Stable multigerms, simple multigerms and asymmetric Cantor sets

T. NISHIMURA

ABSTRACT. In this short note, we first show (1) if (n, p) lies inside Mather's nice region then any \mathcal{A} -stable multigerm $f : (\mathbb{R}^n, S) \to (\mathbb{R}^p, 0)$ and any C^{∞} unfolding of f are \mathcal{A} -simple, and (2) for any (n, p) there exists a non-negative integer i such that for any integer j $((i \leq j))$ there exists an \mathcal{A} -stable multigerm $f : (\mathbb{R}^n \times \mathbb{R}^j, S \times \{0\}) \to (\mathbb{R}^p \times \mathbb{R}^j, (0, 0))$ which is not \mathcal{A} -simple. Next, we obtain a characterization of curves among multigerms of corank at most one from the view point of \mathcal{A} -stable multigerms and \mathcal{A} -simple multigerms. It turns out that for any (n, p) such that n < p an asymmetric Cantor set is naturally constructed by using upper bounds for multiplicities of \mathcal{A} -stable multigerms, and the desired characterization of curves can be obtained by cardinalities of constructed asymmetric Cantor sets.

1. Introduction

For a finite subset $S = \{s_1, \ldots, s_r\}$ $(s_i \neq s_j \text{ if } i \neq j)$ of \mathbb{R}^n we let $f : (\mathbb{R}^n, S) \to (\mathbb{R}^p, 0)$ be a C^{∞} map-germ, which is called a *multigerm*. For any i $(1 \leq i \leq r)$ the restriction of f to (\mathbb{R}^n, s_i) is called a *branch of* f and it is denoted by f_i . The integer r is called the *number of branches of* f. Two multigerms $f, g : (\mathbb{R}^n, S) \to (\mathbb{R}^p, 0)$ are said to be \mathcal{A} -equivalent if there exist germs of C^{∞} diffeomorphisms $\varphi : (\mathbb{R}^n, S) \to (\mathbb{R}^n, S)$ with the condition that $\varphi(s_i) = s_i$ for any i $(1 \leq i \leq r)$ and $\psi : (\mathbb{R}^p, 0) \to (\mathbb{R}^p, 0)$ such that $f = \psi \circ g \circ \varphi^{-1}$.

A multigerm $f : (\mathbb{R}^n, S) \to (\mathbb{R}^p, 0)$ is said to be \mathcal{A} -stable if for any positive integer d and any C^{∞} multigerm $F : (\mathbb{R}^n \times \mathbb{R}^d, S \times \{0\})) \to (\mathbb{R}^p \times \mathbb{R}^d, (0, 0))$ of the form $F(x, \lambda) = (f_{\lambda}(x), \lambda)$ and $f_0 = f$, there exist germs of C^{∞} diffeomorphisms H : $(\mathbb{R}^n \times \mathbb{R}^d, S \times \{0\})) \to (\mathbb{R}^n \times \mathbb{R}^d, S \times \{0\}))$ with the condition that $H((s_i, 0)) = (s_i, 0)$ for any i $(1 \le i \le r), \tilde{H} : (\mathbb{R}^p \times \mathbb{R}^d, (0, 0)) \to (\mathbb{R}^p \times \mathbb{R}^d, (0, 0))$ and $h : (\mathbb{R}^d, 0) \to$ $(\mathbb{R}^d, 0)$ such that the following diagram commutes, where $\pi : (\mathbb{R}^p \times \mathbb{R}^d, (0, 0)) \to$ $(\mathbb{R}^d, 0)$ stands for the canonical projection.

$$\begin{array}{cccc} (\mathbb{R}^n \times \mathbb{R}^d, (S, 0)) & \xrightarrow{F} & (\mathbb{R}^p \times \mathbb{R}^d, (0, 0)) & \xrightarrow{\pi} & (\mathbb{R}^d, 0) \\ & & & \\ H & & & & \\ & & & \\ (\mathbb{R}^n \times \mathbb{R}^d, (S, 0)) & \xrightarrow{(f, \pi)} & (\mathbb{R}^p \times \mathbb{R}^d, (0, 0)) & \xrightarrow{\pi} & (\mathbb{R}^d, 0) \end{array}$$

A multigerm $f : (\mathbb{R}^n, S) \to (\mathbb{R}^p, 0)$ is said to be \mathcal{A} -simple if there exists a finite number of \mathcal{A} -equivalence classes such that for any positive integer d and any C^{∞} map $F : U \to V$ where $U \subset \mathbb{R}^n \times \mathbb{R}^d$ is a neighbourhood of $S \times 0, V \subset \mathbb{R}^p \times \mathbb{R}^d$ is a neighbourhood of $(0,0), F(x,\lambda) = (f_{\lambda}(x),\lambda)$ and $f_0 = f$, there exists a sufficiently small neighbourhood $W \subset U$ of $S \times 0$ such that for any $\{(x_1,\lambda), \cdots, (x_r,\lambda)\} \subset W$ with $F(x_1,\lambda) = \cdots = F(x_r,\lambda)$ the multigerm $f_{\lambda} : (\mathbb{R}^n, \{x_1, \ldots, x_r\}) \to (\mathbb{R}^p, f_{\lambda}(x_i))$ lies in one of these finite \mathcal{A} -equivalence classes.

- THEOREM 1.1. (1) Suppose that a pair of dimensions (n, p) lies inside the nice region due to Mather. Then any \mathcal{A} -stable multigerm $f : (\mathbb{R}^n, S) \to (\mathbb{R}^p, 0)$ and any C^{∞} unfolding of f are \mathcal{A} -simple.
- (2) For any par of dimensions (n, p) there exists a non-negative integer *i* such that for any integer *j* $((i \leq j))$ there exists an *A*-stable multigerm *f* : $(\mathbb{R}^n \times \mathbb{R}^j, S \times \{0\}) \to (\mathbb{R}^p \times \mathbb{R}^j, (0, 0))$ which is not *A*-simple.

For the definition of Mather's nice region, see [M6]. Note that any C^{∞} unfolding of an \mathcal{A} -stable multigerm is \mathcal{A} -stable by Mather's characterization of \mathcal{A} -stable multigerms ([M4]). Thus, by (1) of Theorem 1.1, the non-negative integer *i* given in (2) of Theorem 1.1 must satisfy the condition that (n+i, p+i) lies outside Mather's nice region. Topological properties of \mathcal{A} -stable map-germs which are \mathcal{A} -simple have been well investigated (for instance, see [D1, D2, D3, D4, D5, DG]).

Let C_S (resp. C_0) be the set of C^{∞} function-germs $(\mathbb{R}^n, S) \to \mathbb{R}$ (resp. $(\mathbb{R}^p, 0) \to \mathbb{R}$). Let m_S (resp. m_0) be the subset of C_S (resp. C_0) consisting of C^{∞} function-germs $(\mathbb{R}^n, S) \to (\mathbb{R}, 0)$ (resp. $(\mathbb{R}^p, 0) \to (\mathbb{R}, 0)$). The sets C_S and C_0 have natural \mathbb{R} -algebra structures induced by the \mathbb{R} -algebra structure of \mathbb{R} . For a multigerm $f : (\mathbb{R}^n, S) \to (\mathbb{R}^p, 0)$, let $f^* : C_0 \to C_S$ be the \mathbb{R} -algebra homomorphism defined by $f^*(u) = u \circ f$. Put $Q(f) = C_S/f^*(m_0)C_S$. The dimension of Q(f) as a real vector space is called the *multiplicity* of f, and in the case that $n \leq p$ it is finite for an \mathcal{A} -stable multigerm and also for an \mathcal{A} -simple multigerm. In order to obtain a characterization of curves we construct the natural construction of an asymmetric Cantor set for a given pair of dimensions (n, p) such that n < p. For the construction we first recall the known upper bounds for multiplicities. In [M6, Mn] Theorem 1.2 of the case that r = 1 is proved. However, in [CTC] Wall clarifies the meaning of $\gamma(f)$ given in [M6] and by using his homomorphism $\overline{t}f : Q(f)^n \to Q(f)^p$ Theorem 1.2 for general r can be proved easily. Thus the proof of it is omitted in this paper.

THEOREM 1.2 ([M6, Mn]). Let $f : (\mathbb{R}^n, S) \to (\mathbb{R}^p, 0)$ $(n \leq p)$ be an \mathcal{A} -stable multigerm with corank at most one. Then, the multiplicity of f is restricted in the following way.

$$\dim_{\mathbb{R}} Q(f) \le \frac{p+r}{p-n+1}.$$

THEOREM 1.3 ([N]). Let $f : (\mathbb{R}^n, S) \to (\mathbb{R}^p, 0)$ $(n \leq p, 1 < p)$ be an A-simple multigerm with corank at most one. Then, the multiplicity of f is restricted in the following way.

$$\dim_{\mathbb{R}} Q(f) \le \frac{p^2 + (n-1)r}{n(p-n) + (n-1)}$$

Here corank at most one for f means that $\max\{n - \operatorname{rank} Jf_i(s_i) \mid 1 \le i \le r\} \le 1$ holds, where $Jf_i(s_i)$ is the Jacobian matrix of the restriction f_i of f at s_i . It is known that Theorem 1.2 gives the best possible bound and in the classification results of \mathcal{A} -simple map-germs ([**BG**, **GH1**, **GH2**, **HsK**, **HnK**, **KPR**, **KS**, **MT**, **Md**, **R**, **WA**]) Theorem 1.3 gives the best possible bound (but, in the case (n, p, r) = (1, p, 1) such that 5 < p, Theorem 1.3 does not give the best possible bound since the effect of fencing curves can not be disregarded as shown in [**A**]). It is known also that every \mathcal{A} -stable multigerm with corank at most one is \mathcal{A} -simple.

For the number of branches also, there are upper bounds.

THEOREM 1.4. For any A-stable multigerm $f : (\mathbb{R}^n, S) \to (\mathbb{R}^p, 0)$ (n < p) the number of branches of f is restricted in the following way.

$$r \le \frac{p}{p-n}.$$

THEOREM 1.5 ([N]). For any \mathcal{A} -simple multigerm $f : (\mathbb{R}^n, S) \to (\mathbb{R}^p, 0) \ (n < p)$ the number of branches r is restricted in the following way.

$$r < \frac{p^2}{n(p-n)}.$$

Since for any positive integer r a smooth finite covering with r fibers is \mathcal{A} -stable and \mathcal{A} -simple, there exists an upper bounds for the number of branches of neither an \mathcal{A} -stable multigerm nor an \mathcal{A} -simple multigerm in the case that n = p.

Now, we construct the natural asymmetric Cantor set for a given pair of dimensions (n, p) such that n < p motivated by Theorems 1.2, 1.3, 1.4 and 1.5. For a given pair of dimensions (n, p) such that n < p we put

$$\begin{aligned} \varphi_{stable,(n,p)}(x) &= \frac{p+x}{p-n+1} \\ \varphi_{simple,(n,p)}(x) &= \frac{p^2+(n-1)x}{n(p-n)+(n-1)} \end{aligned}$$

Then, note that $\frac{p}{p-n}$ (resp. $\frac{p^2}{n(p-n)}$) is the unique fixed point of the affine function $\varphi_{stable,(n,p)}$: $\mathbb{R} \to \mathbb{R}$ (resp. $\varphi_{simple,(n,p)}$: $\mathbb{R} \to \mathbb{R}$). Since for any multigerm $f : (\mathbb{R}^n, S) \to (\mathbb{R}^p, 0)$ the multiplicity of f must be greater than or equal to the number of branches, these phenomena suggest that for any i $(1 \le i \le r)$ the branch f_i must be immersive (in other words, $\dim_{\mathbb{R}} Q(f_i) = 1$) if $\frac{p}{p-n} - r < 1$ (resp. $\frac{p^2}{n(p-n)} - r < 1$) for an \mathcal{A} -stable multigerm (resp. an \mathcal{A} -simple multigerm) f of corank at most one. Furthermore, note that both of $\varphi_{stable,(n,p)}$ and $\varphi_{simple,(n,p)}$ are contractive. Again since for any multigerm $f : (\mathbb{R}^n, S) \to (\mathbb{R}^p, 0)$ the multiplicity of f must be greater than or equal to the number of branches, these phenomena suggest that the distribution of multiplicities of branches of f may be uncontrollable.

Let $\mathcal{H}(\mathbb{R})$ be the set of non-empty compact subsets of \mathbb{R} . Then, it is known that $\mathcal{H}(\mathbb{R})$ is a complete metric space with respect to the Pompeiu-Hausdorff metric (see $[\mathbf{B}, \mathbf{F}]$). Define the map $\Phi_{(n,p)} : \mathcal{H}(\mathbb{R}) \to \mathcal{H}(\mathbb{R})$ as

$$\Phi_{(n,p)}(X) = \varphi_{stable,(n,p)}(X) \cup \varphi_{simple,(n,p)}(X).$$

Then, since both of $\varphi_{stable,(n,p)}$ and $\varphi_{simple,(n,p)}$ are contractive, $\Phi_{(n,p)}$ is contractive too (see [**B**, **F**]). Therefore, by Banach's contraction mapping theorem, we see that there exists the unique fixed point of $\Phi_{(n,p)}$, which is denoted by $\mathcal{C}_{(n,p)}$.

Note that the distribution of $(\dim_{\mathbb{R}} Q(f_1), \ldots, \dim_{\mathbb{R}} Q(f_r))$ for possible \mathcal{A} -stable multigerms (resp. \mathcal{A} -simple multigerms) $f : (\mathbb{R}^n, S) \to (\mathbb{R}^p, 0)$ of corank at most one

is restricted by the coefficient of the linear term $\frac{1}{p-n+1}$ (resp. $\frac{n-1}{n(p-n)+(n-1)}$) and the fixed point $\frac{p}{p-n}$ (resp. $\frac{p^2}{n(p-n)}$) of the affine function $\varphi_{stable,(n,p)}$ (resp. $\varphi_{simple,(n,p)}$). On the other hand, the set $\mathcal{C}_{(n,p)}$ is constructed only by using these four rational numbers $\frac{1}{p-n+1}$, $\frac{n-1}{n(p-n)+(n-1)}$, $\frac{p}{p-n}$ and $\frac{p^2}{n(p-n)}$. Thus, for any given (n,p) such that n < p, the set $\mathcal{C}_{(n,p)}$ may be regarded as a visualized clue to investigate both of the distribution of multiplicities of branches of possible \mathcal{A} -stable multigerms of corank at most one and the distribution of simultaneously.

We observe $\mathcal{C}_{(n,p)}$. We see first that $\mathcal{C}_{(n,p)}$ is self-similar by the equality

 $\mathcal{C}_{(n,p)} = \varphi_{stable,(n,p)}(\mathcal{C}_{(n,p)}) \cup \varphi_{simple,(n,p)}(\mathcal{C}_{(n,p)}).$

Next, let $I_{(n,p)}$ be the closed interval $\left[\frac{p}{p-n}, \frac{p^2}{n(p-n)}\right]$. Then, we see that the intersection $\varphi_{stable,(n,p)}(I_{(n,p)})$ and $\varphi_{simple,(n,p)}(I_{(n,p)})$ is the empty set since we have the following:

$$\frac{1}{p-n+1} + \frac{n-1}{n(p-n) + (n-1)} < 1 < \frac{p^2}{n(p-n)} - \frac{p}{p-n}$$

Furthermore, for any (n, p) such that n < p each of $\varphi_{stable,(n,p)}$ and $\varphi_{simple,(n,p)}$ is an affine function with one variable and we have

$$\frac{n-1}{n(p-n)+n-1} < \frac{1}{p-n+1}$$

Thus, it is reasonable to call $C_{(n,p)}$ the asymmetric Cantor set relative to (n,p). The Hausdorff-Besicovitch dimension of the asymmetric Cantor set relative to (n,p) is obtained as the solution of the following equation (for details on Hausdorff-Besicovitch dimensions, see $[\mathbf{B}, \mathbf{F}]$).

$$\left(\frac{1}{p-n+1}\right)^s + \left(\frac{n-1}{n(p-n)+n-1}\right)^s = 1.$$

We see easily that Hausdorff-Besicovitch dimension of the asymmetric Cantor set is zero if and only if n = 1 and it is well-known that the Hausdorff-Besicovitch dimension of a given non-empty compact set is zero if the set is countable (see $[\mathbf{B}, \mathbf{F}]$). Thus, if $\mathcal{C}_{(n,p)}$ is countable, then we have that n = 1. Conversely, if n = 1then $\mathcal{C}_{(n,p)}$ must be countable since $\varphi_{simple,(n,p)}$ is a constant function in this case. Therefore we have the following characterization of curves:

THEOREM 1.6. Let (n, p) be a given pair of dimensions such that n < p. Then, $C_{(n,p)}$ is a countable set if and only if n = 1.

All results in this paper hold also in complex holomorphic category. In §2, Theorems 1.1 and 1.4 are proved.

The author would like to thank the referee for valuable suggestions.

2. Proofs of Theorems 1.1 and 1.4

For the proofs of Theorems 1.1 and 1.4, we assume that the reader is familiar with Mather theory([M1, M2, M3, M4, M5, M6]).

<u>Proof of the assertion (1) of Theorem 1.1.</u> We recall first the following notions given in $\S7$ of [M5].

DEFINITION 2.1. integer. Put

 $W_{\ell} = \{ z \in J^k(n, p) \mid \operatorname{codim} \mathcal{K}^k(z) \ge \ell \}.$

Then, W_{ℓ} is a real closed algebraic set.

(2) The union of irreducible components of W_{ℓ} whose codimensions are less than ℓ is denoted by W_{ℓ}^* .

(1) Let k be a positive integer and ℓ be a non-negative

(3) Put $\pi^k(n,p) = \bigcup_{\ell \ge 0} W_{\ell}^*$. The set $\pi^k(n,p)$ is also a real closed algebraic set. Let $\sigma^k(n,p)$ be the codimension of $\pi^k(n,p)$. Then, the following holds clearly.

$$\sigma^{k_1}(n,p) \ge \sigma^{k_2}(n,p) \quad (k_1 \le k_2).$$

(4) Put
$$\sigma(n, p) = \inf_k \sigma^k(n, p)$$
.

Mather's nice region can be characterized that the pair of dimensions (n, p) satisfies the condition $n < \sigma(n, p)$. Let $f : (\mathbb{R}^n, S) \to (\mathbb{R}^p, 0)$ be a given \mathcal{A} -stable multigerm. Then, the jet extension $j^{p+1}f$ is taransverse to $S \times \mathbb{R}^p \times \mathcal{K}^{p+1}(j^{p+1}f(S))$ and thus for any $s_i \in S$ codimension of $\mathcal{K}^{p+1}(j^{p+1}f(s_i))$ is less than or equal to n. Suppose that $\mathcal{K}^{p+1}(j^{p+1}f(s_i))$ is a subset of $\pi^{p+1}(n,p)$. Then, we have $\sigma(n,p) < \sigma(n,p)$ $\operatorname{codim} \mathcal{K}^{p+1}(j^{p+1}f(s_i)) \leq n$, which contradicts $n < \sigma(n,p)$. Therefore, we have $\mathcal{K}^{p+1}(j^{p+1}f(s_i)) \cap \pi^{p+1}(n,p) = \emptyset$ which means that there are only finitely many \mathcal{K}^{p+1} -orbits near $\mathcal{K}^{p+1}(j^{p+1}f(S))$. Since the jet extension $j^{p+1}f$ is taransverse to $\mathcal{K}^{p+1}(j^{p+1}f(S))$, not only f but also any multigerm $g: (\mathbb{R}^n, S) \to (\mathbb{R}^p, 0)$ which is near f is \mathcal{A} -stable and $\mathcal{A}^{p+1}(j^{p+1}g(S))$ is open in $\mathcal{K}^{p+1}(j^{p+1}g(S))$. Therefore the number of \mathcal{A} -orbits which are near $\mathcal{A}(f)$ is finite and thus f is \mathcal{A} -simple.

Next we show that any C^{∞} unfolding of f is \mathcal{A} -simple. Let F : $(\mathbb{R}^n \times$ $\mathbb{R}^d, S \times \{0\} \to (\mathbb{R}^p \times \mathbb{R}^d, (0, 0))$ be a C^{∞} unfolding of f. Then, since there are only finitely many \mathcal{K}^{p+1} -orbits near $\mathcal{K}^{p+1}j^{p+1}f(S)$, there are only finitely many \mathcal{K}^{p+d+1} -orbits near $\mathcal{K}^{p+d+1}(F)$. Since the multigerm F is \mathcal{A} -stable, we have that $\mathcal{A}^{p+d+1}(j^{p+d+1}F(S\times\{0\})) \text{ is in } \mathcal{K}^{p+d+1}(j^{p+d+1}F(S\times\{0\})) \text{ and } \mathcal{A}^{p+d+1}(j^{p+d+1}G(S\times\{0\})) \text$ $\{0\})) \text{ is open in } \mathcal{K}^{p+d+1}(j^{p+d+1}G(S\times\{0\})) \text{ where } G : (\mathbb{R}^n \times \mathbb{R}^d, S \times \{0\}) \rightarrow$ $(\mathbb{R}^p \times \mathbb{R}^d, (0, 0))$ is a multigerm near F. Note that G is also A-stable. Therefore, the number of \mathcal{A} -orbits which are near $\mathcal{A}(F)$ is finite and thus F is \mathcal{A} -simple.

Note that the above proof works well even in the case $n = \sigma(n, p)$ (that is to say, the case that the pair of dimensions (n, p) lies in the boundary of Mather's nice region) since the equality

$$\sigma(n,p) = \operatorname{codim} \mathcal{K}^{p+1}(j^{p+1}f(s_i))$$

never hold by (2) of Definition 2.1.

Proof of the assertion (2) of Theorem 1.1.

A pair of dimensions (n, p) is inside Mather's nice region if and only if (n, p)satisfies one of the following 5.

- $\begin{array}{ll} (1) & n < \frac{6}{7}p + \frac{8}{7} \text{ and } p n \geq 4, \\ (2) & n < \frac{6}{7}p + \frac{9}{7} \text{ and } 3 \geq p n \geq 0, \\ (3) & p < 8 \text{ and } p n = -1, \end{array}$
- (4) p < 6 and p n = -2,
- (5) p < 7 and $p n \le -3$.

Therefore, we see that for any pair of dimensions (n, p) there exists a non-negative integer i_1 such that for any integer j_1 ($i_1 \leq j_1$) the pair of dimensions $(n+j_1, p+j_1)$

lies outside Mather's nice region. Let z be a $(p+i_1+1)$ -jet belonging $\pi^{p+i_1+1}(n+i_1,p+i_1)$ and let $f:(\mathbb{R}^n\times\mathbb{R}^{i_1},S\times\{0\})\to(\mathbb{R}^p\times\mathbb{R}^{i_1},(0,0))$ be a representative of z. If f is \mathcal{A} -stable, then by putting $i=i_1$ we have the assertion (2) of Theorem 1.1. If f is not \mathcal{A} -stable, then by using Mather's construction of \mathcal{A} -stable germs we see that there exists a positive integer i_2 and a C^∞ unfolding $F:(\mathbb{R}^n\times\mathbb{R}^{i_1+i_2},S\times\{0\})\to(\mathbb{R}^p\times\mathbb{R}^{i_1+i_2},(0,0))$ of the multigerm f such that F is \mathcal{A} -stable. Then, note that $j^{p+i_1+i_2+1}F(S\times\{0\})$ belongs to $\pi^{p+i_1+i_2+1}(n+i_1+i_2,p+i_1+i_2)$ since $j^{p+i_1+1}f(S\times\{0\})$ belongs to $\pi^{p+i_1+1}(n+i_1,p+i_1)$. Therefore, by putting $i=i_1+i_2$ we have the assertion (2) of Theorem 1.1.

Proof of Theorem 1.4.

Let $\theta_S(f)$ (resp. $\theta_S(n)$) be the C_S -module consisting of germs of C^{∞} vector fields along f (resp. along the germ of identity mapping: $(\mathbb{R}^n, S) \to (\mathbb{R}^n, S)$). Let $\theta_0(p)$ be the C_0 -module consisting of germs of C^{∞} vector fields along the germ of identity mapping: $(\mathbb{R}^p, 0) \to (\mathbb{R}^p, 0)$. Let $tf : \theta_S(n) \to \theta_S(f)$ (resp. $\omega f : \theta_0(p) \to \theta_S(f)$) be the map defined by $tf(a) = df \circ a$ (resp. $\omega f(b) = b \circ f$). Then, since the given f in Theorem 1.4 is \mathcal{A} -stable, we have that

$$\theta_S(f) = tf(\theta_S(n)) + \omega f(\theta_0(p)).$$

Since we have

$$\dim_{\mathbb{R}} \frac{\theta_S(f)}{m_S \theta_S(f)} = pr, \ \dim_{\mathbb{R}} \frac{\theta_S(n)}{m_S \theta_S(n)} = nr \ \text{ and } \ \dim_{\mathbb{R}} \frac{\theta_0(p)}{m_0 \theta_0(p)} = p,$$

we have the following desired inequality.

$$pr \leq nr + p$$
.

Bibliography

- [A] V. I. Arnol'd, Simple singularities of curves, Proc. Steklov Inst. Math., **226**(1999), 20-28.
- [B] M. Barnsley, Fractals everywhere 2nd edition, Morgan Kaufmann Pub., San Fransisco, 1993.
- [BG] J. W. Bruce and T. J. Gaffney, Simple singularities of mappings $\mathbb{C}, 0 \to \mathbb{C}^2, 0, J$. London Math. Soc., **26**(1982), 465-474.
- [D1] J. Damon, A partial topological classification for stable map germs, Bull. Amer. Math. Soc., 82(1976), 105–107.
- [D2] J. Damon, Topological stability in the nice dimensions $(n \le p)$, Bull. Amer. Math. Soc., **82**(1976), 262–264.
- [D3] J. Damon, Topological properties of discrete algebra types, 83–97, Adv. in Math. Suppl.. Stud., 5, Academic Press, New York–London, 1979.
- [D4] J. Damon, Topological properties of discrete algebra types. II. Real and complex algebras, Amer. J. Math., 101(1979), 1219–1248.
- [D5] J. Damon, Topological properties of real simple germs, curves, and the nice dimensions n > p. Math. Proc. Cambridge Philos. Soc., **89**(1981), 457–472.
- [DG] J. Damon and A. Galligo, A topological invariant for stable map germs. Invent. Math., 32(1976), 103–132.
- [F] K. Falconer, Fractal Geometry –Mathematical Foundations and applications 2nd edition, John Wiley & Sons Ltd., Chichester, West Sussex, 2003.
- [GH1] C. G. Gibson and C. A. Hobbs, Simple singularities of space curves, Math. Proc. Cambridge Philos. Soc., 113(1993), 297-306.
- [GH2] C. G. Gibson and C. A. Hobbs, Singularities of general one-dimensional motions of the plane and space, Proc. Roy. Soc.Edinburgh, 125A(1995), 639–656.
- [HsK] C. A. Hobbs and N. P. Kirk, On the classification and bifurcation of multigerms of maps from surfaces to 3-space, Math. Scand., 89(2001), 57-96.

BIBLIOGRAPHY

- [HnK] K. Houston and N. P. Kirk, On the classification and geometry of co-rank 1 map-germs from three-space to four-space, Singularity theory (Liverpool 1996), xxii, 325-351, London Math. Soc. Lecture Note Ser.. 263, Cambridge Univ. Press, Cambridge, 1999.
- [KPR] C. Klotz, O. Pop and J. Rieger, *Real double-points of deformations of A-simple map-germs* from \mathbb{R}^n to \mathbb{R}^{2n} , Math. Proc. Cambridge Philos. Soc., **142**(2007), 341-363.
- [KS] P. A. Kolgushkin and R. R. Sadykov, Simple singularities of multigerms of curves, Rev. Mat. Complut., 14(2001), 311-344.
- [MT] W. L. Marar and F. Tari, On the geometry of simple germs of co-rank 1 maps from \mathbb{R}^3 to \mathbb{R}^3 , Math. Proc. Cambridge Philos. Soc., **119**(1996), 469-481.
- [M1] J. Mather, Stability of C^{∞} mappings, I. The division theorem, Annals of Math., 87(1968), 89–104.
- [M2] J. Mather, Stability of C[∞] mappings, II. Infinitesimal stability implies stability, Annals of Math., 89(1969), 254–291.
- [M3] J. Mather, Stability of C[∞] mappings, III. Finitely determined map-germs. Publ. Math. Inst. Hautes Études Sci., 35(1969),127-156.
- [M4] J. Mather, Stability of C[∞] mappings, IV, Classification of stable map-germs by ℝ-algebras, Publ. Math. Inst. Hautes Études Sci., 37(1970),223-248.
- [M5] J. Mather, Stability of C^{∞} -mappings V. Transversality. Advances in Mathematics 4(1970), 301-336.
- [M6] J. Mather, Stability of C[∞]-mappings VI. The nice dimensions, Lecture Notes in Mathematics 192, Springer-Verlag, Berlin, (1971), 207-253.
- [Md] D. Mond, On classification of germs of maps from \mathbb{R}^2 to \mathbb{R}^3 , Proc. London Math. Soc., **50**(1985), 333-369.
- [Mn] B. Morin, Forms canoniques des singularitiés d'une application différentiable, Compte Rendus, 260(1965), 5662–5665, 6503–6506.
- T. Nishimura, A-simple multigerms and L-simple multigerms, Yokohama Mathematical Journal 55(2010), 93–104.
- [R] J. H. Rieger, Families of maps from the plane to the plane, J. London Math. Soc., 36(1987), 351-369.
- [CTC] C. T. C. Wall, Finite determinacy of smooth map-germs, Bull. London Math. Soc., 13(1981), 481-539.
- [WA] R. Wik-Atique, On the classification of multi-germs of maps from C² to C³ under Aequivalence, in Real and Complex Singularities (J. V. Bruce and F. Tari, eds.), Proceedings of the 5th Workshop on Real and Complex Singularities, (São Carlos, Brazil, 1998), 119-133. Chapman & Hall/CRC Res. Notes Math., 412, Chapman & Hall/CRC, Boca Raton, FL, 2000.

Department of Mathematics,

Yokohama National University,

Yokohama240-8501, Japan

e-mail: takashi@edhs.ynu.ac.jp