A MAXIMAL FUNCTION APPROACH TO OPERATOR
TRACES

BRIAN JEFFERIES

ABSTRACT. A trace class operator T : L?(u) — L?(u) has the property
that for a distinguished kernel k representing T, the formula trace(T") =
J5 E(x,x) du(z) is valid. The Hardy-Littlewood maximal function is
used to establish an analogous formula [ (T, dm) = [, k(z, z) du(z) for
a class of integral operators T" wider than trace class operators, includ-
ing the Volterra integral operator. The ‘generalised trace’ [, (T, dm)
surfaces in the Cwikel-Lieb-Rosenbljum inequality for dominated semi-
groups on L*(p).

1. INTRODUCTION

The singular values {\;}72, of a compact linear operator 7': H — H on
a Hilbert space H are the eigenvalues of the compact selfadjoint operator
(T*T)%. The operator T is called trace class if Z;; Aj < 00, or equivalently,
> 721 |(Thj, hyj)| < oo for any orthonormal set {h;}32; in H. Many facts
about trace class operators are collected in [13, 30]. In the case where
the Hilbert space H has finite dimension n = 1,2,..., the trace of T is
the number »°7_, a;; for any matrix representation {a;)};_, of the linear
map T with respect to a basis of H. In the case of an infinite dimensional
separable Hilbert space H, the trace is

[e o]

trace(T') = Z(Thja h;)
j=1

with respect to any orthonormal basis {h;}72, of H [30, Theorem 3.1]. By
analogy with the finite dimensional case, if T}, : L2([0,1]) — L?([0,1]) is a
trace class linear operator with an integral kernel k, then one might hope
that

(1.1) trace(Tk):/O k(z,x) dx.

However, {(z,z) : = € [0,1]} is a set of measure zero in [0,1]® and if
k = ki almost everywhere on [0, 1]?, then T}, = T},, so the right hand side
of equation (1.1) is not well defined. Nevertheless, there does exist a distin-
guished kernel k for which (1.1) is valid, because any trace class operator
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T : L%([0,1]) — L?([0,1]) has a representation

(1.2) T:h— > Noj(h,ty), he L*([0,1),
j=1
with respect to the L2-inner product (f, g) fo g(x)dz, f,9 € L*([0,1]),

and the singular values {\;}72 of T". The sets {gb]} and {w]} of vectors are

orthonormal in L?([0,1]), so the representation (1.1) is valid for the distin-
guished integral kernel k& defined by

2,y) =Y Xbi(@);(y)
j=1

for all z,y € [0, 1] for which the right hand side is absolutely convergent. In
particular, if T : L?([0,1]) — L?(]0,1]) is a trace class linear operator with
a continuous integral kernel k on [0, 1]?, then (1.1) holds [30, Theorem 3.9].

C. Brislawn observed in [4] that if T : L?([0,1]) — L?([0,1]) is a trace
class linear operator and kg is any integral kernel of T', then the kernel
k = lim¢_,04 @c * ko has the property that T'= T} and equation (1.1) holds.
Here ¢.(z) = € 2p(z/¢), z € R%, € > 0, for some nonnegative function ¢ on
R? that is is zero outside [—1, 1]* and with the property that [, ¢(z)dz =1
and ¢ has an integrable radially decreasing majorant: the characteristic
function ¢ = X[_%7%]2 will do. The convolution u * v of u,v € L*(R") is

defined for almost all x € R™ by the formula
wiole) = [ ule = p)ely) dy

The convolution u*v of a function v € L'(R?) with v € L'([0,1]?) is defined
almost everywhere in [0, 1]2 by setting v equal to zero outside [0, 1]2.

Then the map kg — lim._04 @, * ko is a smoothing operator for which
the value of k = lim._,04 @¢ * ko at a point (x,z) of the diagonal is defined
by averages in [0,1]? about (z,z) for almost every = € [0,1]. A related
approach appears on [13, Theorem 8.4].

It is clear that this idea need not be confined to trace class operators.

Example 1.1 ([4, Example 3.2]). The Volterra operator 7T is defined by

/f Ydy, ze0,1],

for f € L*([0,1]). Then T is also defined by the integral kernel ko = Xg ;3.
The (lattice) positive linear map T : L?([0,1]) — L?([0,1]) is a Hilbert-
Schmidt operator but not trace class: it has singular values \,, = 2/(7(2n+
1)), n = 1,2,.... For the regularised kernel k = lim. o+ . * ko defined
above, we have k = kg off the diagonal in ]0,1[> and k(x,z) = 1/2 for all
x € 10,1][, so fol k(z,x)dx = % The operator T' is not hermitian positive on
the complex Hilbert space L%([0,1]), that is, we don’t have (T'u,u) > 0 for
every u € L2([0,1]).

Suppose that the finite rank operator 7" € E(LQ([ 1])) has an integral ker-
nelk‘—z _1 [ ®Xa,; with u(A4;) < oo and f; € L?([0,1)) for j=1,...,n
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Then it is natural to view
/(T,dm> ::Z/ fi du:/k(a:,:c) du(z)
b L b

as a bilinear integral of the operator T with respect to the L?([0, 1])-valued
measure m : A — Xa, A € B(]0,1]). The point of view adopted in
this note is to use Brislawn’s averaging process to extend the bilinear in-
tegral fz (T,dm) to a wider class of absolute integral operators T' acting
on L*([0,1]) or a general Banach function space X, so that [ (T,dm) is
actually the trace of T in the case where T € L£(L?([0,1])) is a trace class
operator. The bilinear integral [ (T, dm) features in the recent proof of the
Cwikel-Lieb-Rosenbljum inequality for dominated semigroups in [15].

Some basic facts about the Hardy-Littlewood maximal operator in the
unit square are gathered in Section 2 and these are applied in Section 3 to
integrable functions to produce a Banach function space L' (p) embedded in
L*(]0,1]2). Functions belonging to a certain closed subspace of L!(p) have
the property that the set of its Lebesgue points has full linear measure on
the diagonal of [0, 1]? and in this sense, they are traceable. For an operator
T whose integral kernel is of this class, the bilinear integral [ (T, dm) con-
verges unequivocally. In Section 4, absolute integral operators T': X — X
acting on a Banach function space X over a o-finite measure space are con-
sidered. Now that convolution is unavailable, the same idea with respect to
the martingale mazimal function is applied. In the case that X = L?([0, 1]),
the dyadic martingale on [0, 1] yields the same results as in Section 3. The
standard facts we need about complex Banach lattices are laid out in the
monograph [22].

In Theorem 4.1, a lattice ideal €1(€, X) in the space or regular operators
on a Banach function space X is constructed. The Banach lattice €; (€, X)
depends on the given filtration £. By contrast, the collection of trace class
operators on a Hilbert space H is an operator ideal in the space L(H) of
all bounded linear operators on H. Happily, if u is a o-finite measure, then
a hermitian positive bounded linear operator on the complex Hilbert space
L?(p) is an element of €1 (€, X) if and only if it is trace class, no matter what
filtration £ is given [16]. We end with a short discussion of other ‘generalised
traces’ in recent literature.

2. THE HARDY-LITTLEWOOD MAXIMAL OPERATOR

The Lebesgue measure on R is denoted by A. The Lebesgue measure of
a Borel subset B of R" is sometimes written as |B| and it will be under-
stood to apply to expressions like ‘almost everywhere’ and ‘almost all’ with
respect to subsets of R™. The centred Hardy-Littlewood maximal function of
f € LY([0,1]?) is given by

T d
(2.1) M()(w) = sup 12 |f|(c+|t)| 3
>0 r

In the formula above, the function f is put equal to zero outside the square
[0,1)? and C, = [-7r,7] x [=r,7] for r > 0. The maximal function M (f)
is equivalent to the maximal function obtained by averaging over centred

z € [0, 1]




70 BRIAN JEFFERIES

disks [14, Exercise 2.1.3], but for the purposes of the present note it is
convenient to emphasise the product structure of the unit square. According
to Lebesgue’s differentiation theorem [14, Corollary 2.1.16], if f € L([0,1]?),
we have

Jo flz+1t)dt
2.2 lim 2%
22) 0 |Gy f@)
for almost all z € [0,1]2, so that |f| < M(f) almost everywhere and the set
Ly of Lebesgue points x € [0, 1}2 of f where

Jo [fe+6)— f@ldr

o C,l
has full measure in [0, 1]%.

Let ¢ :]—1, 1[— [0, oo[ be a continuous function with compact support and
fil é(t) dt = 1. For the function ¢ : R? — R defined by ¢(z,y) = ¢(z)d(y),
for z,y €]—1, 1] and zero outside | — 1, 1[2, we set . (x) = e 2p(x/€), v € R?,
€ > 0. Then a variant of Lebesgue’s differentiation theorem for an integrable
function f shows that o x f — f in LP([0,1]?) for 1 < p < co and almost
everywhere as € — 0+ [14, Corollary 2.1.17].

We are interested in the class of bounded linear operators
Ty, : L*([0,1]) — L?([0,1]) with a distinguished kernel k : [0,1]> — C for
which |k| also defines a bounded linear operator T}y, : L*([0,1]) — L([0,1])
(absolute integral operators) and the intersection LiNdiag of the Lebesgue
set Ly of k with the diagonal diag = {(z,z) : = € [0,1]} has full linear
measure. Because constant functions belong to L?([0, 1]), the kernel k nec-
essarily belongs to L!([0,1]?)), so we first look at a subspace of L'(]0,1]?)
consisting of functions f for which LNdiag has full linear measure.

3. THE BANACH FUNCTION SPACE OF TRACEABLE FUNCTIONS

Let (3, B, 1) be a o-finite measure space. The space of all py-equivalence
classes of scalar functions measurable with respect to B is denoted by L°(u).
It is equipped with the topology of convergence in py-measure over sets of
finite measure and vector operations pointwise p-almost everywhere. Any
Banach space X that is a subspace of LY(u) with the properties that

(i) X is an order ideal of LO(u1), that is, if g € X, f € LO(u) and |f| < |g]
u-a.e., then f € X, and
(i) if f,g € X and |f] < g p-a.e., then [|fllx <{g]x,
is called a Banach function space (based on (X, B, (1)) [22, §2.6]. The set of
f € X with f >0 p-a.e. is writen as X.

The map J : [0,1] — [0, 1] defined by J(x) = (z, ), = € [0, 1], maps [0, 1]
homeomorphically onto diag. For f € L'([0,1]?), the extended real number
p(f) € [0,00] is defined by p(f) = | fll1 + fy M(f) o J(x)da.

Proposition 3.1. The space L'(p) = {f € L'([0,1]?) : p(f) < oo} with
norm p is a Banach function space continuously embedded in L(]0,1]?).

Proof. Properties (i) and (ii) follow from the observation that M (f) < M(g)
everywhere if |f| < |g| almost everywhere on [0,1]%. According to [22,
Proposition 2.6.2], it is enough to prove that L!(p) has the Riesz-Fischer
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property. Suppose that f; > 0 almost everywhere for j = 1,2,... and
>_721p(fj) < oo. Then monotone convergence ensures that » 2%, f; con-
verges almost everywhere in [0,1]? and in L'(]0,1]?) to a nonnegative in-
tegrable function f and M(f) < 3772, M(f;) everywhere on [0, 1]? and so
p(f) < 32721 p(fj)- The inequality | f|l1 < p(f) ensures that the inclusion
of L*(p) in L(]0,1]?) is continuous. O

Suppose that f € L'(p). By [14, Corollary 2.1.12], there exists C' >
0 independent of f such that sup..q|(¢c * f)(x)] < CM(f)(z) for every

z € (0,12, so if we let f = limsup,_,o, (e * f) on [0,1]2, then f = f almost
everywhere on [0, 1] by [14, Corollary 2.1.17], fo J < CM(f) o J and

1 1
/ @, de < C / M(f) 0 J(z) dz < os,
0 0

so in this sense, elements of L!(p) possess an integrable trace on diag C
[0,1]2. However, the mapping f fol f(z,x)dx, f € L'(p), may only
be sublinear, so next we examine a subspace for which the limsup can be
replaced by a genuine limit almost everywhere on diag.

If w and v are two real valued functions defined on [0, 1], the tensor prod-
uct u ® v : [0,1]> = R of v and v is defined by (u ® v)(z,y) = u(z)v(y),
x € [0,1]. A similar notation is used for the equivalence classes of func-
tions so that [u ® v] o J := [w.w]. Then L*([0,1]) ® L*°([0,1]) denotes
the linear space of all finite linear combinations of elements u ® v with
u,v € L*([0,1]). Each element f of the finite tensor product L>(]0,1]) ®
L>°(]0,1]) is essentially bounded on [0,1]? and M (f) < ||f]loo, 50 f € L(p)
and foJ e L>([0,1]). Let L>=([0,1])®,L>°([0,1]) denote the norm closure
of the subspace L>([0,1]) ® L>([0, 1]) in the Banach function space L'(p).

Proposition 3.2. Let f € L*([0,1]%). Then f € L>([0,1))&,L>°([0,1]) if
and only if e * f — f in L'(p) as e — 0+. If f € L>=([0,1])®,L°°([0,1])
then (pe * f) o J converges a.e. on [0,1] and in L*([0,1]) as € — O+.

Proof. By an application of the Cauchy-Schwarz inequality and the L?2-

bound for the Hardy-Littlewood maximal operator [14, Theorem 2.1.6],
there exists C' > 0 such that if u,v € L?([0,1]), then

1 1
/ M(u@v)(:v,x)dmg/ M (u)(x)M (v)(z) dz
0 0
(3.1) < Cllullaloll.

Here M (u) and M (v) are the one dimensional maximal functions of w and
v defined as in formula (2.1).
Suppose first that f = v ® v for u,v € L>([0, 1]). Then

pex [ = (P ¥ u) ® (¢e % v)
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because ¢ = ¢ ® ¢ and so
1 1
/0 M(pe* f— f)(z,x)dx < C’/O M(¢pe xu—u)(z)M(v)(z) dx

1
+ / M(e % v — v)(@)|ul () de
0
< Ol % — ullal[oll2 + [ be v — vllzlfull2) > 0

as € — 0+. Consequently, o * f — f in L'(p) as € — 0+ when f is a linear
combination of products of functions belonging to L>°(]0,1]). There exists
C > 0 such that .+ fl < C|[f]l for every f € L'([0,1]?) and

1 1
(3.2) /()M(cpe*f)(x,x)deC/O M(f)(x,x)dx, €>0.

To check the inequality (3.2), suppose that ¢ = 7~ Xp, for the unit disk
D; centred at zero in R? and let ¢ be the least decreasing radial majorant
of . Because ¢ is continuous with compact support, ¢ is integrable on R2.
Then @, * ¥5 is a radial function for which

o /0 F(e % Ps)(rer) dr = [[Pe * sl g

= || @ell L1 2y Vsl L1 (r2)

= @/l (m2)-
As in the proof of [14, Theorem 2.1.10], there exists C/ > 0 such that
SUP, 550 Pe * s * |f| < C'M(f). Because the maximal function (2.1) is

equivalent to the maximal function for centred disks, there exists C' > 1
such that

M(pex f) < M(pex f) < OM(f)
from which the inequality (3.2) follows.

Consequently, the linear map f — o, * f, f € L'(p), is continuous on
LY(p) for each € > 0 so that if f € L>([0,1])®,L>([0,1]) then @+ f — f in
LY(p) as € = 0+. Because pxf € C([0,1]?) and C([0, 1])®C[0, 1]) is dense in
C([0, 1]?) in the uniform norm, it follows that @, f € L>([0,1])®,L>([0, 1])
for each € > 0, and the limit of ¢, * f in L'(p) as € — 0+ also belongs to
L>([0,1))@,L>([0, 1)).

Let Tif = Sup.sq |pe * f| o J for f € LY(p). Then Ty : L*(p) — L1([0,1])
is uniformly continuous. An argument similar to the proof of [14, Theorem
2.1.14] shows that (¢, * f) o J converges almost everywhere and in L'(]0, 1])
as € — 0+ for each f € L(p). O

Let f € L=([0,1))®,L>([0,1]) and set f = lim 04 @, * f wherever the
limit exists in [0, 1]? and zero elsewhere. Writing f# for the corresponding
function with ¢ replaced by X;_1 1), it follows from equation (2.2) that

272

f# = f almost everywhere on [0,1]2 and f# o J = f o J almost everywhere
on [0,1], because the last equality certainly holds when f belongs to the
dense subspace L°([0,1]) ® L>([0,1]). In particular, f o J € L'([0,1]) and
the integral [, foJ(z)dz, B € B(]0,1]), does not depend on the choice of
the function ¢.
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Example 3.3. For a continuous function f on [0,1]? equal to zero on
R2\ [0, 1], the continuous functions ¢, * f converge uniformly to f on com-
pact subsets of |0, 1[? [14, Theorem 1.2.19 (2)], so that

f € Loo([07 1])®PLOO([07 1])

and f = f. Hence, C([0,1]?) and C([0,1]) ® C([0,1]) are dense in
1[0, 1)&,L=(0, 1)).
Functions belonging to W1*(R?) or the space L*?(IR?) of Bessel potentials
on R? also admit a trace on diag(R?) if p, ap > 1, see [1, Section 6.2].
There exists a continuous periodic function ¢ : R — C with period one
such that
Yo lom)P = oo
nez
for all p < 2 [Carlemann, 1918]. If k(x,y) = ¢(z — y), then k is a con-
tinuous kernel, M (k) o J < ||¢]|loc and k(z,z) = ¢(0) for all x € [0,1] and
S0 fol k(z,x)dx = ¢(0), although the Hilbert-Schmidt operator T} is not a
trace class operator. Because k < ||¢||~ and a constant function is the ker-
nel of a finite rank operator, the trace class operators do not form a lattice
ideal in the Banach lattice of Hilbert-Schmidt operators, despite being an
operator ideal in £(L?(]0,1])).

Example 3.4. The kernel X, ,} of the Volterra integral operator in Ex-
ample 1.1 belongs to the Banach space L*°([0,1])®,L>(]0, 1]) and the same
holds true for the function Xy, <,y which differs from X, .1 on diag, a set
of measure zero in [0, 1]2.

If T : R? - R? is a nonsingular linear transformation, then there exists
cr > 0 such that p(foT) < crp(f) if both f and foT are supported by [0, 1]2
because the collection {T'C;. : > 0} is itself a regular family of sets whose
associated maximal function is equivalent to the one defined for cubes by for-
mula (2.1). Furthermore, if g € L*>([0,1])®L>°([0, 1]), then (poT)cxg — g
in L'(p) as € — 0+, hence ¢, * (g o T~1) converges to go T~ in L!(p) as
€ — 0+ as well. Taking g to be the characteristic functions of squares and
T to be rotation through /4 gives Xy, <,y € L([0,1])®,L>([0,1]).

Proposition 3.5. Every element of L=([0,1])®,L>®([0,1]) has a represen-
tative function f : [0,1]*> — R for which there exist numbers c; € R and
Borel subsets Aj, Bj of [0,1], j =1,2,..., such that

> leil(14511By| + |A; N By|) < o0

j=1
and f(x) = 372 ¢jXa;xB;(x) for every x € [0, 1] such that the sum
> i1 leiXa;xB; () ds finite. In particular, foJ =322, cjXa,np; = fod
almost everywhere.
Proof. Let p = A®@ A+ Ao J~L If [fo] € L>([0,1])®,L>([0,1]), then
let f = fo on [0,1]?\ diag and set f o J = limc 04 (e * fo) o J wherever

the limit exists and zero otherwise. By [14, Corollary 2.1.12], there exists
C > 0 such that sup..g |(¢e * fo)(z)] < CM(fy)(x) for every x € [0,1]2
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Because p([fo]) < oo, f is p-integrable. The statement now follows from [18,
Proposition 2.13]. A similar statement is proved in [15, Lemma 3.2]. O

The projective tensor product L?([0,1))®,L?([0,1]) is the set of all sums

(3.3) k=) 6j @y ae, with D [|o;ll2llvjll2 < co.

j=1 j=1
The norm of k € L?([0,1))®,L%([0,1]) is given by

o.)
kllx = inf > 16501201412
j=1
where the infimum is taken over all sums for which the representation (3.3)
holds. The Banach space L2([0, 1])®,L?([0, 1]) is actually the completion of
the algebraic tensor product L?([0,1]) ® L?(]0,1]) with respect to the pro-

jective tensor product norm [28, Section 6.1]. The estimate (3.1) establishes
the following result.

Proposition 3.6. The projective tensor product L*([0,1])®,L?([0,1]) em-
beds onto a proper dense subspace of L*°([0,1])®,L>([0, 1]).

There is a one-to-one correspondence between the space of trace class
operators acting on L2([0,1]) and L?([0,1])®,L?([0,1]), so that the trace
class operator T has an integral kernel k € L?([0,1])®,L?([0,1]) given, for
example, by formula (1.2). If the integral kernel k defined by equation (3.3)
has the property that

k(z,y) = Z b5 ()5 (y)

for all z,y € ¥ such that the sum > 72, [¢;(2)1;(y)| is finite, then & is the
integral kernel of a trace class operator T}, and the equality

| 1
trace(T},) _]Z::l/o oj(x)Y;(z) dz _/0 k(x,x)dz

holds. The representation of Proposition 3.5 for elements of L>([0, 1])®,L>°([0, 1])
may be viewed as a substitute for the representation (3.3) of an element of
the projective tensor product L2([0,1])&,L>([0,1]).

Another way to view the trace trace(Ty) of a trace class operator T} :
L%([0,1]) — L2([0,1]) with an integral kernel k is as a type of bilinear
integral with respect to the L2(]0, 1])-valued vector measure m : B — Xg,

B € B([0, 1]). For example, if k = > 77, Xpp; ® f; for Borel subsets B; of [0, 1]
and f; € L*([0,1]), 7 =1,...,n and ® : [0,1] — L*([0,1]) is the L?([0, 1])-
valued simple function defined by @y (x) = >°7_; Xp; (). f;j, * € [0,1], then

(Pg, dm) = Zn: | filx)de = | k(z,z)dz
B ‘21 /BnB; B

and [, @, @ dm = (Xp ® 1).k € L*([0,1]) ® L*([0,1]) for B € B([0,1]).
The bilinear integrals [5(®,dm) and [ P, ® dm also makes sense for
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ke L?(0,1))®,L?([0,1]) where Ty is a trace class operator and

1
(3.4) trace(Tk):/o (Pg, dm)

independently of the integral kernel k representing the operator Ty, [17].

On the other hand, if k € L'(][0,1]?), then by Fubini’s Theorem, the
function ®(z) = f(x,-) has values in L([0,1]) for almost all z € [0, 1] and
J) @y @dm = k is an element of L'([0,1])®,L"([0,1]) = L'([0,1]?) [28, 6.5].
Furthermore, if fol ®), ® dm belongs to the subspace L>([0, 1])®,L>([0, 1])
of L'([0,1]?), then [,(®x,dm) is defined for each Borel set B contained in
[0,1] by appealing to Proposition 3.5. As Example 1.1 shows, now k& need
not be the integral kernel of a trace class operator acting on L*([0, 1]).

As a matter of notation, if T : L?([0,1]) — L?([0,1]) has an integral
kernel k belonging to L>([0,1])®,L>([0,1]), then the integral f01<<I>k, dm)
is independent of any integral kernel k representing 7', so it makes sense to
write fol (T, dm) for fol(q)k, dm).

4. TRACEABLE OPERATORS ON BANACH FUNCTION SPACES

It is clear that the ideas of the preceding section are concerned mainly
with the order properties of the Banach function space L?([0,1]), although
the smoothing operators k — o, * k, k € L'([0,1]?), ¢ > 0, depend on
the group structure of R2. For a o-finite measure space (X, B, it), the same
result is achieved by taking the maximal function with respect to a suitable
filtration (En)nen for which B =/, &,. The filtration determined by dyadic
partitions of R localised to [0, 1] gives the results of Section 3.

Let X be a complex Banach function space based on the o-finite measure
space (2, B, i), as defined at the beginning of Section 3. A continuous linear
operator T : X — X is called positive if T : X, — X,. The collection of
all positive continuous linear operators on X is written as £4(X). If the
real and imaginary parts of a continuous linear operator T': X — X can be
written as the difference of two positive operators, it is said to be regular.
The modulus |T'| of a regular operator 7" is defined by

IT|f = sup [Tg|, feX;.
lgl<f
The collection of all regular operators is written as £,(X) and it is given
the norm 7'+ [||T|||, T € £,(X) under which it becomes a Banach lattice
[22, Proposition 1.3.6]. In the case that X = L?(u), the same notation for
the hermitian positive operator (TT*)% is never used in the present work in
order to avoid possible confusion.

A continuous linear operator 7" : X — X has an integral kernel k if
k : X x Y — C is a Borel measurable function such that T = T}, for the
operator given by

@) B = [ b)) i), ralmost all o € .

in the sense that, for each f € X, we have [y |k(z,y)f(y)|du(y) < oo for
p-almost all € ¥ and the map z — [ k(z,y)f(y) du(y) is an element of
X. If T, > 0, then £ > 0 (1 ® p)-a.e. on ¥ x ¥ [22, Theorem 3.3.5].
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A continuous linear operator T is an absolute integral operator if it has
an integral kernel k for which 7} is a bounded linear operator on L3(p).
Then |Ty| = Tjx [22, Theorem 3.3.5]. Then k is (4 ® p)-integrable on any
product set A x B with finite measure. The collection of all absolute integral
operators is a lattice ideal in £,(X) [22, Theorem 3.3.6].

Suppose that T' € £(X) has an integral kernel k& = Z?Zl fj ®Xa; that is
an X-valued simple function with p(A;) < co. Then it is natural to view

[ @am) = g / = [ ko2 duto)

as a bilinear integral. Our aim is to extend the integral to a wider class of
absolute integral operators acting on the Banach function space X.

Suppose that for each n = 1,2..., the collection P,, of sets belonging to
the o-algebra B is a countable partition of ¥ into sets with finite measure
such that P, is a refinement of P, for each n = 1,2,..., that is, every
element of P, is the union of elements of P,y;. Then the o-algebra &,
generated by the partition P, of X is the collection of all unions of elements
of Py, so that &, C &,41 for n = 1,2,.... Suppose that B = \/, &y,
the smallest o-algebra containing all £,, n = 1,2,.... It follows that B is
countably generated. The filtration (&£, ),en is denoted by £.

Suppose that £k > 0 is a Borel measurable function defined on ¥ x X
that is integrable on every set U x V for U,V € P;. For each x € X,
the set Uy, (z) is the unique element of the partition P, containing z. For
each n = 1,2,..., the conditional expectation k, = E(k|E, ® &,) can be
represented for p-almost all z,y € ¥ as

1
B8 © E)(e9) = s | . / o D) dul)dutt

B fUXvkd(M®M)
= 2 u(U)p(V')

Xuxv(z,y).
U,VEPn

The point here is that the formula above defines a distinguished element
of the conditional expectation E(k|E, ® &,) that possesses a trace on the
diagonal of ¥ x ¥, that is, B — E(Xp|&, ® &,)(x,y), B€ B, x,y € ¥, is a
regular conditional measure [3, Definition 10.4.1].

Let NV be the set of all z € X for which there exists n = 1,2, ... such that
w(Uy(x)) = 0. Then p(Up,(z)) = 0 for all m > n because P, is a refinement
of P, if m > n. Moreover N is p-null because

N C GU{UePn:M(U):O}.

If 0 < ki <k (u® p)-a.e., then

E(k1|&n @ En)(z,y) < E(ko|En @ En)(x,y), n=1,2,...,
for all (z,y) € N¢ x N¢. In particular,

E(k11E, @ &) (z,x) < E(k2|&, @ En)(z,z), n=1,2,...,
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for all x € N¢ and the representation

Joxu kd(p® p)
u(U)?

on the diagonal is valid p-almost everywhere. Although diag(¥ x X) =
{(z,z) : z € ¥ } may be a set of (u ® u)-measure zero, the application of
the conditional expectation operators k — E(k|E, ® &,), n =1,2,..., has
the effect of regularising k. By an appeal to the Martingale Convergence
Theorem [3, Theorem 10.2.3], kj,, converges (u ® p)-a.e. to k as n — oo.

For any Borel measurable function f : 3 x ¥ — C that is integrable on
every set U x V for U,V € Py, let

(4.2) Me(f)(x,y) = SlelgE(lngn ®&)(z,y), wye,

E(k|En ® En)(z,2) = Y

UePn

XU($).

be the maximal function associated with the martingale (E(|f||€n ®En))nen-
The maximal function associated with dyadic partitions P, of [0,1) into
intervals [(k — 1)/2",k/2"™), k = 1,2,...,2" of length 27" is equivalent to
the maximal function considered in Section 3 [14, Exercise 2.1.12]

Let €1 (&, X) denote the collection of absolute integral operators Ty, : X — X
whose integral kernels k have the property that E(|f||£1 ® &) takes finite
values and

/ Mg (k)(x,z) du(x) < co.
%

Where convenient, if k£ is the integral kernel of T, the maximal function
Mg (k) is also written as Mg(T). The map J : ¥ — ¥ x ¥ defined by
J(x) = (x,z) for x € ¥ maps X bijectively onto diag(X x X).

Theorem 4.1. The space €1(E,X) is a lattice ideal in L.(X), that is, if
S, T € L(X), |S| <|T| and T € €,(E,X), then S € €1(E,X). Moreover,
¢ (&€, X) is a Dedekind complete Banach lattice with the norm || - [|¢, (& x)
defined by

(4.3) 1T, e,x) = 1T+ /EMs(T) oJdu,  Te&(X).

Proof. It S,T € L,.(X), |S| < |T| and T € €;(&,X), then S is an absolute
integral operator by [22, Theorem 3.3.6]. If k; is the integral kernel of S and
ko is the integral kernel of T', then by [22, Theorem 3.3.5], the inequality
|k1] < |k2| holds (¢ ® p)-a.e. . Then |[Mg(k1)(z,x)| < |Mg(ke)(z, x)| for all
x € X, so that

/Mg(k:l)ojd/ig/Mg(kQ)OJd,u<OO.
% b

Hence S € €1(&, X) and ||S|l¢,,x) < IT]le, (£,x)-
To show that €;(€, X) is complete in its norm, suppose that

o0

S (Il + [ el sau) < o0

j=1
for Tj € €1(£,X). Then T = >, T} in the space of regular operators on
X. The inequality |T'| < >22, |T;| ensures that 7' is an absolute integral
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operator with kernel k by [22, Theorem 3.3.6] and [k < > 22, |k;| (1 ® p)-
a.e. .

Suppose first that X is a real Banach function space. Each positive part
Tj‘" of T, 7 = 1,2,... has an integral kernel k:;r By monotone convergence,
there exists a set of full y-measure on which

[e.e]
E(k*En @ En)(@,2) <Y E(k][E, ® &)(, )
j=1
for each n = 1,2,.... Taking the supremum and applying the monotone
convergence theorem pointwise and under the sum shows that

Mg (k™) (2, 2) <Y Me(k) (2, z)
j=1
for p-almost all € ¥ and [, Mg(k*) o Jdu < co. Applying the same

argument to T~ and then the real and imaginary parts of T’ ensures that
T e (&,X) and

1171 +/EM5(T) oJdp <y <|||Tj!|! +/EM£(7}') OJdM> :
j=1
Dedekind completeness is inherited from £,.(X) [22, Theorem 1.3.2] and
L(p) [22, Example v) p. 9]. O

As in Section 3, we may define k = limsup,, .. E(k|&, ® &) for the inte-
gral kernel k of an operator T € €;(€,X) so that [i,ko Jdu < ||T| ¢, (e,x)-

The same function & : ¥ x & — R is obtained for any integral kernel k asso-
ciated with the operator T'. The integral [y, koJ du is denoted as [ (T, dm),
which is the notation used in [15].

Proposition 4.2 ([5, Theorem 4.2]). Let T : L?(u) — L%(u1) be an absolute
integral operator whose integral kernel is square integrable on any set of finite
(u ® p)-measure. If (Tu,u) > 0 for all u € L*(p), then T is trace class if
and only if T € € (€, L*(1n)), and in this case trace(T) = [(T,dm).

The statement above is a slight generalisation of Brislawn’s result [5,
Theorem 4.2] by localisation on sets of finite measure and the introduction of
the filtration £ independent of any topology on X. Extensions of Brislawn’s
results to nuclear operators between Banach spaces appear in the papers
[7, 8,9, 10, 11, 12].

As the case of the Volterra integral operator considered in Example 1.1
shows, the assumption that the operator is Hilbert space positive in Propo-
sition 4.2 cannot be omitted.

We next see when the limsup can be replaced by a genuine limit, as is
the case for trace class operators on L?(j). In order that an integrable X-
valued simple function defines the integral kernel of a finite rank operator
T:X — X, we assume that X4 € X if u(A) < oo and every function f € X
is integrable on any set of finite measure. What is actually required is that
both X and the Kéthe dual

XX:{fELO(u):/fgdu<ooforallg€X}
b
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of X be order dense in L°(u1), see [22, Theorem 3.3.7].

The closure in €;(€, X) of the collection of all finite rank operators T :
X — X with integral kernels of the form k = "7, f; ® Xp,, for f; € X,
BjAe B, with u(Bj) < o0, j = 1,...,n and n = 1,2,..., is denoted by
X®QeX™.

The following statement is the martingale analogue of Proposition 3.2,
proved along the same lines.

Proposition 4.3. Suppose that k is the integral kernel of the operator opera-
torT € €1(€,X) and T, has the integral kernel E(k|E,RE,) form =1,2,... .
Then T € X®eX* if and only if T, — T in €(E,X) as n — oo. If
T € X®eX*, then E(k|E, ® E,) o J converges a.e. on ¥ and in L'(u) as
n — oo.

For T € X®gX*, we have [y,(T,dm) = limy, o0 [ E(k[E, ® E,) 0 J dp.

4.1. Dependence on the filtration £. The filtration £ = (&,)nen is as-
sumed above to be constructed from an increasing sequence (Pp)nen of
countable partitions of X into measurable sets. Such a filtration is con-
structed in [5] on any second countable space. The essential property of
the filtration & is that there exists a natural regular conditional measure
B +—— E(Xp|&,), B € B, for each n = 1,2,.... Of course, the assumption
that the choice of partitions is possible could be avoided simply by choosing
a family of regular conditional measures associated with some filtration.

The existence of the filtration £ constructed from partitions imposes con-
ditions on the measure space (3, 5). As noted above, B must be countably
generated. Moreover, such a filtration £ is associated with a natural topol-
ogy 7¢ on X\ N for which Ug(x) = {Up(x)}y is a neighbourhood base for
7¢ for x ¢ N and ¥\ NV supports u. Let Ug: () be a neighbourhood base at
x € ¥\ N for another partition filtration £, enlarging A if necessary.

Suppose that there exist constants c1, co > 0 such that for every x € L\ N,
the following two conditions hold:

(i) for every U € Ug(x), there exists V' € Ug/(x) such that U C V and
w(V) < ep(U),
(i) for every V € Ug:(x), there exists U € Ug(x) such that V C U and
u(U) < cap(V).

Then for each f € L'(u ® i), the inequalities

3 Mg (f) < Me(f) < ciMei(f)
hold on (X \ N)? for the maximal functions defined by equation (4.2) with
respect to either filtration £ and £’. Consequently, for any other filtration
&’ such that £ and &' satisfy (i) and (ii), the maximal functions M¢(f) and
Me/(f) are equivalent and so €;(€, X) = &€;(&', X).

Now suppose that 7¢ is a Hausdorff topology, that is, if z,y € ¥\ N
and z # y, then there exists n = 1,2,... such that U,(z) NUy,(y) = 0 and
every decreasing sequence of sets from UneN P, has nonempty intersection.
Then the filtration £ is closely associated with a metric topology, because
according to [29, Lemma 9, p. 98], the Hausdorff topological space (X\N, 7¢)
is a Lusin space for which B is the associated Borel o-algebra on ¥\ N [29,
Theorem 5, p. 101], so there exists a metric dg on X\ N whose topology is
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stronger than 7¢ and (X \ NV, dg) is complete and separable. Then B is also
the Borel o-algebra for the metric dg [29, Corollary 2, p. 101].

Let us say that the filtration & is u-compatible if conditions (i) and (ii) are
satisfied with respect to the neighbourhood bases Ug(x) and the collection
V(z) of open balls B.(z), r > 0, for the metric d¢ centred at x € ¥\ N
replacing Ug/(z) above. If & is p-compatible, then the maximal function
Mg (f) and the metric maximal function Mgy, (f) defined by

_ JB (o)< B, ) F A ® 1)
Mae (£)(w) =500 = 8 S Brw))

are equivalent. Condition (ii) and the Martingale Convergence Theorem [3,
Theorem 10.2.3] ensures the validity of the Lebesgue differentiation theorem
with respect to the metric de and the measure u, even without the assump-
tion that p is a doubling measure with respect to dg. Indeed, it is clear that
for p-compatible filtrations £, many of the martingale results in harmonic
analysis [21] translate for the metric space (X \ N, dg), where the filtration
& plays the role of the filtration of dyadic cubes in Euclidean space. See also
[31, 32] for results in harmonic analysis on filtered measure spaces.

r,y €L\N,

4.2. Connection with other generalised traces. An axiomatic treate-
ment of traces on operator ideals is given in [23, 24] with recent updates
in [25, 26, 27]. The starting point is the Calkin theorem [25, Theorem 2.2]
which asserts that the collection of all operator ideals on a separable Hilbert
space H is in one-to-one correspondence with symmetric sequence ideals.
The correspondence is obtained from the singular values of operators in the
ideal. A trace on an operator ideal ${(#H) then corresponds to a unitarily
invariant linear functional on () or, equivalently, a symmetric linear func-
tional on the corresponding sequence ideal [25, Theorem 6.2]. A particular
example that has assumed importance recently because of noncommutative
geometry is the Dixmier trace defined on the Marcinkiewicz operator ideal.
The Dixmier trace is an example of a singular trace because it vanishes on
all finite rank operators, see [6, 20] for example.

By contrast, in this note, the emphasis with the Hardy-Littlewood max-
imal function approach to traces is on the Banach lattice of all absolute
integral operators T on a Banach function space X, so that T" > 0 im-
plies [(T,dm) > 0—just what is needed in the proof of the Cwikel-Lieb-
Rosenbljum inequality for dominated semigroups in [15]. A result of D.
Lewis [19] shows that on an infinite dimensional Hilbert space, the collection
of all Hilbert-Schmidt operators is the only Banach operator ideal isomor-
phic to a Banach lattice, despite the observation that a symmetric sequence
ideal is itself a Riesz space. For a choice of Banach limit w € (¢°°)’, the map

Tr—>/w({E(k|5n®5n)OJ}$L°:1)du, T e i€, X),
>

is continuous and linear on €; (&, X)), so there may be many possible choices
of a continuous trace on the whole Banach lattice €; (€, X) depending on w.

The Selberg trace formula also relates regularised traces (geometric infor-
mation) to asymptotic estimates for eigenvalues (spectral information) of a
Laplacian, see [2] for a survey of this deep subject.
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