
A MAXIMAL FUNCTION APPROACH TO OPERATOR

TRACES

BRIAN JEFFERIES

Abstract. A trace class operator T : L2(µ) → L2(µ) has the property
that for a distinguished kernel k representing T , the formula trace(T ) =∫

Σ
k(x, x) dµ(x) is valid. The Hardy-Littlewood maximal function is

used to establish an analogous formula
∫

Σ
〈T, dm〉 =

∫
Σ
k(x, x) dµ(x) for

a class of integral operators T wider than trace class operators, includ-
ing the Volterra integral operator. The ‘generalised trace’

∫
Σ
〈T, dm〉

surfaces in the Cwikel-Lieb-Rosenbljum inequality for dominated semi-
groups on L2(µ).

1. Introduction

The singular values {λj}∞j=1 of a compact linear operator T : H → H on
a Hilbert space H are the eigenvalues of the compact selfadjoint operator

(T ∗T )
1
2 . The operator T is called trace class if

∑∞
j=1 λj <∞, or equivalently,∑∞

j=1 |(Thj , hj)| < ∞ for any orthonormal set {hj}∞j=1 in H. Many facts

about trace class operators are collected in [13, 30]. In the case where
the Hilbert space H has finite dimension n = 1, 2, . . . , the trace of T is
the number

∑n
j=1 ajj for any matrix representation {ajk}nj,k=1 of the linear

map T with respect to a basis of H. In the case of an infinite dimensional
separable Hilbert space H, the trace is

trace(T ) =
∞∑

j=1

(Thj , hj)

with respect to any orthonormal basis {hj}∞j=1 of H [30, Theorem 3.1]. By

analogy with the finite dimensional case, if Tk : L2([0, 1]) → L2([0, 1]) is a
trace class linear operator with an integral kernel k, then one might hope
that

(1.1) trace(Tk) =

∫ 1

0
k(x, x) dx.

However, {(x, x) : x ∈ [0, 1] } is a set of measure zero in [0, 1]2 and if
k = k1 almost everywhere on [0, 1]2, then Tk = Tk1 , so the right hand side
of equation (1.1) is not well defined. Nevertheless, there does exist a distin-
guished kernel k for which (1.1) is valid, because any trace class operator
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T : L2([0, 1])→ L2([0, 1]) has a representation

(1.2) T : h 7−→
∞∑

j=1

λjφj(h, ψj), h ∈ L2([0, 1]),

with respect to the L2-inner product (f, g) =
∫ 1

0 f(x)g(x) dx, f, g ∈ L2([0, 1]),
and the singular values {λj}∞j=1 of T . The sets {φj} and {ψj} of vectors are

orthonormal in L2([0, 1]), so the representation (1.1) is valid for the distin-
guished integral kernel k defined by

k(x, y) =
∞∑

j=1

λjφj(x)ψj(y)

for all x, y ∈ [0, 1] for which the right hand side is absolutely convergent. In
particular, if Tk : L2([0, 1])→ L2([0, 1]) is a trace class linear operator with
a continuous integral kernel k on [0, 1]2, then (1.1) holds [30, Theorem 3.9].

C. Brislawn observed in [4] that if T : L2([0, 1]) → L2([0, 1]) is a trace
class linear operator and k0 is any integral kernel of T , then the kernel
k = limε→0+ ϕε ∗ k0 has the property that T = Tk and equation (1.1) holds.
Here ϕε(x) = ε−2ϕ(x/ε), x ∈ R2, ε > 0, for some nonnegative function ϕ on
R2 that is is zero outside [−1, 1]2 and with the property that

∫
R2 ϕ(x) dx = 1

and ϕ has an integrable radially decreasing majorant: the characteristic
function ϕ = χ

[− 1
2
, 1
2

]2 will do. The convolution u ∗ v of u, v ∈ L1(Rn) is

defined for almost all x ∈ Rn by the formula

u ∗ v(x) =

∫

Rn

u(x− y)v(y) dy.

The convolution u∗v of a function u ∈ L1(R2) with v ∈ L1([0, 1]2) is defined
almost everywhere in [0, 1]2 by setting v equal to zero outside [0, 1]2.

Then the map k0 7−→ limε→0+ ϕε ∗ k0 is a smoothing operator for which
the value of k = limε→0+ ϕε ∗ k0 at a point (x, x) of the diagonal is defined
by averages in [0, 1]2 about (x, x) for almost every x ∈ [0, 1]. A related
approach appears on [13, Theorem 8.4].

It is clear that this idea need not be confined to trace class operators.

Example 1.1 ([4, Example 3.2]). The Volterra operator T is defined by

(Tf)(x) =

∫ x

0
f(y) dy, x ∈ [0, 1],

for f ∈ L2([0, 1]). Then T is also defined by the integral kernel k0 = χ{y<x}.
The (lattice) positive linear map T : L2([0, 1]) → L2([0, 1]) is a Hilbert-
Schmidt operator but not trace class: it has singular values λn = 2/(π(2n+
1)), n = 1, 2, . . . . For the regularised kernel k = limε→0+ ϕε ∗ k0 defined
above, we have k = k0 off the diagonal in ]0, 1[2 and k(x, x) = 1/2 for all

x ∈ ]0, 1[, so
∫ 1

0 k(x, x) dx = 1
2 . The operator T is not hermitian positive on

the complex Hilbert space L2([0, 1]), that is, we don’t have (Tu, u) ≥ 0 for
every u ∈ L2([0, 1]).

Suppose that the finite rank operator T ∈ L(L2([0, 1])) has an integral ker-
nel k =

∑n
j=1 fj ⊗ χAj with µ(Aj) <∞ and fj ∈ L2([0, 1]) for j = 1, . . . , n.
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Then it is natural to view
∫

Σ
〈T, dm〉 :=

n∑

j=1

∫

Aj

fj dµ =

∫

Σ
k(x, x) dµ(x)

as a bilinear integral of the operator T with respect to the L2([0, 1])-valued
measure m : A 7−→ χ

A, A ∈ B([0, 1]). The point of view adopted in
this note is to use Brislawn’s averaging process to extend the bilinear in-
tegral

∫
Σ〈T, dm〉 to a wider class of absolute integral operators T acting

on L2([0, 1]) or a general Banach function space X, so that
∫

Σ〈T, dm〉 is

actually the trace of T in the case where T ∈ L(L2([0, 1])) is a trace class
operator. The bilinear integral

∫
Σ〈T, dm〉 features in the recent proof of the

Cwikel-Lieb-Rosenbljum inequality for dominated semigroups in [15].
Some basic facts about the Hardy-Littlewood maximal operator in the

unit square are gathered in Section 2 and these are applied in Section 3 to
integrable functions to produce a Banach function space L1(ρ) embedded in
L1([0, 1]2). Functions belonging to a certain closed subspace of L1(ρ) have
the property that the set of its Lebesgue points has full linear measure on
the diagonal of [0, 1]2 and in this sense, they are traceable. For an operator
T whose integral kernel is of this class, the bilinear integral

∫
Σ〈T, dm〉 con-

verges unequivocally. In Section 4, absolute integral operators T : X → X
acting on a Banach function space X over a σ-finite measure space are con-
sidered. Now that convolution is unavailable, the same idea with respect to
the martingale maximal function is applied. In the case that X = L2([0, 1]),
the dyadic martingale on [0, 1] yields the same results as in Section 3. The
standard facts we need about complex Banach lattices are laid out in the
monograph [22].

In Theorem 4.1, a lattice ideal C1(E , X) in the space or regular operators
on a Banach function space X is constructed. The Banach lattice C1(E , X)
depends on the given filtration E . By contrast, the collection of trace class
operators on a Hilbert space H is an operator ideal in the space L(H) of
all bounded linear operators on H. Happily, if µ is a σ-finite measure, then
a hermitian positive bounded linear operator on the complex Hilbert space
L2(µ) is an element of C1(E , X) if and only if it is trace class, no matter what
filtration E is given [16]. We end with a short discussion of other ‘generalised
traces’ in recent literature.

2. The Hardy-Littlewood Maximal Operator

The Lebesgue measure on R is denoted by λ. The Lebesgue measure of
a Borel subset B of Rn is sometimes written as |B| and it will be under-
stood to apply to expressions like ‘almost everywhere’ and ‘almost all’ with
respect to subsets of Rn. The centred Hardy-Littlewood maximal function of
f ∈ L1([0, 1]2) is given by

(2.1) M(f)(x) = sup
r>0

∫
Cr
|f(x+ t)| dt
|Cr|

, x ∈ [0, 1]2.

In the formula above, the function f is put equal to zero outside the square
[0, 1]2 and Cr = [−r, r] × [−r, r] for r > 0. The maximal function M(f)
is equivalent to the maximal function obtained by averaging over centred
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disks [14, Exercise 2.1.3], but for the purposes of the present note it is
convenient to emphasise the product structure of the unit square. According
to Lebesgue’s differentiation theorem [14, Corollary 2.1.16], if f ∈ L1([0, 1]2),
we have

(2.2) lim
r→0+

∫
Cr
f(x+ t) dt

|Cr|
= f(x)

for almost all x ∈ [0, 1]2, so that |f | ≤M(f) almost everywhere and the set
Lf of Lebesgue points x ∈ [0, 1]2 of f where

lim
r→0+

∫
Cr
|f(x+ t)− f(x)| dt

|Cr|
= 0

has full measure in [0, 1]2.
Let φ :]−1, 1[→ [0,∞[ be a continuous function with compact support and∫ 1
−1 φ(t) dt = 1. For the function ϕ : R2 → R defined by ϕ(x, y) = φ(x)φ(y),

for x, y ∈]−1, 1[ and zero outside ]−1, 1[2, we set ϕε(x) = ε−2ϕ(x/ε), x ∈ R2,
ε > 0. Then a variant of Lebesgue’s differentiation theorem for an integrable
function f shows that ϕε ∗ f → f in Lp([0, 1]2) for 1 ≤ p < ∞ and almost
everywhere as ε→ 0+ [14, Corollary 2.1.17].

We are interested in the class of bounded linear operators
Tk : L2([0, 1])→ L2([0, 1]) with a distinguished kernel k : [0, 1]2 → C for
which |k| also defines a bounded linear operator T|k| : L2([0, 1])→ L2([0, 1])
(absolute integral operators) and the intersection Lk∩diag of the Lebesgue
set Lk of k with the diagonal diag = {(x, x) : x ∈ [0, 1]} has full linear
measure. Because constant functions belong to L2([0, 1]), the kernel k nec-
essarily belongs to L1([0, 1]2)), so we first look at a subspace of L1([0, 1]2)
consisting of functions f for which Lf∩diag has full linear measure.

3. The Banach function space of traceable functions

Let (Σ,B, µ) be a σ-finite measure space. The space of all µ-equivalence
classes of scalar functions measurable with respect to B is denoted by L0(µ).
It is equipped with the topology of convergence in µ-measure over sets of
finite measure and vector operations pointwise µ-almost everywhere. Any
Banach space X that is a subspace of L0(µ) with the properties that

(i) X is an order ideal of L0(µ), that is, if g ∈ X, f ∈ L0(µ) and |f | ≤ |g|
µ-a.e., then f ∈ X, and

(ii) if f, g ∈ X and |f | ≤ |g| µ-a.e., then ‖f‖X ≤ ‖g‖X ,

is called a Banach function space (based on (Σ,B, µ)) [22, §2.6]. The set of
f ∈ X with f ≥ 0 µ-a.e. is writen as X+.

The map J : [0, 1]→ [0, 1]2 defined by J(x) = (x, x), x ∈ [0, 1], maps [0, 1]
homeomorphically onto diag. For f ∈ L1([0, 1]2), the extended real number

ρ(f) ∈ [0,∞] is defined by ρ(f) = ‖f‖1 +
∫ 1

0 M(f) ◦ J(x) dx.

Proposition 3.1. The space L1(ρ) = {f ∈ L1([0, 1]2) : ρ(f) < ∞} with
norm ρ is a Banach function space continuously embedded in L1([0, 1]2).

Proof. Properties (i) and (ii) follow from the observation that M(f) ≤M(g)
everywhere if |f | ≤ |g| almost everywhere on [0, 1]2. According to [22,
Proposition 2.6.2], it is enough to prove that L1(ρ) has the Riesz-Fischer
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property. Suppose that fj ≥ 0 almost everywhere for j = 1, 2, . . . and∑∞
j=1 ρ(fj) < ∞. Then monotone convergence ensures that

∑∞
j=1 fj con-

verges almost everywhere in [0, 1]2 and in L1([0, 1]2) to a nonnegative in-
tegrable function f and M(f) ≤ ∑∞j=1M(fj) everywhere on [0, 1]2 and so

ρ(f) ≤ ∑∞j=1 ρ(fj). The inequality ‖f‖1 ≤ ρ(f) ensures that the inclusion

of L1(ρ) in L1([0, 1]2) is continuous. �

Suppose that f ∈ L1(ρ). By [14, Corollary 2.1.12], there exists C >
0 independent of f such that supε>0 |(ϕε ∗ f)(x)| ≤ CM(f)(x) for every

x ∈ [0, 1]2, so if we let f̃ = lim supε→0+(ϕε ∗ f) on [0, 1]2, then f̃ = f almost

everywhere on [0, 1]2 by [14, Corollary 2.1.17], f̃ ◦ J ≤ CM(f) ◦ J and

∫ 1

0
|f̃(x, x)| dx ≤ C

∫ 1

0
M(f) ◦ J(x) dx <∞,

so in this sense, elements of L1(ρ) possess an integrable trace on diag ⊂
[0, 1]2. However, the mapping f 7−→

∫ 1
0 f̃(x, x) dx, f ∈ L1(ρ), may only

be sublinear, so next we examine a subspace for which the lim sup can be
replaced by a genuine limit almost everywhere on diag.

If u and v are two real valued functions defined on [0, 1], the tensor prod-
uct u ⊗ v : [0, 1]2 → R of u and v is defined by (u ⊗ v)(x, y) = u(x)v(y),
x ∈ [0, 1]. A similar notation is used for the equivalence classes of func-
tions so that [u ⊗ v] ◦ J := [u.v]. Then L∞([0, 1]) ⊗ L∞([0, 1]) denotes
the linear space of all finite linear combinations of elements u ⊗ v with
u, v ∈ L∞([0, 1]). Each element f of the finite tensor product L∞([0, 1]) ⊗
L∞([0, 1]) is essentially bounded on [0, 1]2 and M(f) ≤ ‖f‖∞, so f ∈ L1(ρ)
and f ◦ J ∈ L∞([0, 1]). Let L∞([0, 1])⊗̂ρL∞([0, 1]) denote the norm closure
of the subspace L∞([0, 1])⊗ L∞([0, 1]) in the Banach function space L1(ρ).

Proposition 3.2. Let f ∈ L1([0, 1]2). Then f ∈ L∞([0, 1])⊗̂ρL∞([0, 1]) if

and only if ϕε ∗ f → f in L1(ρ) as ε → 0+. If f ∈ L∞([0, 1])⊗̂ρL∞([0, 1])
then (ϕε ∗ f) ◦ J converges a.e. on [0, 1] and in L1([0, 1]) as ε→ 0+.

Proof. By an application of the Cauchy-Schwarz inequality and the L2-
bound for the Hardy-Littlewood maximal operator [14, Theorem 2.1.6],
there exists C > 0 such that if u, v ∈ L2([0, 1]), then

∫ 1

0
M(u⊗ v)(x, x) dx ≤

∫ 1

0
M(u)(x)M(v)(x) dx

≤ C‖u‖2‖v‖2.(3.1)

Here M(u) and M(v) are the one dimensional maximal functions of u and
v defined as in formula (2.1).

Suppose first that f = u⊗ v for u, v ∈ L∞([0, 1]). Then

ϕε ∗ f = (φε ∗ u)⊗ (φε ∗ v)
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because ϕ = φ⊗ φ and so
∫ 1

0
M(ϕε ∗ f − f)(x, x) dx ≤ C

∫ 1

0
M(φε ∗ u− u)(x)M(v)(x) dx

+

∫ 1

0
M(φε ∗ v − v)(x)|u|(x) dx

≤ C ′(‖φε ∗ u− u‖2‖v‖2 + ‖φε ∗ v − v‖2‖u‖2)→ 0

as ε→ 0+. Consequently, ϕε ∗ f → f in L1(ρ) as ε→ 0+ when f is a linear
combination of products of functions belonging to L∞([0, 1]). There exists
C > 0 such that ‖ϕε ∗ f‖1 ≤ C‖f‖1 for every f ∈ L1([0, 1]2) and

∫ 1

0
M(ϕε ∗ f)(x, x) dx ≤ C

∫ 1

0
M(f)(x, x) dx, ε > 0.(3.2)

To check the inequality (3.2), suppose that ψ = π−1χ
D1 for the unit disk

D1 centred at zero in R2 and let ϕ̃ be the least decreasing radial majorant
of ϕ. Because ϕ is continuous with compact support, ϕ̃ is integrable on R2.
Then ϕ̃ε ∗ ψδ is a radial function for which

2π

∫ ∞

0
r(ϕ̃ε ∗ ψδ)(re1) dr = ‖ϕ̃ε ∗ ψδ‖L1(R2)

= ‖ϕ̃ε‖L1(R2)‖ψδ‖L1(R2)

= ‖ϕ̃‖L1(R2).

As in the proof of [14, Theorem 2.1.10], there exists C ′ > 0 such that
supε,δ>0 ϕ̃ε ∗ ψδ ∗ |f | ≤ C ′M(f). Because the maximal function (2.1) is
equivalent to the maximal function for centred disks, there exists C ≥ 1
such that

M(ϕε ∗ f) ≤M(ϕ̃ε ∗ f) ≤ CM(f)

from which the inequality (3.2) follows.
Consequently, the linear map f 7−→ ϕε ∗ f , f ∈ L1(ρ), is continuous on

L1(ρ) for each ε > 0 so that if f ∈ L∞([0, 1])⊗̂ρL∞([0, 1]) then ϕε ∗f → f in
L1(ρ) as ε→ 0+. Because ϕε∗f ∈ C([0, 1]2) and C([0, 1])⊗C[0, 1]) is dense in
C([0, 1]2) in the uniform norm, it follows that ϕε∗f ∈ L∞([0, 1])⊗̂ρL∞([0, 1])
for each ε > 0, and the limit of ϕε ∗ f in L1(ρ) as ε → 0+ also belongs to
L∞([0, 1])⊗̂ρL∞([0, 1]).

Let T∗f = supε>0 |ϕε ∗ f | ◦ J for f ∈ L1(ρ). Then T∗ : L1(ρ)→ L1([0, 1])
is uniformly continuous. An argument similar to the proof of [14, Theorem
2.1.14] shows that (ϕε ∗ f) ◦J converges almost everywhere and in L1([0, 1])
as ε→ 0+ for each f ∈ L1(ρ). �

Let f ∈ L∞([0, 1])⊗̂ρL∞([0, 1]) and set f̃ = limε→0+ ϕε ∗ f wherever the

limit exists in [0, 1]2 and zero elsewhere. Writing f# for the corresponding
function with φ replaced by χ

[− 1
2
, 1
2

], it follows from equation (2.2) that

f# = f̃ almost everywhere on [0, 1]2 and f# ◦ J = f̃ ◦ J almost everywhere
on [0, 1], because the last equality certainly holds when f belongs to the

dense subspace L∞([0, 1])⊗ L∞([0, 1]). In particular, f̃ ◦ J ∈ L1([0, 1]) and

the integral
∫
B f̃ ◦ J(x) dx, B ∈ B([0, 1]), does not depend on the choice of

the function ϕ.
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Example 3.3. For a continuous function f on [0, 1]2 equal to zero on
R2 \ [0, 1]2, the continuous functions ϕε ∗ f converge uniformly to f on com-
pact subsets of ]0, 1[2 [14, Theorem 1.2.19 (2)], so that

f ∈ L∞([0, 1])⊗̂ρL∞([0, 1])

and f̃ = f . Hence, C([0, 1]2) and C([0, 1])⊗ C([0, 1]) are dense in
L∞([0, 1])⊗̂ρL∞([0, 1]).

Functions belonging toW 1,1(R2) or the space Lα,p(R2) of Bessel potentials
on R2 also admit a trace on diag(R2) if p, αp > 1, see [1, Section 6.2].

There exists a continuous periodic function φ : R → C with period one
such that ∑

n∈Z
|φ̂(n)|p =∞

for all p < 2 [Carlemann, 1918]. If k(x, y) = φ(x − y), then k is a con-
tinuous kernel, M(k) ◦ J ≤ ‖φ‖∞ and k(x, x) = φ(0) for all x ∈ [0, 1] and

so
∫ 1

0 k(x, x) dx = φ(0), although the Hilbert-Schmidt operator Tk is not a
trace class operator. Because k ≤ ‖φ‖∞ and a constant function is the ker-
nel of a finite rank operator, the trace class operators do not form a lattice
ideal in the Banach lattice of Hilbert-Schmidt operators, despite being an
operator ideal in L(L2([0, 1])).

Example 3.4. The kernel χ{y<x} of the Volterra integral operator in Ex-

ample 1.1 belongs to the Banach space L∞([0, 1])⊗̂ρL∞([0, 1]) and the same
holds true for the function χ{y≤x} which differs from χ{y<x} on diag, a set

of measure zero in [0, 1]2.
If T : R2 → R2 is a nonsingular linear transformation, then there exists

cT > 0 such that ρ(f◦T ) ≤ cTρ(f) if both f and f◦T are supported by [0, 1]2

because the collection {TCr : r > 0} is itself a regular family of sets whose
associated maximal function is equivalent to the one defined for cubes by for-
mula (2.1). Furthermore, if g ∈ L∞([0, 1])⊗L∞([0, 1]), then (ϕ ◦ T )ε ∗ g → g
in L1(ρ) as ε → 0+, hence ϕε ∗ (g ◦ T−1) converges to g ◦ T−1 in L1(ρ) as
ε → 0+ as well. Taking g to be the characteristic functions of squares and
T to be rotation through π/4 gives χ{y<x} ∈ L∞([0, 1])⊗̂ρL∞([0, 1]).

Proposition 3.5. Every element of L∞([0, 1])⊗̂ρL∞([0, 1]) has a represen-
tative function f : [0, 1]2 → R for which there exist numbers cj ∈ R and
Borel subsets Aj, Bj of [0, 1], j = 1, 2, . . . , such that

∞∑

j=1

|cj |(|Aj |.|Bj |+ |Aj ∩Bj |) <∞

and f(x) =
∑∞

j=1 cj
χ
Aj×Bj (x) for every x ∈ [0, 1]2 such that the sum∑∞

j=1 |cj |χAj×Bj (x) is finite. In particular, f ◦ J =
∑∞

j=1 cj
χ
Aj∩Bj = f̃ ◦ J

almost everywhere.

Proof. Let µ = λ ⊗ λ + λ ◦ J−1. If [f0] ∈ L∞([0, 1])⊗̂ρL∞([0, 1]), then
let f = f0 on [0, 1]2 \ diag and set f ◦ J = limε→0+(ϕε ∗ f0) ◦ J wherever
the limit exists and zero otherwise. By [14, Corollary 2.1.12], there exists
C > 0 such that supε>0 |(ϕε ∗ f0)(x)| ≤ CM(f0)(x) for every x ∈ [0, 1]2.
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Because ρ([f0]) <∞, f is µ-integrable. The statement now follows from [18,
Proposition 2.13]. A similar statement is proved in [15, Lemma 3.2]. �

The projective tensor product L2([0, 1])⊗̂πL2([0, 1]) is the set of all sums

(3.3) k =

∞∑

j=1

φj ⊗ ψj a.e., with

∞∑

j=1

‖φj‖2‖ψj‖2 <∞.

The norm of k ∈ L2([0, 1])⊗̂πL2([0, 1]) is given by

‖k‖π = inf




∞∑

j=1

‖φj‖2‖ψj‖2





where the infimum is taken over all sums for which the representation (3.3)
holds. The Banach space L2([0, 1])⊗̂πL2([0, 1]) is actually the completion of
the algebraic tensor product L2([0, 1]) ⊗ L2([0, 1]) with respect to the pro-
jective tensor product norm [28, Section 6.1]. The estimate (3.1) establishes
the following result.

Proposition 3.6. The projective tensor product L2([0, 1])⊗̂πL2([0, 1]) em-
beds onto a proper dense subspace of L∞([0, 1])⊗̂ρL∞([0, 1]).

There is a one-to-one correspondence between the space of trace class
operators acting on L2([0, 1]) and L2([0, 1])⊗̂πL2([0, 1]), so that the trace
class operator Tk has an integral kernel k ∈ L2([0, 1])⊗̂πL2([0, 1]) given, for
example, by formula (1.2). If the integral kernel k defined by equation (3.3)
has the property that

k(x, y) =
∞∑

j=1

φj(x)ψj(y)

for all x, y ∈ Σ such that the sum
∑∞

j=1 |φj(x)ψj(y)| is finite, then k is the
integral kernel of a trace class operator Tk and the equality

trace(Tk) =
∞∑

j=1

∫ 1

0
φj(x)ψj(x) dx =

∫ 1

0
k(x, x) dx

holds. The representation of Proposition 3.5 for elements of L∞([0, 1])⊗̂ρL∞([0, 1])
may be viewed as a substitute for the representation (3.3) of an element of
the projective tensor product L2([0, 1])⊗̂πL2([0, 1]).

Another way to view the trace trace(Tk) of a trace class operator Tk :
L2([0, 1]) → L2([0, 1]) with an integral kernel k is as a type of bilinear
integral with respect to the L2([0, 1])-valued vector measure m : B 7−→ χ

B,
B ∈ B([0, 1]). For example, if k =

∑n
j=1

χ
Bj⊗fj for Borel subsets Bj of [0, 1]

and fj ∈ L2([0, 1]), j = 1, . . . , n and Φk : [0, 1]→ L2([0, 1]) is the L2([0, 1])-
valued simple function defined by Φk(x) =

∑n
j=1

χ
Bj (x).fj , x ∈ [0, 1], then

∫

B
〈Φk, dm〉 =

n∑

j=1

∫

B∩Bj

fj(x) dx =

∫

B
k(x, x) dx

and
∫
B Φk ⊗ dm = (χB ⊗ 1).k ∈ L2([0, 1]) ⊗ L2([0, 1]) for B ∈ B([0, 1]).

The bilinear integrals
∫
B〈Φk, dm〉 and

∫
B Φk ⊗ dm also makes sense for
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k ∈ L2([0, 1])⊗̂πL2([0, 1]) where Tk is a trace class operator and

(3.4) trace(Tk) =

∫ 1

0
〈Φk, dm〉

independently of the integral kernel k representing the operator Tk [17].
On the other hand, if k ∈ L1([0, 1]2), then by Fubini’s Theorem, the

function Φk(x) = f(x, ·) has values in L1([0, 1]) for almost all x ∈ [0, 1] and∫ 1
0 Φk⊗dm = k is an element of L1([0, 1])⊗̂πL1([0, 1]) ≡ L1([0, 1]2) [28, 6.5].

Furthermore, if
∫ 1

0 Φk ⊗ dm belongs to the subspace L∞([0, 1])⊗̂ρL∞([0, 1])

of L1([0, 1]2), then
∫
B〈Φk, dm〉 is defined for each Borel set B contained in

[0, 1] by appealing to Proposition 3.5. As Example 1.1 shows, now k need
not be the integral kernel of a trace class operator acting on L2([0, 1]).

As a matter of notation, if T : L2([0, 1]) → L2([0, 1]) has an integral

kernel k belonging to L∞([0, 1])⊗̂ρL∞([0, 1]), then the integral
∫ 1

0 〈Φk, dm〉
is independent of any integral kernel k representing T , so it makes sense to

write
∫ 1

0 〈T, dm〉 for
∫ 1

0 〈Φk, dm〉.

4. Traceable operators on Banach function spaces

It is clear that the ideas of the preceding section are concerned mainly
with the order properties of the Banach function space L2([0, 1]), although
the smoothing operators k 7−→ ϕε ∗ k, k ∈ L1([0, 1]2), ε > 0, depend on
the group structure of R2. For a σ-finite measure space (Σ,B, µ), the same
result is achieved by taking the maximal function with respect to a suitable
filtration 〈En〉n∈N for which B =

∨
n En. The filtration determined by dyadic

partitions of R localised to [0, 1] gives the results of Section 3.
Let X be a complex Banach function space based on the σ-finite measure

space (Σ,B, µ), as defined at the beginning of Section 3. A continuous linear
operator T : X → X is called positive if T : X+ → X+. The collection of
all positive continuous linear operators on X is written as L+(X). If the
real and imaginary parts of a continuous linear operator T : X → X can be
written as the difference of two positive operators, it is said to be regular.
The modulus |T | of a regular operator T is defined by

|T |f = sup
|g|≤f

|Tg|, f ∈ X+.

The collection of all regular operators is written as Lr(X) and it is given
the norm T 7−→ ‖|T |‖, T ∈ Lr(X) under which it becomes a Banach lattice
[22, Proposition 1.3.6]. In the case that X = L2(µ), the same notation for

the hermitian positive operator (TT ∗)
1
2 is never used in the present work in

order to avoid possible confusion.
A continuous linear operator T : X → X has an integral kernel k if

k : Σ × Σ → C is a Borel measurable function such that T = Tk for the
operator given by

(4.1) (Tkf)(x) =

∫

Σ
k(x, y)f(y) dµ(y), µ-almost all x ∈ Σ,

in the sense that, for each f ∈ X, we have
∫

Σ |k(x, y)f(y)| dµ(y) < ∞ for
µ-almost all x ∈ Σ and the map x 7−→

∫
Σ k(x, y)f(y) dµ(y) is an element of

X. If Tk ≥ 0, then k ≥ 0 (µ⊗ µ)-a.e. on Σ× Σ [22, Theorem 3.3.5].
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A continuous linear operator T is an absolute integral operator if it has
an integral kernel k for which T|k| is a bounded linear operator on L2(µ).
Then |Tk| = T|k| [22, Theorem 3.3.5]. Then k is (µ ⊗ µ)-integrable on any
product set A×B with finite measure. The collection of all absolute integral
operators is a lattice ideal in Lr(X) [22, Theorem 3.3.6].

Suppose that T ∈ L(X) has an integral kernel k =
∑n

j=1 fj ⊗ χAj that is

an X-valued simple function with µ(Aj) <∞. Then it is natural to view

∫

Σ
〈T, dm〉 :=

n∑

j=1

∫

Aj

fj dµ =

∫

Σ
k(x, x) dµ(x)

as a bilinear integral. Our aim is to extend the integral to a wider class of
absolute integral operators acting on the Banach function space X.

Suppose that for each n = 1, 2 . . . , the collection Pn of sets belonging to
the σ-algebra B is a countable partition of Σ into sets with finite measure
such that Pn+1 is a refinement of Pn for each n = 1, 2, . . . , that is, every
element of Pn is the union of elements of Pn+1. Then the σ-algebra En
generated by the partition Pn of Σ is the collection of all unions of elements
of Pn, so that En ⊂ En+1 for n = 1, 2, . . . . Suppose that B =

∨
n En,

the smallest σ-algebra containing all En, n = 1, 2, . . . . It follows that B is
countably generated. The filtration 〈En〉n∈N is denoted by E .

Suppose that k ≥ 0 is a Borel measurable function defined on Σ × Σ
that is integrable on every set U × V for U, V ∈ P1. For each x ∈ Σ,
the set Un(x) is the unique element of the partition Pn containing x. For
each n = 1, 2, . . . , the conditional expectation kn = E(k|En ⊗ En) can be
represented for µ-almost all x, y ∈ Σ as

E(k|En ⊗ En)(x, y) =
1

µ(Un(x))µ(Un(y))

∫

Un(x)

∫

Un(y)
k(s, t) dµ(s)dµ(t)

=
∑

U,V ∈Pn

∫
U×V k d(µ⊗ µ)

µ(U)µ(V )
χ
U×V (x, y).

The point here is that the formula above defines a distinguished element
of the conditional expectation E(k|En ⊗ En) that possesses a trace on the
diagonal of Σ×Σ, that is, B 7−→ E(χB|En ⊗ En)(x, y), B ∈ B, x, y ∈ Σ, is a
regular conditional measure [3, Definition 10.4.1].

Let N be the set of all x ∈ Σ for which there exists n = 1, 2, . . . such that
µ(Un(x)) = 0. Then µ(Um(x)) = 0 for all m > n because Pm is a refinement
of Pn if m > n. Moreover N is µ-null because

N ⊂
∞⋃

n=1

⋃
{U ∈ Pn : µ(U) = 0 }.

If 0 ≤ k1 ≤ k2 (µ⊗ µ)-a.e., then

E(k1|En ⊗ En)(x, y) ≤ E(k2|En ⊗ En)(x, y), n = 1, 2, . . . ,

for all (x, y) ∈ N c ×N c. In particular,

E(k1|En ⊗ En)(x, x) ≤ E(k2|En ⊗ En)(x, x), n = 1, 2, . . . ,
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for all x ∈ N c and the representation

E(k|En ⊗ En)(x, x) =
∑

U∈Pn

∫
U×U k d(µ⊗ µ)

µ(U)2
χ
U (x).

on the diagonal is valid µ-almost everywhere. Although diag(Σ × Σ) =
{(x, x) : x ∈ Σ } may be a set of (µ ⊗ µ)-measure zero, the application of
the conditional expectation operators k 7−→ E(k|En ⊗ En), n = 1, 2, . . . , has
the effect of regularising k. By an appeal to the Martingale Convergence
Theorem [3, Theorem 10.2.3], kn converges (µ⊗ µ)-a.e. to k as n→∞.

For any Borel measurable function f : Σ × Σ → C that is integrable on
every set U × V for U, V ∈ P1, let

(4.2) ME(f)(x, y) = sup
n∈N

E(|f ||En ⊗ En)(x, y), x, y ∈ Σ,

be the maximal function associated with the martingale 〈E(|f ||En⊗En)〉n∈N.
The maximal function associated with dyadic partitions Pn of [0, 1) into
intervals [(k − 1)/2n, k/2n), k = 1, 2, . . . , 2n of length 2−n is equivalent to
the maximal function considered in Section 3 [14, Exercise 2.1.12]

Let C1(E , X) denote the collection of absolute integral operators Tk : X → X
whose integral kernels k have the property that E(|f ||E1 ⊗ E1) takes finite
values and ∫

Σ
ME(k)(x, x) dµ(x) <∞.

Where convenient, if k is the integral kernel of T , the maximal function
ME(k) is also written as ME(T ). The map J : Σ → Σ × Σ defined by
J(x) = (x, x) for x ∈ Σ maps Σ bijectively onto diag(Σ× Σ).

Theorem 4.1. The space C1(E , X) is a lattice ideal in Lr(X), that is, if
S, T ∈ Lr(X), |S| ≤ |T | and T ∈ C1(E , X), then S ∈ C1(E , X). Moreover,
C1(E , X) is a Dedekind complete Banach lattice with the norm ‖ · ‖C1(E,X)

defined by

(4.3) ‖T‖C1(E,X) = ‖|T |‖+

∫

Σ
ME(T ) ◦ J dµ, T ∈ C1(E , X).

Proof. If S, T ∈ Lr(X), |S| ≤ |T | and T ∈ C1(E , X), then S is an absolute
integral operator by [22, Theorem 3.3.6]. If k1 is the integral kernel of S and
k2 is the integral kernel of T , then by [22, Theorem 3.3.5], the inequality
|k1| ≤ |k2| holds (µ⊗ µ)-a.e. . Then |ME(k1)(x, x)| ≤ |ME(k2)(x, x)| for all
x ∈ Σ, so that

∫

Σ
ME(k1) ◦ J dµ ≤

∫

Σ
ME(k2) ◦ J dµ <∞.

Hence S ∈ C1(E , X) and ‖S‖C1(E,X) ≤ ‖T‖C1(E,X).
To show that C1(E , X) is complete in its norm, suppose that

∞∑

j=1

(
‖|Tj |‖+

∫

Σ
ME(Tj) ◦ J dµ

)
<∞

for Tj ∈ C1(E , X). Then T =
∑∞

j=1 Tj in the space of regular operators on

X. The inequality |T | ≤ ∑∞j=1 |Tj | ensures that T is an absolute integral
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operator with kernel k by [22, Theorem 3.3.6] and |k| ≤∑∞j=1 |kj | (µ⊗ µ)-
a.e. .

Suppose first that X is a real Banach function space. Each positive part
T+
j of Tj , j = 1, 2, . . . has an integral kernel k+

j . By monotone convergence,
there exists a set of full µ-measure on which

E(k+|En ⊗ En)(x, x) ≤
∞∑

j=1

E(k+
j |En ⊗ En)(x, x)

for each n = 1, 2, . . . . Taking the supremum and applying the monotone
convergence theorem pointwise and under the sum shows that

ME(k+)(x, x) ≤
∞∑

j=1

ME(k
+
j )(x, x)

for µ-almost all x ∈ Σ and
∫

ΣME(k
+) ◦ J dµ < ∞. Applying the same

argument to T− and then the real and imaginary parts of T ensures that
T ∈ C1(E , X) and

‖|T |‖+

∫

Σ
ME(T ) ◦ J dµ ≤

∞∑

j=1

(
‖|Tj |‖+

∫

Σ
ME(Tj) ◦ J dµ

)
.

Dedekind completeness is inherited from Lr(X) [22, Theorem 1.3.2] and
L1(µ) [22, Example v) p. 9]. �

As in Section 3, we may define k̃ = lim supn→∞ E(k|En⊗En) for the inte-

gral kernel k of an operator T ∈ C1(E , X) so that
∫

Σ k̃ ◦ J dµ ≤ ‖T‖C1(E,X).

The same function k̃ : Σ×Σ→ R is obtained for any integral kernel k asso-
ciated with the operator T . The integral

∫
Σ k̃◦J dµ is denoted as

∫
Σ〈T, dm〉,

which is the notation used in [15].

Proposition 4.2 ([5, Theorem 4.2]). Let T : L2(µ)→ L2(µ) be an absolute
integral operator whose integral kernel is square integrable on any set of finite
(µ ⊗ µ)-measure. If (Tu, u) ≥ 0 for all u ∈ L2(µ), then T is trace class if
and only if T ∈ C1(E , L2(µ)), and in this case trace(T ) =

∫
Σ〈T, dm〉.

The statement above is a slight generalisation of Brislawn’s result [5,
Theorem 4.2] by localisation on sets of finite measure and the introduction of
the filtration E independent of any topology on Σ. Extensions of Brislawn’s
results to nuclear operators between Banach spaces appear in the papers
[7, 8, 9, 10, 11, 12].

As the case of the Volterra integral operator considered in Example 1.1
shows, the assumption that the operator is Hilbert space positive in Propo-
sition 4.2 cannot be omitted.

We next see when the limsup can be replaced by a genuine limit, as is
the case for trace class operators on L2(µ). In order that an integrable X-
valued simple function defines the integral kernel of a finite rank operator
T : X → X, we assume that χA ∈ X if µ(A) <∞ and every function f ∈ X
is integrable on any set of finite measure. What is actually required is that
both X and the Köthe dual

X× = {f ∈ L0(µ) :

∫

Σ
fg dµ <∞ for all g ∈ X}
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of X be order dense in L0(µ), see [22, Theorem 3.3.7].
The closure in C1(E , X) of the collection of all finite rank operators T :

X → X with integral kernels of the form k =
∑n

j=1 fj ⊗ χBj , for fj ∈ X,

Bj ∈ B, with µ(Bj) < ∞, j = 1, . . . , n and n = 1, 2, . . . , is denoted by

X⊗̂EX×.
The following statement is the martingale analogue of Proposition 3.2,

proved along the same lines.

Proposition 4.3. Suppose that k is the integral kernel of the operator opera-
tor T ∈ C1(E , X) and Tn has the integral kernel E(k|En⊗En) for n = 1, 2, . . . .
Then T ∈ X⊗̂EX× if and only if Tn → T in C1(E , X) as n → ∞. If
T ∈ X⊗̂EX×, then E(k|En ⊗ En) ◦ J converges a.e. on Σ and in L1(µ) as
n→∞.

For T ∈ X⊗̂EX×, we have
∫

Σ〈T, dm〉 = limn→∞
∫

Σ E(k|En ⊗ En) ◦ J dµ.

4.1. Dependence on the filtration E. The filtration E = 〈En〉n∈N is as-
sumed above to be constructed from an increasing sequence 〈Pn〉n∈N of
countable partitions of Σ into measurable sets. Such a filtration is con-
structed in [5] on any second countable space. The essential property of
the filtration E is that there exists a natural regular conditional measure
B 7−→ E(χB|En), B ∈ B, for each n = 1, 2, . . . . Of course, the assumption
that the choice of partitions is possible could be avoided simply by choosing
a family of regular conditional measures associated with some filtration.

The existence of the filtration E constructed from partitions imposes con-
ditions on the measure space (Σ,B). As noted above, B must be countably
generated. Moreover, such a filtration E is associated with a natural topol-
ogy τE on Σ \ N for which UE(x) = {Un(x)}n is a neighbourhood base for
τE for x /∈ N and Σ \N supports µ. Let UE ′(x) be a neighbourhood base at
x ∈ Σ \ N for another partition filtration E ′, enlarging N if necessary.

Suppose that there exist constants c1, c2 > 0 such that for every x ∈ Σ\N ,
the following two conditions hold:

(i) for every U ∈ UE(x), there exists V ∈ UE ′(x) such that U ⊂ V and
µ(V ) ≤ c1µ(U),

(ii) for every V ∈ UE ′(x), there exists U ∈ UE(x) such that V ⊂ U and
µ(U) ≤ c2µ(V ).

Then for each f ∈ L1(µ⊗ µ), the inequalities

c2
2ME ′(f) ≤ME(f) ≤ c2

1ME ′(f)

hold on (Σ \ N )2 for the maximal functions defined by equation (4.2) with
respect to either filtration E and E ′. Consequently, for any other filtration
E ′ such that E and E ′ satisfy (i) and (ii), the maximal functions ME(f) and
ME ′(f) are equivalent and so C1(E , X) = C1(E ′, X).

Now suppose that τE is a Hausdorff topology, that is, if x, y ∈ Σ \ N
and x 6= y, then there exists n = 1, 2, . . . such that Un(x) ∩ Un(y) = ∅ and
every decreasing sequence of sets from

⋃
n∈N Pn has nonempty intersection.

Then the filtration E is closely associated with a metric topology, because
according to [29, Lemma 9, p. 98], the Hausdorff topological space (Σ\N , τE)
is a Lusin space for which B is the associated Borel σ-algebra on Σ \N [29,
Theorem 5, p. 101], so there exists a metric dE on Σ \ N whose topology is
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stronger than τE and (Σ \ N , dE) is complete and separable. Then B is also
the Borel σ-algebra for the metric dE [29, Corollary 2, p. 101].

Let us say that the filtration E is µ-compatible if conditions (i) and (ii) are
satisfied with respect to the neighbourhood bases UE(x) and the collection
V(x) of open balls Br(x), r > 0, for the metric dE centred at x ∈ Σ \ N
replacing UE ′(x) above. If E is µ-compatible, then the maximal function
ME(f) and the metric maximal function MdE (f) defined by

MdE (f)(x, y) = sup
r>0

∫
Br(x)×Br(y) f d(µ⊗ µ)

µ(Br(x))µ(Br(y))
, x, y ∈ Σ \ N ,

are equivalent. Condition (ii) and the Martingale Convergence Theorem [3,
Theorem 10.2.3] ensures the validity of the Lebesgue differentiation theorem
with respect to the metric dE and the measure µ, even without the assump-
tion that µ is a doubling measure with respect to dE . Indeed, it is clear that
for µ-compatible filtrations E , many of the martingale results in harmonic
analysis [21] translate for the metric space (Σ \ N , dE), where the filtration
E plays the role of the filtration of dyadic cubes in Euclidean space. See also
[31, 32] for results in harmonic analysis on filtered measure spaces.

4.2. Connection with other generalised traces. An axiomatic treate-
ment of traces on operator ideals is given in [23, 24] with recent updates
in [25, 26, 27]. The starting point is the Calkin theorem [25, Theorem 2.2]
which asserts that the collection of all operator ideals on a separable Hilbert
space H is in one-to-one correspondence with symmetric sequence ideals.
The correspondence is obtained from the singular values of operators in the
ideal. A trace on an operator ideal U(H) then corresponds to a unitarily
invariant linear functional on U(H) or, equivalently, a symmetric linear func-
tional on the corresponding sequence ideal [25, Theorem 6.2]. A particular
example that has assumed importance recently because of noncommutative
geometry is the Dixmier trace defined on the Marcinkiewicz operator ideal.
The Dixmier trace is an example of a singular trace because it vanishes on
all finite rank operators, see [6, 20] for example.

By contrast, in this note, the emphasis with the Hardy-Littlewood max-
imal function approach to traces is on the Banach lattice of all absolute
integral operators T on a Banach function space X, so that T ≥ 0 im-
plies

∫
Σ〈T, dm〉 ≥ 0—just what is needed in the proof of the Cwikel-Lieb-

Rosenbljum inequality for dominated semigroups in [15]. A result of D.
Lewis [19] shows that on an infinite dimensional Hilbert space, the collection
of all Hilbert-Schmidt operators is the only Banach operator ideal isomor-
phic to a Banach lattice, despite the observation that a symmetric sequence
ideal is itself a Riesz space. For a choice of Banach limit ω ∈ (`∞)′, the map

T 7−→
∫

Σ
ω({E(k|En ⊗ En) ◦ J}∞n=1) dµ, T ∈ C1(E , X),

is continuous and linear on C1(E , X), so there may be many possible choices
of a continuous trace on the whole Banach lattice C1(E , X) depending on ω.

The Selberg trace formula also relates regularised traces (geometric infor-
mation) to asymptotic estimates for eigenvalues (spectral information) of a
Laplacian, see [2] for a survey of this deep subject.
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