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COMPUTING FOLRIER AND LAPLACE TRANSFORMS 

BY MEANS OF PmJER SERIES EVALUI\TION 

Sven-Ake Gustafson 

1. NOTATIONS AND ASSUMPTIONS 

Let f be a real-valued func'cion, defined for nonnegative arguments. 

We shall discuss some aspects of the numerical evaluation of the Laplace 

transform 

(1.1) (Lf) (\) 

and the Fourier transform 

(1. 2) (Ff) (w) 

J 
-At 

e f(t)dt , 

0 

00 

J eiwtf(t)dt . 

0 

It will turn out to be advantageous to treat (1.1) and (1.2) separately, 

even if (1.2) is obtained by setting A= -iw in (1.1). We shall confine 

our discussion to the cases A and w real. We observe that the two-

sided Fourier transfol~t can be cast on the form of (1.2) since 

f 
0 

( 
J 

co 

-iwt 
e f(-t)dt . 

0 

Therefore, the inverse Laplace transform may be calculated by means of 

evaluating integ-rals of the type of (1.1) and (1.2). (See e.g. [1] and [4].) 

In our treatment we shall assume that f(t) may be calculated for an 

arbitrary argument t with known, finite accuracy. In order to assess the 

accuracy of the calculated values of (1.1) and (1.2) we must know that f 
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belongs to a class of functions with certain qualitative characteristics. 

For example, merely ·to assume that f is bounded and continuous does no'c 

suffice to derive error bounds, even if a large number of functional values 

f (t) are calcula-ted. 

2. TRA.l\JSFORM INTEGRALS AND POWER SERIES 

Let h > 0 be a fixed number. We find 

00 (n+l)h 

I 
00 

f 
co 

-At " -Ate I e f(t)dt !., e -f(t)dt 

0 
n=O 

nh 
n=O 

Thus 

co 

I 
00 

-A.h 
(2 .1) e-Atf(t)dt I n 

x a , X e a 
n=O 

n n 
0 

Re>vri·ting (L2) in the same way we obtain 

00 

f 
00 

(2. 2) 
iwt I Z~::J iwh 

e f(t)dt ' z e 
n=O 

n 
0 

An obvious strategy 'P/Ould be first to calculate 

e 

h 
-Ahn 

J 
-\t 

e f(nh+t)dt 

0 

h 

I -At 
e f(nh+t)dt 

0 

iwt 
e- f (nh+'c) clt 

0 

a and 
n 

by means of 

numerical integration and then evaluate the power series, preferably using 

a convergence acceleration scheme; such as those discussed in [2] and [4]" 

We observe that the rate of convergence of the power series is influenced 

by the choice of h 

(2. 3) 
J 

0 

In particular, if we take h = TI/w in (2.2) we get 

00 

b 
n J 

TI/W 
iwt 

e f(nh+t)dt • 

0 

This alternating series may, for a fairly large class of functions f , 
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be evaluated using the Euler transformation which in this case is equivalent 

to repeated averaging of ·the partial sums of the alternating series in (2. 3). 

This scheme can be sho¥m to converge, if f is a polynomial in t , or if 

f admits a representation as the Stieltjes' integ-ral 

00 

(2 .4) f(t) I -tx 
e da(x) , 

0 

'N'here a is of bounded varia·tion on [0 , 00 ] and independent of t 

Compu·tational experiments have been carried out and it turned out that 

fairly many functional values were required to determine a 
n 

and b 
n 

in 

(2.1) and (2.2) >vith high accuracy. 'rhis fact has given an incentive to 

try other approaches, since an and bn depend on A and w and must 

hence be evaluated for each value of these parameters. Performing a change 

of variables in (2.1) and (2.2) we get the expressions 

f 
co 

(Lf) (A) 
1 e-tf(t/A)dt I 
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n=O 

n 
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(2.6) (Ff) (wl 1 
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e-itf(t/A)dt I znb 

(J) 
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n 
0 

h 
ihw 
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J 
eitf(nh+t)dt z = e 

n 0J 0J 
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Assu.me that N terms are required ·to evaluate the power series in (2.5) and 

(2.6) with desired accuracy for all A and w . These N terms are 

completely determined by the values of f in the bounded intervals 
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(2. 7) 

(2.8) [0 Nh] 
, l0 

Assume now that we know a function g together with its transforms Lg and 

Fg . Then we find 

co 

(2. 9) (Fg) (l0) - (Ff) (W) I 
n=O 

0 

If g approximates f well on the in·terval (2.8) and there is a convergence 

acceleration scheme which delivers a. g·ood estimate of the series in (2.9) 

using N terms, then (Fg) (W) is a good approximation of (Ff) (w) A 

related statement holds for (Lf) (A) We note that if w is large, then 

(2.8) defines a short interval but if w is small, then the interval (2.8) 

is long. Therefore a general s·tra·tegy is to approximate f well close to 

0 , if w is large, while good approximations for t large are required 

for w smalL A similar rule holds for the calculation of {Lf) (A) • 

3. CALCULATION OF Lf AND Ff FOR LARGE PA.Rl\..METERS )t AND W • 

We illustrate the general ideas put forward above by a numerical 

example: 

EXAMPLE Calculate Lf and Ff for f (t) = .Q.n (l+t) . Close to the origin 

we may approxima-te f by the first few terms of its Taylor expansion, 

.il,n(l+t) 

En·tering this expression into (1.1) we get 

(3.1) 

00 

J e-At.tn(l+t)dt = A-2 - !c- 3 + 21c-4 - 6;\-s + 24;\- 6 - 1201c-7 + ..• , 

0 



81 

which is the asymp·totic expansion delivered by Wa.tson's lemma. For :\ = 10 

one would truncate the expansion (3.1) after 6 terms getting the estimate 

0.009152. In this particular case the expansion (3.1) could also be derived 

by means of integration by parts and then a simple expression is also ob'cained 

for the remainder tenrt. Ff is defined by means of analytic continuation. 

Taking the real part of (Ff) (a) we find 

00 

(3.2) J coswt }i,n (1 +t) d'c 
-2 -w 

0 

Instead of approximating f by a polynomial we try an exponent.ial fiL Thus 

we pu'c f (t) in (t) where 

(3. 3) 

Vi!here yrn 

grid 

Thus 

(3.4) 

* f (t) 
n 

n 
\ 
!.. 

r=l 

- (r-1) ·t 
·v e 
"'"rn 

are detenained such that interpolates 

(i-l)~t , i = l, ... ,n . ~tis a step-width. 

n 
(Lf*) (:\) 

n L Y rr/ (:\+r·-1) 
r=l 

fn at the equidistant 

r:L'his fonnula permits easy ·tabula·tion of L'' ()c) and some sample values a.re 
n 

given below: 



TABLE 1 

8:< 

Estimates of J: e-At in(l+t)dt based on (3.3) and (3.4) with 

11t = 0.1 • 

n A = 5 A = 10 

2 0.0333850 0.00910501 

3 0.0336988 0.00913712 

4 0.0340097 0.00915512 

5 0.0340578 0.00915598 

6 0.0340753 0.00915633 

7 0.0340808 0.00915630 

8 0.0340829 0.00915635 

9 0.0340837 0.00915632 

10 0.0340841 0.00915636 

11 0.0340843 0.00915636 

12 0.0340843 

We find immediately 

(Ff*) (W) 
n 

n 

I 
r=l 

y I (r-1-iw) , rn 

giving the approximation 

(3.5) r 
0 

n 
coswt in ( l+t) dt ~ I 

r=l 

2 2 
(r-l)y /(w +(r-1) ) 

rn 

We give some sample values: 

TABLE 2 Estimates of 

11t = 0.1 • 

n 

2 

3 

4 

5 

6 

7 

8 

10 

11 

12 

Joo coswt in(l+t)dt 
0 

A = 10 

-0.00991635 

-0.00989802 

-0.00980488 

-0.00981593 

-0.00982182 

-0.00981973 

-0.00981828 

-0.00981929 

-0.00981928 

-0.00981911 

based on (3.3) and (3.4) with 

A = 20 

-0.00249763 

-0.00248774 

-0.00248724 

-0.00248823 

-0.00248773 

-0.00248789 

-0.00248783 

-0.00248792 

-0.00248790 
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1\Te note ·tha-t 'che accuracy of the approximations based on (3, 3) compares 

favourably vJith those based on power expansion of £n (l+t) Another strategy 

'co de-termine exponen-tial approximations of f is described in [3] o The 

methods given there require that f admits a representation (2.4)o Under 

this condition it is fairly easy to derive an error bound by applying one of 

the convergence schemes in [2] to (2.9). 

4. REMARKS ON THE CASE OF SMALL PARAME'l'ER VALUES 

As stated at ·the end of Section 2, (2. 9) requires that f is well 

approximated for t large by a function f* , whose transform (1.1) or (1. 2) 

is known. Put u = 1/t a.nd g(u) = f(l/u) If we can construct a polynomial 

P which approximates g accura-tely for where T > 0 is a 

known number, then we get 

00 

(4ol) 
J 

iuJt 
e p(l/t)dt . 

T 

To evaluate the integral at the right hand side of (4.1) we need to determine 

the numbers 

(W) I iwt -r 
e ·t dt r 0,1,. 0. 

T 

In'cegrating by parts we find the s·table recurrence relation 

iuJT 
e 

r 
rT 

+ 
iw 

c (uJ) 
r r 

The star-ting value c 1 (W) must be calcula.ted numerically. We find 

co 

( iUJt 

J 
it 

c 1 (w) I 
e 

dt 
e 

dt 
) t t ' 

T TW 
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and the latter integral is easily calculated using numerical integration in 

conjunction with convergence acceleration as described earlier. In order to 

evaluate (1.2) we also need to determine 

T 

J eiwtf(t)dt, 

o 

which can be achieved by means of standard numerical methods. The Laplace 

transforms are treated in a similar way. 
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