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Abstract. After an introduction to the properties of prolate spheroidal
wavefunctions and schemes for their computation, we investigate their
role in the sampling theory of band limited signals. We then give a result
on the `2-energy of the tail of sequences generated by their uniform
samples, and as a corollary, a local approximate sampling formula for
bandlimited functions which are well-concentrated on an interval.

1. Introduction

The prolate spheroidal wavefunctions (PSWF’s or prolates) have long
been studied in the context of solving the wave equation in prolate spheroidal
coordinates. This incarnation of the prolates is studied thoroughly in the
monographs of Flammer [10], Meixner and Schäfke [17], Stratton et al [21]
and Morse and Feshbach [16] among others. The prolates experienced a
“second coming” in the work of Landau, Pollak and Slepian published in a
remarkable series of papers in the Bell Labs Technical Journal in the 1960’s.
Now the prolates are undergoing another revival of interest as they are being
exploited in telecommunications applications. Here we review some of the
most important literature on prolate functions, making connections as we
go with sampling theory and Fourier uncertainty.

This paper is organized as follows. Section 2 gives background material
on sampling and Fourier uncertainty, including a discussion of the Classi-
cal Sampling Theorem, oversampling, and the difficulties encountered when
one tries to implement oversampling algorithms. Several examples of Fourier
uncertainty principles are described and their consequences for the construc-
tion of Fourier bump functions (for oversampling) are explored. In section
3 we explore the way the prolate functions arise in the context of spectral
concentration as eigenfunctions of a Hilbert-Schmidt integral operator, de-
scribe the basic properties of the prolates and their associated eigenvalues,
discuss modern methods for computing the prolates through the “lucky ac-
cident” that the prolates are also eigenfunctions of a well-known differential
operator, and further consequences of this fact. In section 4 the role of
the prolates in the sampling theory of bandlimited functions is explored.
We discuss localized sampling results due to Xiao, Rokhlin and Yarvin [25]
and a result of the authors on the decay of the `2-energy of the tails of se-
quences generated through uniformly sampling prolate functions which has
an application to localized sampling of bandlimited functions.
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2. Sampling and Fourier Uncerainty

2.1. Classical sampling and oversampling. To explain the appearance
of the prolates in modern signal processing, we go back to the 1961 paper
of Slepian and Pollak [1] in which an orthogonal basis for the Paley-Wiener
space of functions band-limited to an interval is produced, consisting of
eigenfunctions of an integral operator defined in terms of time- and band-
limiting operators. Some authors named these functions Slepians. It had
long been known that functions in the Paley-Wiener spaces are determined
(and may be reconstructed from) their (sufficiently dense) uniformly sampled
values. To fix notation, let F : L2(R) → L2(R) be the Fourier transform
normalized so that on L1 functions it acts via

Ff(ξ) = f̂(ξ) =

∫ ∞

−∞
f(t)e−2πitξ dt

and let ‖f‖2 =
( ∫∞
−∞ |f(t)|2 dt

)1/2
. The Paley-Wiener space PWΩ of ban-

dlimited signals is the collection of those f ∈ L2(R) which are band-limited
to the interval [−Ω/2,Ω/2], i.e.,

PWΩ = {f ∈ L2(R); f̂(ξ) = 0 for |ξ| > Ω/2}.

Signals in PWΩ may be recovered from their uniform samples {f(k/Ω)}∞k=−∞.
In fact, the celebrated Classical Sampling Theorem states that it f ∈ PWΩ,
then

(1) f(t) =
1

Ω

∞∑

k=−∞
f(k/Ω) sinc(Ωt− k)

where sinc(t) =
sin(πt)

πt
is the cardinal sine function. In (1), convergence

is in L2. The history of this result is long and intricate and the interested
reader should consult the book by Higgins [11] and references therein.

The sampling theorem (1) allows for the storage of an analog signal f as
a digital signal {f(k/Ω)}∞k=−∞ (or at least a quantized, truncated version of
this sequence) and subsequent reconstruction of f via (1). The difficulties
encountered by practitioners in the application of (1) arise largely from the
slow decay of the cardinal sine, which is O(1/|t|) as |t| → ∞. This means
that knowledge of f at a point t0 requires samples of f taken at points
k/Ω far from t0 since the series decays slowly. One way to overcome this is
through oversampling.

A Fourier bump on [−Ω/2,Ω/2] is a function ϕ ∈ L2(R) such that

ϕ̂(ξ) =

{
1 if |ξ| < Ω/2

0 if |ξ| > Ω.

An example is ϕ(t) = sinc(Ωt) =
sin(πΩt)

πΩt
, whose Fourier transform is the

characteristic function of [−Ω/2,Ω/2], but here we seek examples with faster
decay in time.
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Theorem 1 (Oversampling theorem). Let f ∈ PWΩ and ϕ be a Fourier
bump on [−Ω/2,Ω/2]. Then

(2) f(t) =
1

2Ω

∞∑

k=−∞
f

(
k

Ω

)
ϕ

(
t− k

2Ω

)

with convergence in L2(R).

The reason for (2) is that for all f ∈ PWΩ, f̂ ϕ̂ = f̂ . The advantage of the
reconstruction (2) over (1) is that the Fourier bump of (2) can decay quite
rapidly. Hence if the values of f are required on some interval I, samples
of f taken far from I do not contribute significantly to the sum in (2) and
therefore the sum may be truncated with minimal error. The question that
arises here is: How fast can a Fourier bump decay?

2.2. Fourier bumps. The simplest examples of Fourier bumps are those
generated by splines. For example, the Fourier bump ϕ whose Fourier trans-
form is the piecewise linear function

ϕ̂(ξ) =
2

Ω
1[−Ω/4,Ω/4] ∗ 1[−3Ω/4,3Ω/4](ξ),

is the product of scaled cardinal sine functions and has decay of the form
|ϕ(t)| ≤ C|t|−2. This construction may be extended to N -fold convolu-
tions, giving Fourier bumps which are products of scaled cardinal sines with
polynomial decay.

Another example may be generated as follows. Define ψ ∈ L2(R) via its
Fourier transform:

ψ̂(ξ) =





exp

(
ξ2

ξ2−1

)
if |ξ| < 1

0 if |ξ| ≥ 1

and let ψΩ(t) = ψ(4t/Ω). Define ϕ by

ϕ̂(ξ) = c1[−3Ω/4,3Ω/4] ∗ ψ̂Ω(ξ)

where c is a normalizing constant chosen so that ϕ̂(0) = 1. Then ϕ is a

Fourier bump on [−Ω/2,Ω/2] with root-exponential decay: |ϕ(t)| ≤ Ce−
√

2π|t|.
Sub-exponential decay is also possible. For example, given 0 < σ < 1,

there exists ψ ∈ PW1 with ψ(0) = 1 and with decay

(3) |ψ(t)| ≤ C21/(1−σ)e−|πt|
σ
.

With ϕ(t) =
3Ω

2
sinc

(
3Ωt

2

)
ψ

(
Ωt

2

)
, then ϕ is a Fourier bump on [−Ω/2,Ω/2]

with sub-exponential decay (3).
There are obvious barriers to the decay of Fourier bumps. For example,

no such function could have Gaussian decay (|ϕ(t)| ≤ ce−αt
2

with c, α > 0)
since such a function would violate Hardy’s theorem (see section 2.3).

Suppose ϕ has exponential decay of the form

|ϕ(t)| ≤ Ce−β|t|

for some positive constants C and β. Then ϕ̂ admits an analytic extension
off the real line defined by ϕ̂(z) =

∫∞
−∞ ϕ(t)e−2πzit dt (z ∈ C). Since the
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integral converges on the strip |Im(z)| ≤ β/(2π), we see that ϕ̂ must be
analytic on the line. Hence ϕ̂ cannot be compactly supported and therefore
cannot be a Fourier bump.

Given that we’ve seen that sub-exponential decay (3) is possible for a
Fourier bump, but exponential decay is not, we might wonder whether decay
of the form

(4) |ϕ(t)| ≤ C exp(−|t|/ logγ(|t|))
is achievable. The smaller the value of γ in (4), the faster the decay of ϕ,
and we know that γ = 0 is not achievable by Fourier bumps. So the natural
question is: can a Fourier bump have decay of the form (4) for any γ > 0?
In 1933, Ingham [9], provided the answer.

Theorem 2. Suppose ε(t) ≥ 0, ε(t) ↓ 0 as |t| → ∞ and 0 6≡ ϕ ∈ L2(R) is

such that ϕ̂(ξ) = 0 for |ξ| > Ω and |ϕ(t)| ≤ Ce−ε(|t|)|t|. Then

(5)

∫ ∞

R
ε(t)

dt

t
<∞

for all R > 0.

As a corollary of Ingham’s result we see that if a Fourier bump decays as
in (4), then γ > 1. The question of whether such decay is achievable was
settled by Güntúrk and DeVore (unpublished manuscript). Their construc-
tion mimics the construction of spline-type Fourier bumps with polynomial
decay given above and starts with a sequence {an}∞n=1 with an > 0 for all n
and

∑∞
n=1 an < Ω/4. Let 1n = 1[−an,an] and define ϕ ∈ L2(R) by

ϕ̂ = c1[−3Ω/4,3Ω/4] ∗ 11 ∗ 12 ∗ · · · ∗ 1n ∗ · · ·
with c a suitable normalizing constant. Then ϕ is a Fourier bump on
[−Ω/2,Ω/2] with

(6) |ϕ(t)| ≤ Cγ exp

( −|t|
2 logγ(|t|)

)

with γ > 1 and Cγ →∞ as γ ↓ 1.
While these constructions are impressive and the implications for the

efficiency of oversampling are significant, the difficulty we encounter in using
such Fourier bumps in (2) is that (apart from the spline-based Fourier bumps
which have relatively slow decay) the exact form of ϕ is unknown, and
computation of the right-hand side of (2) in these examples is not possible.

2.3. Fourier Uncertainty. The situation described in the previous sec-
tion is an example of Fourier uncertainty in action. By Fourier uncertainty
we mean the general principle that a function and its Fourier transform
cannot both be highly concentrated – high concentrations of f mean low
concentration of f̂ (and similarly when the roles of f and f̂ are reversed).
The various incarnations of Fourier uncertainty are essentially described by
differing measures of concentration.

The most celebrated of the Fourier uncertainty principles is the Heisen-
berg inequality, which states that if f ∈ L2(R) and t0, ξ0 ∈ R then

(7) ‖(t− t0)f‖2‖‖(ξ − ξ0)f̂‖2 ≥
‖f‖22
4π
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with equality attained in (7) by shifted, modulated Gaussians.

Hardy’s theorem takes a different view of concentration: if |f(t)| ≤ Ce−παt2
and |f̂(ξ)| ≤ Ce−πβξ2

, then

(i) if αβ > 1 then f ≡ 0; and
(ii) if αβ = 1 then f is a Gaussian.

In equation (7), concentrations of f and f̂ are measured by the “variances”

‖(t− t0)f‖2 and ‖(ξ− ξ0)f̂‖2. We could, instead, measure the concentration
of a function on a set E ⊂ R by ‖1Ef‖2. Cowling and Price [8] showed that
for all measurable E ⊂ R and all 0 < θ < 1, there exists a constant C > 0
such that ∫

E
|f(t)|2 dt ≤ C|E|θ‖|t|θf‖22

where |E| is the Lebesgue measure of E. This may be interpreted as mean-

ing that if the θ-variance ‖|t|θf‖2 of f is small, then f̂ cannot be highly
concentrated on a set E of small Lebesgue measure. This is an example of
a local uncertainty inequality.

Nazarov showed that for all measurable S ⊂ R and Σ ⊂ R̂, there exist
constants C and A > 0 and independent of f such that

(8) ‖f‖22 ≤ Ce2A|S||Σ|(‖1S′f‖22 + ‖1Σ′ f̂‖22)

where S′, Σ′ are the complements of S and Σ respectively. Details of the
proof takes up large part of the text [18]. One way to interpret this result

is to say that if f ∈ L2(R) is highly concentrated on S and f̂ is highly

concentrated on Σ (so that ‖1Sf‖2/‖f‖2 and ‖1Σf̂‖2/‖f̂‖2 are large), then
the product |S||Σ| must also be large.

Beurling’s theorem [3] is a joint localization inequality: if f, f̂ ∈ L1(R)
and ∫∫

R2

|f(t)f̂(ξ)|e2π|tξ| dt dξ <∞

then f = 0 a.e.
It is clear from analyticity considerations that a function and its Fourier

transform cannot both be compactly supported. Benedicks’ theorem [2]
rules out the possibility of a function and its Fourier transform both being
supported on sets of finite measure: if f ∈ L2(R), let

A = {t ∈ R; f(t) 6= 0}, B = {ξ ∈ R̂; f̂(ξ) 6= 0}.
Then |A||B| <∞⇒ f = 0 a.e.

Several of these results have far-reaching generalizations to locally com-
pact abelian groups, compact groups and semi-simple Lie groups. See [12]
and references therein.

3. Prolates and uncertainty

3.1. The spectral concentration problem. Another view of time-frequency
localization was studied extensively by Slepian, Pollak and Landau in a se-
ries of papers which appeared in the Bell Labs Technical Journal in the early
1960’s.
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Let T,Ω > 0. Functions in PWΩ are analytic, hence not supported on
[−T, T ]. Slepian, Pollak and Landau considered the supremum

γ = sup
f∈PWΩ

∫ T
−T |f(t)|2 dt∫∞
−∞ |f(t)|2 dt

and asked the question: can we have γ = 1? To answer the question,
they considered the time and frequency localization operators QT and PΩ

defined as follows. Given intervals [−T, T ] ⊂ R and [−Ω/2,Ω/2] ⊂ R̂, the
time-limiting operator QT and band-limiting operator PΩ are defined by

(9) QT f = 1[−T,T ]f ; PΩf(t) = F−1QΩ/2Ff.
Here f ∈ L2(R) and if I ⊂ R then 1I is the characteristic function of I.
The operator QT is the orthogonal projection onto the space of time-limited
signals and PΩ is the orthogonal projection onto the space of band-limited
signals. The operator PΩQT : PWΩ → PWΩ is self-adjoint with kernel

K(x, t) = Ω1[−T,T ](t) sinc(Ω(x− t)).
Since

∫∫
R2 |K(x, t)|2 dx dt <∞, PΩQT is Hilbert-Schmidt, hence compact.

The eigenvalues {λn}∞n=0 of PΩQT are distinct, positive, and we order
them so that λ0 > λ1 > · · · > λn > · · · . The corresponding eigenfunc-
tions {ψn}∞n=0 will be referred to (temporarily) as Slepians. When suitably
normalized, the Slepians form an orthonormal basis for PWΩ. Surprisingly,
they have another (local) orthogonality property:

∫ T

−T
ψn(t)ψm(t) dt = λnδnm

and, in fact, the collection {ψ̃n =
√
λnQTψn}∞n=0 is an orthonormal basis

for L2[−T, T ]. Furthermore,

(10) λ0 = ‖PΩQT ‖ = sup
f∈PWΩ

|〈PΩQT f, f〉|
‖f‖22

= sup
f∈PWΩ

‖QT f‖22
‖f‖22

so that the top eigenvalue is the maximum concentration on [−T, T ] of any
function f ∈ PWΩ of norm equal to 1. By the compactness of PΩQT , the
supremum in (10) is attained, i.e., there exists f ∈ PWΩ with ‖f‖2 = 1 and
‖QT f‖22 = λ0. By Benedick’s theorem we see that λ0 < 1.

The behaviour of the eigenvalues of PΩQT were studied by Landau and
Widom [15] who found that with c = 2ΩT (the time-bandwidth product),
0 < α < 1 and N(α) the number of eigenvalues λn larger than α, we have

(11) N(α) = c+
1

π2
log

(
1− α
α

)
log c+ o(log c)

as c→∞. This explains the observed behaviour of the eigenvalues:

(i) the first approximately c eigenvalues are bunched near 1;
(ii) the next approximately log c eigenvalues plunge towards 0;
(iii) the remaining eigenvalues are very small and decay rapidly.

In fact, it was shown by Widom [23] that after the plunge of the eigenvalues,
they decay super-exponentially:

λn ≤ Ce−αn logn.
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The Slepians have many other curious properties beyond their double or-
thogonality. For example, their Fourier transforms satisfy

(12) ψ̂n(ξ) = ±in
√

2T

Ωλn
QTψn

(
2Tξ

Ω

)
,

i.e., the Slepians are locally self-similar under the Fourier transform.

3.2. Computing the Slepians. Galerkin methods for the numerical solu-
tion of the eigenvalue problem PΩQTψ = λψ fail for large c due to the fact
that the first (approximately c) eigenvalues are bunched near 1 and, after
the plunge region of the eigenvalues, they are bunched near 0. Hence the
eigenspaces with eigenvalues near 1 or near 0 cannot be resolved.

It can be shown [14] that the vectors (ψn(k/Ω))∞k=−∞ are eigenvectors of
the doubly-infinite matrix A with (k, `)-the entry

Ak` =

∫ T

−T
S(Ωt− k)S(Ωt− `) dt.

With appropriate truncation of the matrix A, approximations of the eigen-
vectors (ψn(k/Ω))∞k=−∞ may be computed. It is possible to interpolate these
values via the classical sampling theorem:

(13) ψn(t) =

∞∑

k=−∞
ψn(k/Ω)S(Ωt− k).

This algorithm, however, suffers from the slow decay of the entries of A away
from the diagonal and, in (13), the slow decay of the cardinal sine, meaning
that large truncations of A are required.

3.3. The “lucky accident”. When solving the Helmholtz equation in R3

using separation of variables in prolate spheroidal coordinates, the eigenvalue
problem

(14) P(m)
c ϕ = χϕ

arises where P(m)
c is the self-adjoint differential operator

(15) P(m)
c = (1− t2)

d2

dt2
− 2t

d

dt
−
(

m

1− t2 + c2t2
)

Eigenfunctions of P(m)
c are known as prolate spheroidal wave functions and

are denoted {ϕ(c)
m,n}∞m,n=0.

Slepian and Pollak [1] observed that P(0)
c commutes with PcQ1 – the so-

called “lucky accident”. This means that P(0)
c and PcQ1 share their eigen-

functions, so that the zero-th order prolates correspond to the Slepians at

least in the case T = 1, i.e., ψn is a constant multiple of ϕ
(c)
0,n. If the Slepians

associated with the intervals [−T, T ] and [−Ω/2,Ω/2] are denoted ψ
(T,Ω)
n

then we have √
aψ(T,Ω)

n (at) = ψ(T/a,aΩ)
n (t)

so consideration of the Slepians ψ
(1,c)
n is sufficient. From now on we will call

the Slepian functions prolates.



SAMPLING, UNCERTAINTY AND PROLATE FUNCTIONS 57

Since the prolates ψn = ψ
(1,c)
n have now been realized as eigenfunctions

of a Sturm-Liouville system, a number of remarkable properties follow:

1. Each ψn is real-valued.
2. ψn is even when n is even and odd when n is odd.
3. ψn has precisely n zeroes in [−1, 1], each of which are nodes (ψ

changes sign at each of its zeroes).
4. The zeroes of ψn and ψn+1 are interlaced.
5. ψn(±1) 6= 0.
6. {ψn}∞n=0 is a Markov system on [−1, 1]. This means that for all

N ≥ 0, any non-trivial linear combination
∑N

n=0 cnψn vanishes at
most N − 1 times on [−1, 1].

7. {ψn}∞n=0 has a unique Gaussian quadrature.

8. The eigenvalues {χn}∞n=0 of P(0)
c are simple and well-separated:

0 < χ0 < χ1 < · · · < χn < · · · ↑ ∞.

In fact, χn(c) ≈ n(n + 1)

[
1 + O

(
c2

2n2

)]
and as c → ∞, we have χn(c) ≈

c(2n+ 1)− n2 + n+ 3/2

2
+O(1/c) [6].

Property 7 will be explored further in section 4. Property 8 leads to
the feasibility of efficient and accurate Galerkin methods for computing the
prolates – even those of small or large order whose computation from the
integral operator PcQ1 is unfeasible due to the bunching of the eigenvalues
of that operator.

Bouwkamp [4] developed a method for the construction of the prolates
which exploited the Sturm-Liouville property. Separately, Xiao, Rokhlin
and Yarvin [25] and Boyd [5] developed a Galerkin approach in which the
eigenproblem (14) is reduced to an eigenproblem for a tri-diagonal matrix.
Since ψn ∈ L2[−1, 1] we have the expansion

ψn =

∞∑

j=0

βnjPj

where {Pj}∞j=0 are the Legendre polynomials. We then have

χnψn = P(0)
c ψn =

∞∑

j=0

βnjP(0)
c Pj .

However, the Legendre polynomials satisfy

(1− t2)P ′′n (t)− 2tP ′n(t) = −n(n+ 1)Pn(t), and

tPn(t) =
1

2n+ 1
[(n+ 1)Pn+1(t) + nPn−1(t)]

so that P(0)
c Pj =

∑∞
k=0AjkPk with A = (Ajk)

∞
j,k=0 a doubly-infinite tri-

diagonal matrix. We therefore have

χnψn =

∞∑

k=0

( ∞∑

j=0

Ajkβnj

)
Pk = χn

∞∑

j=0

βnjPj .
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Figure 1. The prolates ψ0 (blue), ψ1 (green), ψ2 (red), ψ3

(azure) associated with the time limit T = 1 and frequency
limit Ω = 5/2 so that c = 5.

With bn = (βn0, βn1, . . . , βnj , . . . )
T , we have

ATbn = χnbn,

a matrix eigenproblem for the Legendre coefficients of the prolates on [−1, 1]

and associated eigenvalues of P(0)
c . This problem may be accurately trun-

cated and solved numerically for the eigenvectors bn and eigenvalues χn (see
[5], [25], [13], [19] for further details).

This procedure works well when c is small. For large values of c, it is best
to use Hermite functions in place of Legendre polynomials. See [13], [6] and
[24] for details. The first 4 prolate functions are plotted in figure 1 for the
case c = 5.

4. Prolates and sampling

4.1. Sampling properties of the prolates. Since PWΩ is translation-
invariant, S(Ωt) = sinc(Ωt) ∈ PWΩ, and the prolates form an orthonormal
basis for PWΩ, we have

S(Ωt− k) =
∞∑

n=0

(∫ ∞

−∞
S(Ω(s− k/Ω))ψn(s) ds

)
ψn(t) =

∞∑

n=0

ψn(k/Ω)ψn(t).
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As a consequence of the cardinality of the cardinal sine, we have the discrete
orthogonality properties of the prolates:

∞∑

n=0

ψn(j/Ω)ψn(k/Ω) = δjk (j, k ∈ Z)

∞∑

k=−∞
ψn(k/Ω)ψm(k/Ω) = δnm (m,n ∈ Z).

and hence the sampling expansion

f(t) =
1

Ω

∑

k=−∞
f(k/Ω)S(Ωt− k)

=
1

Ω

∞∑

k=−∞
f(k/Ω)

∞∑

n=0

ψn(k/Ω)ψn(t)

=
1

Ω

∞∑

n=0

( ∞∑

k=−∞
f(k/Ω)ψn(k/Ω)

)
ψn(t).(16)

The question we will try to answer in section 4.2 is whether the double sum
above can be accurately truncated to give an implementable, approximate
sampling formula.

4.2. Localised sampling. As mentioned in section 3, the prolates {ψn}∞n=0

have unique Gaussian quadratures. This means that for each fixed integer
N ≥ 1, there are unique nodes {ti}Ni=1 ⊂ [−1, 1] and positive weights {wi}Ni=1
such that

(17)

∫ 1

−1
ψn(t) dt =

N∑

i=1

wiψn(ti)

for all 0 ≤ n ≤ 2N−1. Equation (17) involves 2N equations in 2N unknowns
wi and ti (1 ≤ i ≤ N). These equations are non-linear in the ti variables. To
compute approximate Gaussian quadrature nodes {ti}Ni=1, one starts with an
initial approximation {t∗i }Ni=1 (which might be, for example, the well-known
Legendre quadrate nodes) and then applies Newton iteration. The process
is outlined in [13] and [5].

Xiao, Rokhlin and Yarvin [25] investigate the use of generalized Gauss-
ian quadratures in localized sampling reconstructions of functions in PWc.
Their work relies on the following generalization of the division algorithm
for polynomials.

Theorem 3. Suppose f ∈ PW2c and p ∈ PWc. Then there exists q, r ∈
PWc with ‖p‖2, ‖r‖2 ≤ C‖f‖2 such that

f = pq + r.

Let {ti}Ni=1 be the N zeroes of ψ
(1,c)
N on [−1, 1] and let {wi}Ni=1 be weights

for which (17) is valid for 0 ≤ n ≤ N − 1. The existence of such weights is
guaranteed by the fact that the prolates form a Markov system on [−1, 1].
Then we have
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Theorem 4. Let g ∈ PW2c and {ti}Ni=1, {wi}Ni=1 be as above. Then

(18)

∣∣∣∣
∫ 1

−1
g(t) dt−

N∑

i=1

wig(ti)

∣∣∣∣ ≤ CλN‖f‖2.

When applied to g = fψn with f ∈ PWc, Theorem 4 leads to the following
local sampling result.

Theorem 5. Let {ti}Ni=1 and {wi}Ni=1 be as above and

sn(t) = wn

N−1∑

k=0

ψk(tn)ψk(t) (1 ≤ n ≤ N).

Then for all f ∈ PWc, and |t| ≤ 1,

(19)

∣∣∣∣f(t)−
N∑

n=1

f(tn)sn(t)

∣∣∣∣ ≤ CλN‖f‖2.

This (and similar) results aim to accurately recover the values of f ∈ PWc

on [−1, 1] from values {f(ti)}Ni=1 at specialized quadrature nodes {ti}Ni=1.
We ask what happens when samples are taken uniformly, as in the classical
sampling formula (1), but only finitely many values are taken. Since PWc

is translation-invariant, we cannot expect finitely many uniform samples
to accurately recover arbitrary functions in PWc. We can, however, ask
if functions which are well-localized on [−1, 1] (e.g., the prolates) can be
accurately recovered from samples taken on (or near) [−1, 1].

The starting point is the sampling formula (16). We now change our point
of view by dilating the prolates so that Ω = 1 and T = c. Then (16) takes
the form

f(t) =
∞∑

n=0

( ∞∑

k=−∞
f(k)ψn(k)

)
ψn(t)

for f ∈ PW1. The projection of f onto sp{ψn}N−1
n=0 is

fN (t) =

N−1∑

n=0

( ∞∑

k=−∞
f(k)ψn(k)

)
ψn(t)

and the local approximation is obtained by truncating the infinite sum over
k:

fN,K(t) =

N−1∑

n=0

( ∑

|k|≤K
f(k)ψn(k)

)
ψn(t).

Lemma 6. Let f ∈ PW1 and fN,K be as above, Then

(20) ‖QT (f − fN,K)‖22 ≤ [(λN + ε)T +
N−1∑

n=0

λnαK,n]‖f‖22

where αK,n =
∑
|k|≥K ψn(k)2.
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Proof. Suppose f is well-localized on [−T, T ], i.e.,
∫
|t|>T |f(t)|2 dt ≤ ε‖f‖22

for some small ε. With Q′T = I −QT , we have

‖QT (f − fN )‖22 =

∫ T

−T

∣∣∣∣
∞∑

n=N

〈f, ψn〉ψn(t)

∣∣∣∣
2

dt

=

∞∑

n=N

|〈f, ψn〉|2λn

=
∞∑

n=N

|〈QT f, ψn〉+ 〈Q′T f, ψn〉|2λn

≤
∞∑

n=N

[‖QT f‖2
√
λn + ‖Q′T f‖2]2λn

≤
∞∑

n=N

(
√
λN +

√
ε)2λn‖f‖22

≤ 2

∞∑

n=N

(λn + ε)λn‖f‖22 ≤ C(λN + ε)c‖f‖22(21)

where in the last line we have used the fact that
∑∞

n=0 λn = c(= 2T ), a
consequence of the fact that P1QT is a trace class operator with eigenvalues
{λn}∞n=0. Also,

fN (t)− fN,K(t) =
N−1∑

n=0

〈f, ψn〉ψn(t)−
N−1∑

n=0

( ∑

|k|<K
f(k)ψn(k)

)
ψn(t)

=
N−1∑

n=0

( ∑

|k|≥K
f(k)ψn(k)

)
ψn(t)

so that, with an application of Cauchy-Schwarz and the equality
∑

k |f(k)|2 =
‖f‖22, we have

‖QT (fN − fN,K)‖22 =
N−1∑

n=0

λn

∣∣∣∣
∑

|k|≥K
f(k)ψn(k)

∣∣∣∣
2

≤
N−1∑

n=0

λn‖f‖22
∑

|k|≥K
ψn(k)2 = ‖f‖22

N−1∑

n=0

λnαK,n(22)

where αK,n =
∑
|k|≥K ψn(k)2. Combining (21) and (22) gives (20). The

proof is complete. �

Note that equation (20) represents an accurate, localized sampling ex-
pansion of f on [−T, T ] provided αK,n can be made small by choosing K
sufficiently large.

In [22], Walter and Shen show that if K = T , then αT,n ≤ CT
√

1− λn.
In [14], the authors show that if K = M(T ) = CT logγ T with γ > 1, then

αM(T ),n ≤ C(1− λn).
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Note the independence of the right-hand side of this inequality on T . The
restriction γ > 1 comes from the use of a Fourier bump in the proof (see
section 2.2). Note also that M(T )/T →∞ as T →∞. An improved result
is as follows.

Theorem 7. Let ψn denote the n-th prolate band-limited to [−1/2, 1/2],
time-concentrated on [−T, T ] and normalized so that

∫∞
∞ |ψ(t)|2 dt = 1.

Then there are constants C1 and C2 such that if M = T (1 + C1 log T ),
then

(23)
∑

|k|>M
ψn(k)2 ≤ C2(1− λn).

Proof. For simplicity we write ψ = ψn. Let g(t) = e−πt
2

and gε(t) =
ε−1g(t/ε) be the L1-normalised dilate of g. Let

Φ̂(ξ) =
1

2
1[−2,2] ∗ 1[−1,1](ξ)

so that Φ̂(ξ) = 1 if |ξ| ≤ 1, Φ̂(ξ) = 0 if |ξ| ≥ 3 and 0 ≤ Φ̂(ξ) ≤ 1 for all ξ.
Note that

|Φ(t)| =
∣∣∣∣
sin(4πt) sin(2πt)

2π2t2

∣∣∣∣ ≤
C

1 + t2
.

Hence Φ ∈ L1 and the majorant Φ# given by Φ#(t) = sup|t−x|≤1 |Φ(x)|
satisfies Φ#(t) ≤ C

1 + t2
. Let Γ̂ = Φ̂ ∗ gε. Then Γ(t) = Φ(t)e−πε

2t2 ≤
e−π

2ε2t2/t2. Also, Γ̂ is non-negative and

Γ̂(ξ) =

∫ ∞

−∞
Φ̂(η)gε(ξ − η) dη ≤

∫ ∞

−∞
gε(ξ − η) dη = 1.

On the other hand, for |ξ| ≤ 1/2,

Γ̂(ξ) ≥
∫ 1

−1
gε(η − ξ) dη =

∫ 1−ξ

−1−ξ
gε(u) du ≥

∫ 1/2ε

−1/2ε
g(t) dt = 1− erfc(

√
π/2ε)

where erfc is the complementary error function erfc(t) =
2√
π

∫∞
t e−x

2
dx.

For sufficiently large t, erfc(t) ≤ C
e−t

2

t
. Hence, for |ξ| < 1/2, Γ̂(ξ) ≥

1 − Cεe−π/(4ε2) and consequently, for |ξ| < 1/2, |1 − Γ̂(ξ)| ≤ Cεe−π/(4ε
2).

Now we write

(24) ψ = ψ ∗ Γ + (ψ − ψ ∗ Γ).

Given M > 0, we want to estimate
∑
|k|>M ψ(k)2. From (24) we see that

(25)
∑

|k|>M
ψ(k)2 ≤ C

∑

|k|>M
ψ ∗ Γ(k)2 + C

∑

|k|>M
(ψ − ψ ∗ Γ)(k)2 = A+B.
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Since ψ̂ and ψ̂Γ̂ are supported on [−1/2, 1/2], an application of the Poisson
summation formula yields

B ≤ C
∞∑

k=−∞
|ψ(k)− ψ ∗ Γ(k)|2

= C

∫ 1/2

−1/2

∣∣∣∣
∞∑

k=−∞
(ψ(k)− (ψ ∗ Γ)(k))e2πikξ

∣∣∣∣
2

dξ

= C

∫ 1/2

−1/2

∞∑

`=−∞
|ψ̂(ξ + `)− ψ̂(ξ + `)Γ̂(ξ + `)|2 dξ

= C

∫ 1/2

−1/2
|ψ̂(ξ)(1− Γ̂(ξ))|2 dξ ≤ Cε2e−π/(2ε

2)‖ψ‖22 = Cε2e−π/(2ε
2).(26)

We now want to estimate A =
∑
|k|>M ψ ∗ Γ(k)2 and we write ψ ∗ Γ =

(QTψ) ∗ Γ + (Q′T )ψ ∗ Γ so that

(27) A ≤ C
∑

|k|>M
QTψ ∗ Γ(k)2 + C

∑

|k|>M
Q′Tψ ∗ Γ(k)2 = E + F.

For all s ∈ [k − 1, k + 1], |Γ ∗ (Q′Tψ)(k)| ≤ |(Γ ∗ (Q′Tψ))#(s)| so that

|Γ ∗ (Q′Tψ)(k)|2 ≤
∫ k+1/2

k−1/2
|(Γ ∗ (Q′Tψ))#(s)|2 ds

and

F ≤ C
∑

k

|Γ ∗ (Q′Tψ)(k)|2 ≤ C
∫ ∞

−∞
|(Γ ∗ (Q′Tψ))#(s)|2 ds

≤ C
∫ ∞

−∞
|Q′Tψ| ∗ Γ#(s)2 ds ≤ CΓ

∫ ∞

−∞
M(|Q′Tψ|)(s)2 ds

≤ CΓ‖Q′Tψ‖22 = CΓ(1− λn)(28)

where M is the Hardy-Littlewood maximal function. We have used the
boundedness ofM on L2(R) and also the fact that |Γ# ∗ f(x)| ≤ CΓMf(x)
where CΓ is constant that depends only on Γ (see [20]). On the other hand,
since (f ∗ g)# ≤ f# ∗ |g|, we have

E = C
∑

|k|>M
(Γ ∗QTψ)(k)2 ≤ C

∑

|k|>M

∫ k+1/2

k−1/2
(Γ ∗QTψ)#(s)2 ds

= C

∫

|s|>M−1/2
(Γ ∗QTψ)#(s)2 ds

≤ C
∫

|s|>M−1/2
Γ# ∗ |QTψ|(s)2 ds

= C

∫

|s|>M−1/2

(∫

|t|<T
|QTψ(t)|Γ#(s− t) dt

)2

ds.(29)
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But |s| > M − 1/2 and |t| < T implies that |s− t| ≥M − T − 1/2, so from
(29) we have

E = C
∑

|k|>M
(Γ ∗QTψ)(k)2

≤ C
∫

|s|>M−1/2

(∫

|t|<T
|QTψ(t)|Q′M−T−1/2Γ#(s− t) dt

)2

ds

≤ C‖|QTψ| ∗Q′M−T−1/2Γ#‖22
≤ C‖QTψ‖22‖Q′M−T−1/2Γ#‖21 = Cλn‖Q′M−T−1/2Γ#‖21.(30)

However, Γ#(t) ≤ Ce−πε2t2 , so for each R > 1,

‖Q′RΓ#‖1 ≤ C
∫

|t|>R
e−πε

2t2 dt

t2
≤ Ce−πε2R2

and applying this to (30) gives

(31) E ≤ Cλne−πε
2R2

.

with R = M − T − 1/2. From (24)–(28) and (31) we see that it’s enough to
satisfy simultaneously the requirements

Cε2e−π/(2ε
2) ≤ 1− λn; and(32)

Ce−2πε2R2 ≤ 1− λn.(33)

However, λn ≤ λ0 so it’s enough to have (32) and (33) with λn replaced by
λ0. From (11) we have

(34) λ0 exp(−π2(C + c/ log c) ≤ 1− λ0 ≤ λ0 exp(π2(C − c/ log c))

for some constant C and sufficiently large time-bandwidth product c = 2T .
Hence, for (32) to be satisfied, the inequality

Cε2e−π/(2ε
2) ≤ λ0e

−(C+T/ log T )

is sufficient, and for this we see that

(35) ε = C

√
log T

T

is sufficient. With ε thus defined, we now choose R so that (33) is satisfied.
By (34), the condition

Ce−2πε2R2 ≤ e−π2(C+T/ log T )

is sufficient, which is in turn implied by 2ε2R2 ≥ CT/ log T , or equivalently,
R = CT/ log T . Hence

M = R+ T + 1/2 = C
T

log T
+ T.

This completes the proof. �
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