
Lecture 3: Three fundamental theorems of
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Ta Lê Loi

Introduction

This note is devoted to the study of three fundamental theorems of Singularity
theory in o-minimal structures: Morse-Sard’s theorem, density of Morse functions
on definable sets, and Transversality theorem. The main results come from [L1]
and [L2].

Morse-Sard’s theorem in o-minimal structures is proved in Section 1. There is
no restriction on differentiability class and the dimensions of manifolds involved.
Note that, in general case, for differentiable mappings f : N → M of class Cp,
Morse-Sard’s theorem requires p > max(dimN − dimM, 0 ). See [Wh] and [Y]
for examples that the theorem does not hold for mappings of low smoothness.

In Morse theory it is proved that the topological shape of a space can be described
via data given by Morse functions defined on the space. For Morse theory of com-
pact smooth manifolds we refer readers to the book by Milnor [Mi], for Morse theory
of singular spaces we refer to the book by Goresky and MacPherson [GM]. [GM]
proves the density and openness of Morse functions on closed Whitney stratified
subanalytic sets in the space of smooth functions endowed with Whitney topology
(see also the contributions by the following authors: [Mo], [Mi], [La], [Be], [P],
[O] and [Br]). In Section 2 we present similar results for definable sets in o-minimal
structures. The proofs are based on Sard’s theorem in o-minimal context. Note
that the spiral {(x, y) ∈ R2 : x = e−ϕ2

cosϕ, y = e−ϕ2

sinϕ,ϕ ≥ 0}∪{(0, 0)} or the

oscillation {(x, y) ∈ R2 : y = x sin
1

x
, x > 0}∪ {(0, 0)} has no Morse functions, even

though the first one is a closed Whitney stratified set (see Remark 2.4). Therefore,
in some sense, our results show a tameness property of definable sets.

In Section 3 we present Thom’s transversality theorem for maps and sets definable
in o-minimal structures. Whitney’s paper [Wh] provides examples of functions
which are nonconstant on a connected set of critical points (see also examples in
[Y]). Therefore, due to Morse-Sard’s theorem, in the general case (see [Le]) and
also in the X -version of the theorem given by Shiota [S2], there are some restric-
tions on differentiability class and the dimensions of manifolds involved. For the
restrictions in the general case we refer the readers to [Le, 7. Th.1] and [S2. Th.
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42 THREE FUNDAMENTAL THEOREMS

II.5.4 (3)]. In o-minimal structures, however, the theorem holds for any C1 de-
finable submanifolds of any dimensions of the jet spaces. This can be seen as an
example of the tamenes of ominimality. Our proof is quite elementary, using some
standard arguments of Singularity theory in the o-minimal setting, and a tricky
computing of rank of Jacobian matrix.

In this note we fix an o-minimal structure on (R,+, ·). “Definable” means definable
in this structure. Let p be a positive integer.
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Culture of Japan, and HEM 21 Invitation Fellowship Programs for Research in
Hyogo, and Vietnam’s National Foundation for Science and Technology Develop-
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1. Morse-Sard’s theorem

Definition 1.1 (Definable Whitney topology). Let N,M be Cp definable sub-
manifolds of Rn,Rm, respectively. Let Dp(N,M) denote the set of Cp definable
mappings from N to M . On this space the definable Whitney topology is defined
as follows (see [E] or [S1]).
First consider the case M = R. Let v1, · · · , vs be Cp−1 definable vector fields on
N , such that v1(x), · · · , vs(x) span the tangent space TxN of N at each x ∈ N .
For each f ∈ Dp(N,R), and positive continuous definable function ε on N , the
ε-neighborhood of f in this topology is defined by

Uε(f) = {g ∈ Dp(N,R) : |vi1 · · · vik(g − f)| < ε, 1 ≤ k ≤ p, 1 ≤ i1, · · · , ik ≤ s},

where vf is the derivative of f along v, i.e. vf(x) = df(x)(v(x)).
Note that this topology does not depend on the choice of v1, · · · , vs.
The topology on Dp(N,Rm) = Dp(N,R)× · · ·×Dp(N,R) is the product topology.
For the general case, Dp(N,M) is a subspace of Dp(N,Rm) with induced topology.
In this topology we have the following propositions which are proved in [E]:

Proposition 1.2. Let TN be a definable open neighborhood of N in Rn. Then
the restriction map

Dp(TN ,M) → Dp(N,M), f &→ f |N
is continuous.

Proposition 1.3. Let TM be a Cp definable submanifolds of Rm. Let π : M →
TM be a Cp definable mapping. Then the mapping

Dp(N,TM ) → Dp(N,M), f &→ π ◦ f

is continuous.

Theorem 1.4 (Morse-Sard’s theorem). Let N and M be Cp definable mani-
folds, and f : N → M be a Cp definable map. For each s ∈ N, let

Σs(f) = {x ∈ N : rank df(x) < s} and Cs(f) = f(Σs(f)).

Then Cs(f) is definable and dimCs(f) < s.
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Proof: c.f. [W, Thm. 2.7. ] It is easy to see that Cs(f) is definable. To
prove the second part we suppose, contrary to the assertion, that dimCs(f)) ≥ s.
Then, by Definable Choice, there exist a definable subset U of Cs(f) of dimension
≥ s and a definable Cp mapping g : U → Σs(f) such that f ◦ g = idU . So
rank df(g(y))dg(y) ≥ s, for all y ∈ U . Hence rank df(x) ≥ s, for all x ∈ g(U). This
is a contradiction. !

2. Density of Morse functions on definable sets

Definition 2.1 (Tangents to definable sets). LetX be a definable subset of Rn.
Let S be a definable Cp Whitney stratification of X. Note that if S is a definable
submanifold of Rn, then the tangent bundle TS and the cotangent bundle T ∗S are
definable submanifolds of TRn and T ∗Rn, respectively.
For S ∈ S, the conormal bundle of S in Rn is defined by

T ∗
SR

n = {(ξ, x) ∈ (Rn)∗ × S : ξ|TxS = 0}.
Note that T ∗

SR
n is a definable submanifold of T ∗Rn of dimension n.

A generalized tangent space Q at x ∈ S is any plane of the form

Q = lim
y→x

TyR,

where R ∈ S and S ⊂ R.
The cotangent vector (ξ, x) is degenerate if there exists a generalized tangent space
Q at x, Q '= TxS such that ξ|Q = 0.

Proposition 2.2. The set of degenerate cotangent vectors which are conormal
to S is a conical definable set of dimension ≤ n− 1.

Proof. Let R be a stratum in S with S ⊂ R \ R, and dimR = r. Consider
the mapping

g : R → Gr(Rn), defined by g(x) = TxR,

where Gr(Rn) denotes the Grassmannian of the r-dimensional vector subspaces of
Rn.
The graph g of this mapping is a definable set of dimension r. So its closure g in
Rn ×Gr(Rn) is a definable set, and hence dim(g \ g) ≤ r − 1.
Let

AR = {(ξ, x,Q) ∈ T ∗
SR

n ×Gr(Rn) : (x,Q) ∈ g \ g, ξ|Q = 0.}
Then AR is definable. For each (x,Q) ∈ g \ g the fiber AR ∩ (Rn)∗ × (x,Q) has
dimension ≤ n− r. Hence, dimAR ≤ dim(g \ g) + (n− r) = n− 1.
Since there are a finite number of strata R in S such that S ⊂ R \ R, the set of
degenerate cotangent vectors which are conormal to S is of dimension ≤ n− 1. !

Definition 2.3 (Morse functions on stratified sets). (c.f. [Be], [La], [P] and
[GM]). Let X be a subset of Rn and S be a Cp Whitney stratification of X.
A Morse function f on X is the restriction of a Cp function f̃ : Rn → R satisfying
the following conditions:

(M1) For each S ∈ S, the critical points of f |S are nondegenerate, i.e.
if dimS ≥ 1, then the Hessian of f |S at each critical point is nonsingular.

(M2) For every critical point x ∈ S of f |S , and for each generalized tangent
space Q at x with Q '= TxS, df̃(x)|Q '= 0, i.e. df̃(x) is not a degenerate
cotangent vector (where df̃(x) denotes the derivative of f̃ at x).
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Remark 2.4. The property of being a Morse function depends strictly on the
particular stratification of X. For example, every zero dimensional stratum is a
critical point of f . We also note that all lines through (0, 0) are generalized tangent
spaces of the spiral as well as of the oscillation mentioned at the beginning of this
note. So there are no Morse functions on these sets.

Remark 2.5. From the definition, one can check that if S ′ is a definable Cp

Whitney stratification of X compatible with S, and Z is a union of strata of S,
and f is a Morse function on (X,S ′), then f is Morse on (X,S) and (Z,S|Z).

Throughout this section, let X be a definable closed subset of Rn, which is
endowed with a definable Cp Whitney stratification S.

Let T be a definable Cp manifold. Let F : T × Rn → R, F (t, x) = ft(x) be a
definable Cp function. Define Φ : T × Rn → T ∗Rn by Φ(t, x) = (dft(x), x). Con-
sider the set of “Morse parameters” M(F,X) = {t ∈ T : ft|X is a Morse function}.
Note that M(F,X) is a definable set.

Theorem 2.6 (Parameter version of the density for Morse functions). If Φ is a
submersion, then M(F,X) is an open subset of T and dim(T \M(F,X)) < dimT .

Proof. For each S ∈ S, consider the following sets

M1 = M1(S) = {t ∈ T : ft|S has nondegenerate critical points}, and

M2 = M2(S) = {t ∈ T : dft(x) is a nondegenerate covector for each x ∈ S}.

It is easy to check that M1 and M2 are definable sets.
Now we claim that dim(T \M1 ∩M2) < dimT . To prove the claim, let

D = D(S) = {(ξ, x) ∈ T ∗
SR

n : ξ is a degenerate cotangent vector at x}.

Then D is a definable set. Let ΦS : T × S → T ∗S,ΦS(t, x) = ((dft|S)(x), x), and
π : T ×Rn → T be the natural projection. Since Φ is submersive, ΦS is transverse
to the zero section S of T ∗S. So the set V1 = Φ−1

S (S) is a definable submanifold
of T × S. Furthermore, t ∈ M1 if and only if t is not a critical value of π|V1 . By
Morse-Sard’s theorem, dim(T \M1) < dimT .
On the other hand, Φ is transverse to each stratum of any Whitney stratification
of D, and by Proposition 2.2, dimD ≤ n − 1, the set V2 = Φ−1(D) is a definable
set of dimension ≤ dimT − 1. So dim(T \M2) = dimπ(V2) ≤ dimT − 1.
Since the collection S is finite, the claim implies dim(T \M(F,X)) < dimT .
Openness of M(F,X) follows from the second part of Theorem 2.9 below. !

Corollary 2.7. Consider the square of distance function

F : Rn × Rn → R, F (t, x) = ‖t− x‖2.

Let M = {t ∈ Rn : F (t, .) is a Morse function on X}. Then M is definable, open
and dense in Rn.

Corollary 2.8. Let f : Rn → R be a definable Cp function. Consider the
linear deformations of f : f + L, where L is a linear form of Rn. Let

M = {L ∈ L(Rn,R) : f + L is a Morse function on X}.

Then M is definable, open and dense in L(Rn,R).
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Theorem 2.9. The set of definable Cp functions on Rn which are Morse on
X and have distinct critical values is dense and open in Dp(Rn).

Before proving the theorem, we prepare some lemmas.

Let d(·, ·) and ‖ · ‖ denote the distance and the norm on Rn induced by the Eu-
clidean inner product, respectively. Let L(Rn,R) denote the space of linear forms
on Rn, and L2(Rn,R) denote the space of bilinear forms on Rn. For L ∈ L(Rn,R),
B ∈ L2(Rn,R), and T ∈ Gk(Rn), as usual, we define

‖L|T ‖ = sup{|L(v)| : v ∈ T, ‖v‖ = 1},
‖B|T ‖ = sup{|B(u, v)| : u, v ∈ T, ‖u‖ = ‖v‖ = 1},

and detB|T to be the determinant of the matrix representation of B|T with respect
to an orthonormal basis of T .
By the definition we have

Lemma 2.10. The following mappings:

L(Rn,R)×Gk(Rn) → R, (L, T ) %→ ‖L|T ‖,
L2(Rn,R)×Gk(Rn) → R, (B, T ) %→ ‖B|T ‖,
L2(Rn,R)×Gk(Rn) → R, (B, T ) %→ detB|T ,

are continuous and semialgebraic.

Let f ∈ Dp(Rn). To test the Morsity of f |S at x ∈ S ∈ S, we define

mf,S(x) = ‖df(x)|TxS‖+ | det d2f(x)|TxS |
d(x, ∂ S)

1 + d(x, ∂ S)
,

where d2f(x) is the second derivative of f at x, ∂ S = S \ S, and d(x, ∅) = 1.
Note that, by Lemma 2.10, mf,S is a continuous definable function on S, and f |S
is Morse at x if and only if mf,S(x) > 0. In general, mf,S can not be continuously
extended to the closure S. Instead, for a Morse function f , mf,S is bounded from
below by the restriction of a positive continuous function on Rn, constructed as
follows.

Lemma 2.11. Let f ∈ Dp(Rn). Then f is a Morse function on X if and only if
there exists a positive continuous definable function mf on Rn, such that for each
S ∈ S, mf (x) ≤ mf,S(x), ∀x ∈ S.

Proof. Assume f is Morse on X. To construct mf , we imitate the arguments
of the proof of Lemma 6.12. in [C].
For each S ∈ S, let

µ(r) = inf{mf,S(x) : x ∈ S, ‖x‖ ≤ r}.
Then µ(r) is defined when r ≥ r0, for some r0 > 0. So µ : [r0,+∞) → R is a positive
definable nonincreasing function. To prove µ(r) > 0, suppose to the contrary that
µ(r) = 0. Then there exists a sequence (xk) in S, ‖xk‖ ≤ r, and mf,S(xk) → 0. By
the boundedness, taking subsequence if necessary, we can assume that xk → x ∈ S
and TxkS → Q. This implies

‖df(x)|Q‖+ | det d2f(x)|Q|
d(x, ∂ S)

1 + d(x, ∂ S)
= 0.

If x ∈ S, then Q = TxS and hence the above equality contradicts condition M1.
If x ∈ ∂ S, then Q is a generalized tangent space. Since X is closed and the strata
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of S satisfy Whitney condition (a), the above equality contradicts condition M2.
By Monotonicity theorem, there exists a ≥ r0 such that µ is continuous on [a,+∞).
Let θ : R → [0, 1] be a continuous nondecreasing definable function such that
θ = 0 on (−∞, a], θ = 1 on [a + 1,+∞). Define φS : Rn → R by φS(x) =
θ(‖x‖)µ(‖x‖)+(1−θ(‖x‖))µ(a+1). Then φS is positive, continuous, definable and
by construction φS ≤ mf,S on S.
Define mf = min{φS : S ∈ S}. Then mf has the desired properties.
Now let us assume conversely that mf is a positive continuous definable function
on Rn, such that for each S ∈ S, mf (x) ≤ mf,S(x), ∀x ∈ S. Then mf,S(x) > 0,
and hence f |S satisfies condition M1. On the other hand, if a sequence of points
xk ∈ S converges to y ∈ ∂ S, and TxkS converges to Q, then the above inequality
implies ‖df(y)|Q‖ ≥ mf (y) > 0, and hence f satisfies condition M2.
Therefore, f is Morse on X. !

Roughly speaking, the following lemma says that in the (ε, δ)-formulation of
continuity, δ can be chosen to be continuously dependent on ε and the variables.

Lemma 2.12. Let ψ : F → R be a continuous definable function. Suppose F
is a closed subset of Rn. Then there exists a positive continuous definable function
δ : R+ × F → R satisfying:

x′ ∈ F, ‖x′ − x‖ < δ(ε, x) ⇒ |ψ(x′)− ψ(x)| < ε.

Proof. Let

A = {(ε, x, δ) : ε > 0, x ∈ F, δ > 0(∀x′ ∈ F, ‖x′ − x‖ < δ ⇒ |ψ(x′)− ψ(x)| < ε)}.

Then A is a definable set. For each (ε, x) ∈ R+ × F , define

δ(ε, x) = min{sup{δ : (ε, x, δ) ∈ A}, 1}.

Since ψ is a continuous definable function, δ is well-defined, definable and positive
on R+ × F . For r > 0, define

µ(r) =
1

2
inf{δ(ε, x) : ε ≥ 1

r
, x ∈ F, ‖x‖ ≤ r}.

Then µ : (0,+∞) → R is a definable nonincreasing function. Moreover, µ(r) > 0,
for all r > 0. Indeed, by the uniform continuity of ψ on {x ∈ F : ‖x‖ ≤ r+1}, there
exists δ0 ∈ (0, 1), such that if x, x′ ∈ F, ‖x‖ ≤ r+1, ‖x′‖ ≤ r+1, and ‖x−x′‖ < δ0,

then |ψ(x) − ψ(x′)| < 1

r
. So, by the definition of δ, if ε ≥ 1

r
, x ∈ F and ‖x‖ ≤ r,

then δ(ε, x) ≥ δ(
1

r
, x) ≥ δ0 > 0. Therefore, µ(r) ≥ δ0

2
> 0.

Repeat the arguments of the proof of Lemma 2.11 for this µ, keep the notations
there, and then define δ : R+ × F → R, by

δ(ε, x) = θ(max(
1

ε
, ‖x‖))µ(max(

1

ε
, ‖x‖)) + (1− θ(max(

1

ε
, ‖x‖)))µ(a+ 1).

It is easy to check that δ has the desired properties. !

Lemma 2.13. Let U be an open definable subset of Rn. Let ε : U → R be a
positive continuous definable function. Then there exists a positive definable Cp

function ϕ : U → R, such that

|∂ αϕ| < ε, ∀|α| ≤ p.
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Proof. For n = 1: By finiteness of the number of the connected components
of U , we can assume U = (a, b). Moreover, by Cell Decomposition, ε can be
smoothened at unsmooth points in an elementary way. So we reduced to the case
that ε is of class Cp.
If lim

t→a+
ε(t) > 0 and lim

t→b−
ε(t) > 0, then take ϕ = c, where c is a constant, 0 < c <

min
t∈(a,b)

ε(t).

If lim
t→b−

ε(t) = 0, then by Motonicity, ε′ is strictly increasing on a neighborhood of

b, and tends to 0 at b. Repeating the previous argument for ε′′, · · · , ε(p), we get
a < b′ < b, such that ε, ε′, · · · , ε(p) are strictly monotone on (b′, b), tend to 0 at b,
and |ε(t)| < 1, · · · , |ε(p)(t)| < 1, ∀t > b′. Similarly for the case lim

t→a+
ε(t) = 0, the

above conditions satisfy for ε on (a, a′), with a < a′ < b. If we take a constant M

big enough, then ϕ =
εp+1

M
has the desired properties.

For general n: Let ε1(x) =
ε(x)

N(1 + ‖x‖p) , where N is a positive number. Fix

x0 ∈ U . For t ∈ R, let

α(t) = min{ε1(x) : ‖x− x0‖2 ≤ t2, d(x, ∂U) ≥ d(x0, ∂U)

1 + t2
}.

Applying the case n = 1, we have a positive definable Cp function g : R → R, such
that |g(k)| < α, ∀k ∈ {0, · · · , p}. Now let ϕ(x) = g(‖x‖2). Then by the chain rule,
when N is big enough, we have |∂ αϕ(x)| < Nε1(x)‖x‖|α| < ε(x), ∀x ∈ U, ∀|α| <
p. !

Proof of Theorem 2.9. We divide the proof into two parts: density and openness.
Density: Let f ∈ Dp(Rn), and ε : Rn → R be a positive continuous definable
function. We will find a Morse function on X in the ε- neighborhood of f .
Let N = 1 + n2p. By Lemma 2.13, there exists a positive definable Cp function

ϕ : Rn → R, such that |∂ αϕ(x)| < ε(x)

N(1 + ‖x‖) , ∀|α| ≤ p.

Consider the following family

F : In+1 × Rn → R, F (t, x) = ft(x) = f(x) + t0ϕ(x) +
n∑

i=1

tixiϕ(x),

where I = (−1, 1), t = (t0, t1, · · · , tn), and x = (x1, · · · , xn).
To apply Theorem 2.6, we check that

Φ(t, x) =




n∑

j=1

(
∂ f

∂ xj
(x) + t0

∂ ϕ

∂ xj
(x) + tjϕ(x) +

n∑

i=1

tixi
∂ ϕ

∂ xj
(x)

)

dxj , x




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is submersive. Indeed, since ϕ(x) != 0, the rank of the Jacobian JΦ(t, x) =




O O O · · · O In
∂ ϕ

∂ x1
(x) ϕ(x) + x1

∂ ϕ

∂ x1
(x) x2

∂ ϕ

∂ x1
(x) · · · xn

∂ ϕ

∂ x1
(x) ∗

∂ ϕ

∂ x2
(x) x1

∂ ϕ

∂ x2
(x) ϕ(x) + x2

∂ ϕ

∂ x2
(x) · · · xn

∂ ϕ

∂ x2
(x) ∗

...
...

...
...

...
∂ ϕ

∂ xn
(x) x1

∂ ϕ

∂ xn
(x) x2

∂ ϕ

∂ xn
(x) · · · ϕ(x) + xn

∂ ϕ

∂ xn
(x) ∗





is n+ rank(ϕ′(x),ϕ(x)e1 + x1ϕ′(x),ϕ(x)e2 + x2ϕ′(x), · · · ,ϕ(x)en + xnϕ′(x)) = 2n,
(where e1, · · · , en denote the standard basis of Rn).
So the set {t ∈ In+1 : ft is Morse on X} is dense in In+1.
On the other hand, by Leibniz’s rule, it is easy to see that for each α ∈ Nn, |α| ≤ p,
we have

|∂ α(ft − f)(x)| ≤ |t0||∂ αϕ(x)|+
n∑

i=1

|ti||∂ α(xiϕ)(x)| < (1 + n2p)
ε(x)

N
= ε(x).

Therefore, there exists t ∈ In+1, such that ft is a Morse function on X in the ε-
neighborhood of f in Dp(Rn).
To get a Morse function with distinct critical values, we construct it as follows.
Suppose f is a Morse function on X. For each S ∈ S, the set of critical points of
f |S is finite, because it is definable and discrete. So f has only finitely many critical
points on X. Let x1, · · · , xq be the critical points of f |S , of all S in S. Let r > 0 be
small enough so that the balls B(xi, r), i = 1, · · · , q, are disjoint. For i = 1, · · · , q,
choose a definable Cp function λi : Rn → [0, 1], such that λi = 0 on Rn \ B(xi, r),
and λi(x) = 1 on B(xi,

r
2 ). Consider the approximations of f of the form:

g = f + c1λ1 + · · ·+ cqλq.

Then in any neighborhood U of f , we can choose c1, · · · , cq so that g ∈ U , g
is a Morse function on X with the set of critical points being {x1, · · · , xq}, and
g(xi) != g(xj), when i != j. This completes the proof of the density part.
Openness: Let f ∈ Dp(Rn) be a Morse function on X with distinct critical values.
We will find a neighborhood of f that contains only Morse functions on X with
distinct critical values.
By Lemma 2.11, there is a positive continuous definable function mf : Rn → R,
such that for each S ∈ S

mf (x) ≤ ‖df(x)|TxS‖+ | det d2f(x)|TxS |
d(x, ∂ S)

1 + d(x, ∂ S)
, ∀x ∈ S.

Define εX = 1
3mf .

By Lemma 2.10 and 2.12, there exists a positive continuous semialgebraic function
δ : R+ × L2(Rn,R) → R, satisfying the following condition for all k ∈ {0, · · · , n}
and all T ∈ Gk(Rn):

B′ ∈ L2(Rn,R), ‖B −B′‖ < δ(ε, B) ⇒ | detB|T − detB′|T | < ε.

Let ε = min{εX , δ(εX , d2f)}. Then ε is a positive continuous definable function on
Rn. By the construction of ε, if g ∈ Dp(Rn), ‖dg − df‖ < ε and ‖d2g − d2f‖ < ε,
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then for each x ∈ S ∈ S,

mg,S(x) = ‖dg(x)|TxS‖+ | det d2g(x)|TxS |
d(x, ∂ S)

1 + d(x, ∂ S)
> mf,S(x)− 2εX(x) ≥ ε(x).

So, by Lemma 2.11, g is a Morse function on X.
Moreover, since f has only a finite number of critical points and takes distinct val-
ues at them, we can reduce ε so that if g ∈ Dp(Rn), |g− f | < ε, ‖dg− df‖ < ε, and
‖d2g−d2f‖ < ε, then g is Morse onX, the set of critical points of g|X is close to that
of f , and g still has distinct critical values. We have constructed a neighborhood
of f in Dp(Rn) containing only Morse functions onX with distinct critical values. !

To apply Morse theory to definable sets, one needs the following corollary:

Corollary 2.14. There exists a definable Cp Morse function on X which is
proper and has distinct critical values.

Proof. By Corollary 2.7, there exists a definable Cp Morse function f on
X which is proper. An approximation of f which has distinct critical values is
constructed in the proof of Theorem 2.7. !

Using the same arguments as in [P, Th.2] one obtains:

Corollary 2.15. If f ∈ Dp(Rn) (p ≥ 3) is a Morse function on X which is
proper and has distinct critical values, then f is stable in the sense that there exists
an open neighborhood U of f in Dp(Rn) such that for each g ∈ U , one can find
homeomorphisms h : X → X and λ : R → R, such that g ◦ h = λ ◦ f .

Remark 2.16. For the density of Morse functions to be true, X is not required
to be closed. However, for the openess to be true, X must be closed and the
stratification must satisfy Whitney’s condition (a) (i.e. for every pair strata (Γ,Γ′)

of the stratification with Γ ⊂ Γ
′
, given a sequence of points (xk) in Γ′ converging

to a point y of Γ such that TxkΓ
′ converging to a vector subspace T of Rm, then

TyΓ ⊂ T ). See an example in [P] (see also [T]).

3. Transversality theorem

Definition 3.1 (Definable jet bundles). Let N,M be Cp definable submani-
folds of Rn,Rm, respectively. Let 0 < r ≤ p. Let Jr(N,M) denote the space of all
r-jets of maps from N to M (see for example [H] for the definition). We define the
definable r-jet space by

Jr
D(N,M) = {jrf ∈ Jr(N,M) : f ∈ Dr(N,M)}.

To see that this space is a definable set, we can construct it as follows (c.f. [S2]).
Let P r(Rn) denote the set of all polynomials in n variable of degree ≤ r which have
their constant term equal zero. Let

R = #{α = (α1, · · · ,αn) ∈ Nn : 1 ≤ |α| = α1 + · · ·+ αn ≤ r}.

We identify P r(Rn) with RR, by
∑

1≤|α|≤r

aαX
α ↔ (α!aα)1≤|α|≤r

For the case N = U and M = V being open subsets of Rn and Rm, respectively, it
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is easy to see that

Jr
D(U, V ) = Jr(U, V ) ≡ U × V ×

m∏

i=1

P r(Rn) ≡ U × V × RmR.

For f ∈ Dr(U, V ), we denote and identify the r-jet of f at x by

jrf(x) = (x, f(x),
∑

1≤|α|≤r

∂ αf(x)

α!
(X − x)α) ≡ (x, f(x), ∂ αf(x))1≤|α|≤r,

where ∂ αf =
∂ |α|f

∂ xα1
1 · · · ∂ xαn

n
, when α = (α1, · · · ,αn) ∈ Nn.

For general N and M , take Cr definable tubular neighborhoods (TN ,πN , ρN ) and
(TM ,πM , ρM ) of N and M in Rn and Rm, respectively. Note that such neighbor-
hoods exist by [E, Th.1.9]. Then we have

Jr
D(N,M) = {jr(πM ◦ f ◦ πN )(x) : f ∈ Dr(TN , TM ), x ∈ N}

= {jr(πM ◦ T r
xf ◦ πN )(x) : f ∈ Jr(TN , TM ), x ∈ N} ,

where T r
xf(y) = f(x) +

∑

1≤|α|≤r

∂ αf(x)

α!
(y − x)α.

Indeed, for each f ∈ Dr(N,M), there exists f̃ = f ◦ πN ∈ Dr(TN , TM ) such that
f̃ |N = f , so we have the first equality. By Leibniz’s rule, ∂ α(πM ◦ f ◦ πN )(x) is
a polynomial of ∂ βπN (x), ∂ δf(πN (x)) and ∂ γπM (f(πN (x)), with |β|, |δ|, |γ| ≤ |α|,
so we have the second equality.
Hence, Jr

D(N,M) is a definable submanifold of Jr(Rn,Rm).

Theorem 3.2 (Transversality theorem). Let N and M be definable Cp man-
ifolds. Let A be a finite collection of definable C1 submanifolds of Jr

D(N,M)
(0 < r < p). Then the set

τr(A) = {f ∈ Dp(N,M) : jrf is transverse to each member of A}

is a dense subset of Dp(N,M).
Moreover, if A is a stratification of a closed subset and satisfies Whitney’s condition
(a), then τr(A) is an open subset of Dp(N,M).

To prove the theorem, we use the following lemmas.

Lemma 3.3. Let ϕ : Rn → R be a Cp function, and α ∈ Nn. For γ ∈ Nn,
denote γ ≤ α iff α − γ ∈ Nn, and γ < α iff γ ≤ α, γ (= α. Then there exist real
numbers aγ (γ < α) such that for all β ∈ Nn with |β| ≤ |α|, we have:

∂ β(xαϕ) =
∑

γ<α

aγx
α−γ∂ β(xγϕ) if β (= α ,

∂ α(xαϕ) = α!ϕ +
∑

γ<α

aγx
α−γ∂ α(xγϕ).

Proof. First, note that

∂ δ(xα) =






α!

(α− δ)!
xα−δ if δ ≤ α,

0 if δ (≤ α.
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Let aγ (γ < α) be the solution of the following system of linear equations of
triangular form:

∑

δ≤γ<α

(γ − δ)!

γ!
aγ =

α!

(α− δ)!
(δ ∈ Nn, δ < α).

We shall check that the aγ (γ < α) satisfy the equations of the lemma.
For each β ∈ Nn, |β| ≤ |α|, by Leibniz’s rule and the note, the lefthand side is

Aβ = ∂ β(xαϕ) =
∑

δ≤β

Cδ
β∂

β(xα)∂ β−δϕ =
∑

δ≤β,δ≤α

(
Cδ

β
α!

(α− δ)!
xα−δ

)
∂ β−δϕ.

On the other hand, by Leibniz’s rule and the note, the righthand side is

Bβ =
∑

γ<α

aγx
α−γ∂ β(xγϕ)

=
∑

γ<α

aγx
α−γ




∑

δ≤β

Cδ
β∂

δ(xγ)∂ β−δϕ





=
∑

δ≤β

(
∑

γ<α

aγx
α−γCδ

β∂
δ(xγ)

)

∂ β−δϕ

=
∑

δ≤β




∑

δ≤γ<α

aγx
α−γCδ

β∂
δ(xγ)



 ∂ β−δϕ

=
∑

δ≤β




∑

δ≤γ<α

Cδ
β
(γ − δ)!

γ!
aγx

α−δ



 ∂ β−δϕ.

By the definition of the aγ ’s, we have

Bβ =
∑

δ≤β,δ<α

(
Cδ

β
α!

(α− δ)!
xα−δ

)
∂ β−δϕ.

If |β| ≤ |α| and β $= α, then {δ ∈ Nn : δ ≤ β, δ ≤ α} = {δ ∈ Nn : δ ≤ β, δ < α},
and thus Aβ = Bβ

If β = α, then {δ ∈ Nn : δ ≤ β, δ ≤ α} \ {δ ∈ Nn : δ ≤ β, δ < α} = {α},

and thus Aα −Bα = Cα
α

α!

(α− α)!
xα−α∂ α−αϕ = α!ϕ.

This completes the proof of the lemma. !

Lemma 3.4. Let N, J and T be definable Cp manifolds, and Φ : T × N → J
be a definable Cp map. Let A be a finite collection of definable submanifolds of J .
If Φ is submersive, then the set

τ(Φ,A) = {t ∈ T : Φ(t, ·) is transverse to A}
is a definable set and dim(T \ τ(Φ,A)) < dimT .

Proof. Using the same arguments as in the proof of Theorem 2.6. !

Proof of Theorem 3.2. (c.f [S2, Th. II.5.4 (3)])
We reduce the proof to the case N = U being an open subset of Rn, and M = Rm,
by the following arguments.
Let (TM ,πM , ρM ) be a Cp definable tubular neighborhood of M in Rm. Let
πM∗ : Jr

D(N,TM ) → Jr
D(N,M), jrf '→ jr(πM ◦ f). Let f ∈ Dp(N,M). If g is
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an approximation of f in Dp(N,Rm) and jrg is transverse to π−1
M∗(A), for each

A ∈ A, then, by Proposition 1.3, πM ◦ g is an approximation of f in Dp(N,M) and
jr(πM ◦ g) is transverse to each member of A. Therefore, we can reduce to the case
M = Rm.
On the other hand, let (TN ,πN , ρN ) be a Cp definable tubular neighborhood of N
in Rn. For each A ∈ A being a definable submanifold of Jr

D(N,Rm), define

Ã = {(x, y, aα)1≤|α|≤r ∈ Jr(TN ,Rm) : (πN (x), y, aα)1≤|α|≤r ∈ A}.

Then Ã is a definable submanifold of Jr(TN ,Rm). Let f ∈ Dp(N,Rm). If g is an
approximation of f in Dp(TN ,Rm) and jrg is transverse to Ã, for each A ∈ A,
then, by Proposition 1.2, g|N is an approximation of f in Dp(N,Rm) and jr(g|N )
is transverse to each member of A in Jr

D(N,Rm). Therefore, we can reduce to the
case N being an open subset of Rn.
Now, let f : U → Rm, f = (f1, · · · , fm) be a Cp definable map. Let ε : U → R
be a positive continuous definable function. We shall construct a function in τr(A)
which is in ε-neighborhood of f .
Case m = 1: Let P = #{α ∈ Nn : |α| ≤ p}, and C = P 2(p!)2n. Let ϕ : U → R be
a positive Cp definable function such that

|∂ αϕ(x)| < ε(x)

C(1 + ‖x‖p) , ∀|α| ≤ p.

Note that such a function exists by Lemma 2.13.
Consider the following family of definable functions

F (t, x) = ft(x) = f(x) +
∑

|α|≤r

tαx
αϕ(x),

where I = (−1, 1), t = (tα)|α|≤r ∈ IR0 , R0 = #{α ∈ Nn : |α| ≤ r}, and x ∈ U .
First, we prove that ft is in ε-neighborhood of f . Indeed, for each α ∈ Nn with
|α| ≤ p,

|∂ α(ft − f)(x)| ≤
∑

|β|≤r

|tβ |
∣∣∂ α(xβϕ)(x)

∣∣ ≤
∑

|β|≤r

∣∣∂ α(xβϕ)(x)
∣∣ .

From the proof of Lemma 3.3 and by the definition of ϕ, we have

∣∣∂ α(xβϕ)
∣∣ =

∣∣∣∣∣∣

∑

δ≤α

Cδ
α∂

δ(xβ)∂ α−δϕ

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

δ≤β,δ≤α

Cδ
α

β!

(β − δ)!
xβ−δ∂ α−δϕ

∣∣∣∣∣∣

<
∑

|δ|≤p

(p!)n(p!)n(1 + ‖x‖p) ε

C(1 + ‖x‖p) .

Therefore, by the selection of C, we get

|∂ α(ft − f)(x)| < ε(x) , ∀x ∈ U.

Using Lemma 3.4, we shall prove that there are many t ∈ IR0 , such that ft ∈ τr(A).
To this end, we need to check that

Φ : IR0 × U → Jr(U,R) ≡ U × RR0 , defined by Φ(t, x) = (x, (∂ αft(x))|α|≤r),
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is a submersion.
Calculating, we can write the Jacobian matrix JΦ(x, t) in block form:





O · · · O · · · O · · · O · · · In
ϕ(x) · · · xγϕ(x) · · · xβϕ(x) · · · xαϕ(x) · · · ∗
...

...
...

...
...

∂ γϕ(x) · · · ∂ γxγϕ(x) · · · ∂ γxβϕ(x) · · · ∂ γxαϕ(x) · · · ∗
...

...
...

...
...

∂ βϕ(x) · · · ∂ βxγϕ(x) · · · ∂ βxβϕ(x) · · · ∂ βxαϕ(x) · · · ∗
...

...
...

...
...

∂ αϕ(x) · · · ∂ αxγϕ(x) · · · ∂ αxβϕ(x) · · · ∂ αxαϕ(x) · · · ∗
...

...
...

...
...





where 1 ≤ |γ| < |β| = |α|.
Applying Lemma 3.3, we can reduce the matrix to the form





O · · · O · · · O · · · O · · · In
ϕ(x) · · · 0 · · · 0 · · · 0 · · · ∗
...

...
...

...
...

∂ γϕ(x) · · · γ!ϕ(x) · · · 0 · · · 0 · · · ∗
...

...
...

...
...

∂ βϕ(x) · · · ∗ · · · β!ϕ(x) · · · 0 · · · ∗
...

...
...

...
...

∂ αϕ(x) · · · ∗ · · · 0 · · · α!ϕ(x) · · · ∗
...

...
...

...
...





.

Therefore, rankJΦ(t, x) = R0 + n, ∀(t, x) ∈ IR0 × U , i.e. Φ is submersive.
For the general case: Use the same arguments as in the case m = 1 for the family

F (t, x) =



f1(x) +
∑

|α|≤r

t1,αx
αϕ(x), · · · , fm(x) +

∑

|α|≤r

tm,αx
αϕ(x)



 ,

where t = (ti,α)1≤i≤m,|α|≤r ∈ ImR0 .

Since the mapping jr : Dp(N,M) → Dp−r(N, Jr
D(N,M)) is continuous and τr(A) =

(jr)−1{F ∈ Dp−r(N, Jr
D(N,M)) : F is transverse to each member of A}, the proof

of the second part of the theorem reduces to the case A being a stratification of a
definable closed subset of M and satisfying Whitney’s condition (a). Let K be the
subset of J1

D(N,M) defined by

α ∈ K iff there exist x ∈ N,S ∈ A, y ∈ S such that αx,y is not transverse to TyS,

where αx,y : TxN → TyM denotes the restriction of α to J1
D(N,M)(x,y).

Then by the proof of [F, Prop. 3.6], K is closed in J1
D(N,M). Since the mapping

j : Dp(N,M) → J1
D(N,M), f '→ j1f , is continuous, j−1(K) is closed.

Therefore, τ1(A) = Dp(N,M) \ j−1(K) is open. !

Remark 3.5. We do not know if the theorem hold for p = ∞ or p = ω.
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