77

COMPUTING FOWRIER AND LAPLACE TRANSFORMS
BY MEANS OF POWER SERIES EVALUATION

Sven-Ake Gustafson

1. NOTATIONS AND ASSUMPTIONS

Let f be a real-valued function, defined for nonnegative arguments.
We shall discuss some aspects of the numerical evaluation of the Laplace
transform
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and the Fourier transform
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It will turn out to be advantageous to treat (1.1) and (1.2) separately,
even if (1.2) is obtained by setting A = -iw in (1.1). We shall confine
our discussion to the cases A and W real. We observe that the two-
sided Fourier transform can be cast on the form of (1.2) since
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Therefore, the inverse Laplace transform may be calculated by means of
evaluating integrals of the type of (1.1) and (1.2). (See e.g. [1] and [4].)
In our treatment we shall assume that f£(t) may be calculated for an
arbitrary argument t with known, finite accuracy. In order to assess the

accuracy of the calculated values of (1.1) and (1.2) we must know that f



78

belongs to a class of functions with certain qualitative characteristics.
For example, merely to assume that £ is bounded and continuous does not
suffice to derive error bounds, even if a large number of functional values

f(t) are calculated.

2. TRANSFORM INTEGRALS AND POWER SERIES

Let h > 0 be a fixed number. We find

oo o (n+1)h © h
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0 2=0 "n n= 0
Thus
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Rewriting (1.2) in the same way we obtain

i h
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An obvious strategy would be first to calculate a, and bn by means of
numerical integration and then evaluate the power series, preferably using
a convergence acceleration scheme; such as those discussed in [2] and [4].
We observe that the rate of convergence of the power series is influenced

by the choice of h . In particular, if we take h = m/w in (2.2) we get

o o /W
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This alternating series may, for a fairly large class of functions £ ,



79

be evaluated using the Euler transformation which in this case is equivalent
to repeated averaging of the partial sums of the alternating series in (2.3).
This scheme can be shown to converge, if £ is a polynomial in t , or if
f admits a representation as the Stieltjes' integral

(2.4) £ (£) =J e aa)

where o is of bounded variation on [0,®] and independent of t .
Computational experiments have been carried out and it turned out that
fairly many functional values were required to determine a, and bn in
(2.1) and (2.2) with high accuracy. This fact has given an incentive to
try other approaches, since a, and bn depend on A and ®w and must
hence be evaluated for each Qalue of these parameters. Performing a change

of variables in (2.1) and (2.2) we get the expressions
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Assume that N terms are required to evaluate the power series in (2.5) and
(2.6) with desired accuracy for all )X and w . These N terms are

completely determined by the values of £ in the bounded intervals
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Assume now that we know a function g together with its transforms Lg and
Fg . Then we find

(2.9)  (F9) (@) - (FE)(w) = ) =z %j elt(g(—’%tt—) - f(“—hw’“—t))dt .

If g approximates f well on the interval (2.8) and there is a convergence
acceleration scheme which delivers a good estimate of the series in (2.9)
using N terms, then (Fg) (w) is a good approximation of (Ff)(w) . A
related statement holds for (Lf)(\) . We note that if ® is large, then
(2.8) defines a short interval but if ®w is small, then the interval (2.8)
is long. Therefore a general strategy is to approximate £ well close to
0, if w 1is large, while good approximations for t large are required

for w small. A similar rule holds for the calculation of (Lf) (A) .

3. CALCULATION OF Lf AND Ff FOR LARGE PARAMETERS A AND ® .

We illustrate the general ideas put forward above by a numerical

example:

EXAMPLE Calculate Lf and Ff for £(t) = 4n(l+t) . Close to the origin

we may approximate £ Dby the first few terms of its Taylor expansion,
2 3
fn(l+t) =t - t7/2 + t7/3 ...

Entering this expression into (1.1) we get

At P i ; - i}
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which is the asymptotic expansion delivered by Watson's lemma. For A = 10
one would truncate the expansion (3.1) after 6 terms getting the estimate
0.009152. 1In this particular case the expansion (3.1) could also be derived
by means of integration by parts and then a simple expression is also obtained
for the remainder term. Ff is defined by means of analytic continuation.
Taking the real part of (Ff) (a) we find

o

(3.2) J coswt fn(14t)dt = w2 + o0 - 24070 4 L. .
0

Instead of approximating £ by a polynomial we try an exponential £it. Thus

we put £(t) in f;(t) where
. n
(3.3) £ = ]y

where Y., are determined such that f; interpolates fn at the equidistant
grid ti = (i-1)At , i=1,...,n . At is a step-width.

Thus

n
* —
(3.4) @LE) (M) = rzl v,/ Otr-1) .

This formula permits easy tabulation of L;(X) and some sample values are

given below:



{oe]
TABLE 1 Estimates of j oAt n(1+t)dt
0

At

based on (3.3) and (3.4) with
= 0.1 .

n A =5 A =10
2 0.0333850 0.00910501
3 0.0336988 0.00913712
4 0.0340097 0.00915512
5 0.0340578 0.00915598
6 0.0340753 0.00915633
7 0.0340808 0.00915630
8 0.0340829 0.00915635
9 0.0340837 0.00915632
10 0.0340841 0.00915636
11 0.0340843 0.00915636
12 0.0340843

We find immediately

(Ff;) (@)

giving the approximation

(3.5)

Jw coswt 4n(l+t)dt = Z

0

We give some sample values:

00
TABLE 2 Estimates of J coswt &n(1l+t)dt based on (3.3) and (3.4) with

n
= ] vy, /-1-iw)

r=1

n

r=1

(r-1y /(w’+(x-1)2) .
rn |

0
= 0.1 .

n A =10 A= 20

2 ~0.00991635 -0.00249763
3 ~0.00989802 -0.00248774
4 -0.00980488 -0.00248724
5 -0.00981593 -0.00248823
6 -0.00982182 -0.00248773
7 -0.00981973 -0.00248789
8 -0.00981828 -0.00248783
10 ~0.00981929 -0.00248792
11 -0.00981928 -0.00248790
12 -0.00981911
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We note that the accuracy of the approximations based on (3.3) compares

favourably with those based on power expansion of {n(l+t) . Another strategy
to determine exponential approximations of £ is described in [3]. The
methods given there require that £ admits a representation (2.4). Under

this condition it is fairly easy to derive an error bound by applying one of

the convergence schemes in [2] to (2.9).

4. REMARKS ON THE CASE OF SMALL PARAMETER VALUES

As stated at the end of Section 2, (2.9) requires that £ is well
approximated for +t large by a function £* , whose transform (1.1) or (1.2)
is known. Put u =1/t and g(u) = £(1/u) . If we can construct a polynomial

P which approximates g accurately for 0 = u = ; where T >0 is a

T

known number, then we get

(4.1) J 1% (¢) at xJ I 1/t at .
T T

To evaluate the integral at the right hand side of (4.1) we need to determine

the numbers

(o]

c =J M Tae , r=0,1,... .
T

Integrating by parts we f£ind the stable recurrence relation

ein iw

= + = = cee
cr+l(w) p - cr(w) , r=1,2,

rT

The starting value cl(w) must be calculated numerically. We find
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and the latter integral is easily calculated using numerical integration in
conjunction with convergence acceleration as described earlier. In order to

evaluate (1.2) we also need to determine

T
J M (gyat

0

which can be achieved by means of standard numerical methods. The Laplace

transforms are treated in a similar way.

REFERENCES

[11  B. Davis and B. Martin, Numerical imversion of the Laplace transform:

a survey and comparison of methods, J. Comp. Phys. 33 (1979), 1-32.

[2]1  s.-A. Gustafson, Convergence acceleration of power series, Computing

21 (1978), 53-69.

[3] s.-A. Gustafson and G. Dahlquist, On the computation of slowly convergent
integrals, Methoden und Verfahren der Mathematischen Physik, & (1972),

93-112.

[4]  F.R. de Hoog, J.H. Knight and A.N. Stokes, 4An improved method for
numerical inversion of Laplace transforms, SIAM J. Sci. Stat. Comput. 3

(1982) , 357-366.

Centre for Mathematical Analysis
Australian National University
Canberra ACT 2601

AUSTRALIA



