They have quite different properties
from the familiar Riemannian manifolds, owing to the non-compactness of
the Lorentz group. It is known [HE] that even physically reasonable
spacetimes can have singularities and these can have quite unexpected
properties. One prbmising approach to exploring the properties of
a spacetime is to decompose it into "space + time”. Now, the geometric
generalization of (3) is that the surface M 1is a spacelike submanifold
of the spacetime with constant (zero) mean extrinsic curvature, and
the constant mean curvature (CMC) surfaces provide a natural space + time
decomposition. For example, it is conjectured [ES] that CMC surfaces
avoid singularities in phsyically reasonable spacetimes. These surfaces
have already been used to study the space of solutions to Einstein's
equations, and more importantly, maximal slicing conditions have proved
very useful in numerical studies of colliding black holes and other
physically interesting situations. A more geometric application was
the positive mass conjecture [SY] which used the fact that a maximal
surface in a spacetime satisfying the weak energy condition has positive
scalar curvature.

These applications all assume that CMC surfaces are smooth
spacelike submanifolds, but is is only very recently that this has been
proved in any generality [G], [Bl. The method is to prove apriori
gradient and height bounds and then apply standard nonlinear elliptic
theory. The basic assumption is that the spacetime admits a time
function: - this allows us to define the height function u of a surface

M , and provides a reference timelike vector field T. The basic
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equations are then

(4) otAMu = VH, + div, T
(5) A v = v([AIZ + Ric(N,N)) + T(H ) -<T,V'H_>
M ! T A

where 0o is the lapse function of the coordinates, N is the unit
normal vector to M, ]AI is the length of the second fundamental form
and Vv = -<N,T>~(1-—|Du|2)~% measures- |Du|. A complete derivation
and explanation of these formulae is given in [B]: - note that (4)

is the nonflat generalization of (3), and (5) follows from the shift-
lapse equation/second variation formula.

Using these equations and a maximum principle argument it is
possible ([B] theorem 3,1) to estimate V in terms of suplul .and
the mean curvature of the boundary of M . Previous estimates [BS], [G]
depended on |Q| and boundary gradient estimates, which were difficult
to obtain. In many cases an estimate for sup]ul follows from
compactness assumptions and this leads immediately to existence theorems,

for the Dirichlet problem ([B] theorem 4.2), and the cosmological problem:

THEOREM [G] Let V be a C. cosmological spacetime
(i.e. VoS x R where S <is a compact, boundaryless 3-manifold ),
with past and future crushing singularities [ES]. Then there is a

Cauchy surface M, C V such that H, =AM forany AER.
A

The maximal surface problem considers zero mean curvature surfaces
in asymptotically flat spacetimes. Because the domain is unbounded
and estimates for suplu[ do not follow from natural conditions, this

is a more difficult problem. However, a test function argument based
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on (4) and using the asymptotic flatness conditions very strongly gives

the required estimate. This leads to the main theorem:

THEOREM [B] Existence of maximal surfaces
Let V be an asymptotically flat spacetime with uniform interior
(see [B]§5 for a precise definition). Then there is a maximal surface

asymptotic to every level set of the time function.

The conditions are satisfied by a wide class of spacetimes, one
easy example being asymptotically simple spacetimes. These are topologically

114 and have metric gx satisfying
u

I
Q

+ r2|8 | + r3|8
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where r = CZi xiz)% and H° is the mean curvature of the slices
t = constant. The uniform interior condition will be satisfied if
there is a constant K such that the vector (§,K|E]), &€ 123

is timelike (with respect to gku) for all & € IQB, throughout V .

Heuristically, this says that the light cones of V don't tip over.

A complete statement with proofs is given in [B].
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