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REGULARITY AT THE BOUNDARY AND REMOVABLE SINGULARITIES FOR 

SOLUTIONS OF QUASILINEAR PARABOLIC EQUATIONS 

William P. Ziemer 

1. INTRODUCTION 

The purpose of this note is to describe recent results concerning 

removable singularities and behavior of weak solutions of quasilinear 

parabolic equations of the second order at the boundary of an arbitrary 

domain. Specifically, .7e investigate the local behaviour of weak solutions 

of equations of 'che form 

(1) 

where A and B are, respectively, vector and scalar valued Borel 

functions defined on "x Rl x Rn , where " is arbitrary open subset 

The functions A and B are required to satisfy ·the 

following. structure conditions: 

Here, p > 1, 0.0 > 0 b O > 0 and the remaining coefficients are non-

negative functions of (x,t) that are required to belong to specified 

Lebesgue classes. For the purposes of this exposition, "e will simply 

require a P 
1 

, aP 
2 

and to lie in LqW) where 

n 1 
1 + - < 

pq q 
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Essentially all research concerned with the behavior of weak solutions 

of (1) has been ·restricted to the case p = 2 • For example, interior 

regularity, i.e., Holder continuity of weak solutions of (1) ha.s been 

established by several authors, c.f., [KO], [LSU], [AS], [T]. Landis, 

[L], apnounced a criterion for continuity of solutions of the heat equation 

at the boundary of an arbitrary open set, although a complete development of 

his results has apparently never appeared. Recently, Evans and Gariepy, 

[EG], established a characterization of regular boundary points for the 

heat equation which is in the same spirit as the Wiener criterion for 

Laplace's equation. Other results concerning boundary regularity of 

linear parabolic equations inclune [E], [Ll], [L2], [PI], [EK]. 

Closely associated with the problem of regularity at the boundary of 

weak solutions of (1) is the question of determining conditions under which 

a compact set K c Q is removable for solutions of (1). Some results in 

this direction were obtained in [A] for linear equations and in [EP] for 

equations of the form (1) with p = 2 For a general development of 

removability results for a wide class of higher order linear equations, 

the reader is referred to [HP]. 

2. CONTINUITY AT THE BOUNDARY 

If U c Q is an open set, a bounded function is said 

to be a weak solution of (1) in U if 

for all $ E C~(U) 

The fundamental solution of the heat operator H is 

given by 
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t > 0 

G{x,t) 

t :$; 0 . 

For any set E C Rn+l, the alassiaal parabolia aapaaity is qefined by 

where the supremum is taken over all non-negative Borel measures ~ 

supported in E whose potential, G * ~, is everywhere bounded above 

by 1 • 

For the purpose of describing boundary regularity results, let 

R (r) 
a 

For a > 0, let 

where B{xO,r) is the ball in Rn with center xo and radius r. 

We associate with Ra{r) a subcylinder 

* r 2 2 1 2 
Ra{r) = B{XO'2) x (to - ~r ,to ~r) 

U € Wl ,2{Q) , we say that 

u{zo) :$; k weakly 

if for every t > k , there is an r > 0 such that 

whenever n € C~[u{zo,r)] where u{zO,r) denotes the ball in Rn+l with 

center Zo and radius r A similar definition is given for u{zo) ~ k 

weakly and consequently it is clear what is meant by u{zO) = k weakly. 

The following result comes from [Zl] and [GZ2]. 



THEOREl"! Let Q ----
U E Wl ,2(Q) be a 

p 2 such that 

(3) 

then 

20 

be an open subset of Rn+l with 

bouniled weak solution of (1) with 

u(zo) = k weakly. If for some 

lim u(z) k. 

z+zO 

ZEQ 

'" , 

Zo E aQ • Let 

structure (2) and 

C/, > 0 , 

In the case that Q = D x (O,T) where D is an open subset of 

Rn , it is no·t difficult to show that if Zo = (XO/tO) E aQ, then (3) 

holds if and only if 

(4) 

where is classical Newtonian capacity in Rn But (4) is precisely 

the Wiener criterion for continuity of solutions of Laplace's equation at 

Hence, we have ·the following. 

COROLLARY If Xo E 3D is a regular point for Laplace's equation, then 

Zo = (Xo,tO) E 3[Dx(0,T)] is a regular point for bouniled weak solutions 

of (1) with structure (2) anil p 2. 

The author has recently proved that weak bounded solutions of (1), (2) 

with P > 1 are continuous in Q, [Z2j . However, the question of 

extending the above theorem to cover the case of all p > 1 remains open. 
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3. REMOVABLE SINGULARITIES 

Suppose D C Rn is an open set and KeD a compact set of zero 

Newtonian capacity. It is well known that a bounded harmonic function 

defined in D - K can be defined on K in such a way that the resulting 

function is harmonic throughout D Likewise a single point is removable 

for any harmonic function which is o(r2- n ) in a neighbourhood of the 

point. These two results represent extreme cases concerning the size of 

the singular set. Carleson [C] provided an interpolation between them by 

relating the Hausdorff dimension of the singular set to the Lebesgue class 

of the harmonic function. Serrin [S] extended Carleson's results to 

solutions of the elliptic counterpart of (1) and (2) by using the notion 

of s-capacity in place of Hausdorff measure. Below we state analogous 

results for solutions of parabolic equations of the form (1). 

One of the difficulties encountered in the parabolic situation is 

the selection of the appropriate capacity which is used to balance the 

size of the singular set against the Lebesgue class of the solution. Unlike 

the corresponding elliptic case, no obvious definition is suggested by the 

analysis of the equation. 

compact set K as 

r (K) 
s 

The capacity we employ is defined for each 

where the infimum is taken over all v E C~(Rn+l) such that v ~ Ion. 

K • Here, s > 1 1 1 1 and 1I~I_l,S' , -+ 8'= s denotes the norm of 

dV when taken element of wI,s' (Rn ) dt(· ,t) as an It can be shown that, 

for each compact set K c Rn+l, r 2 (K) = C(K) where C is classical 

parabolic capacity defined in §2 above, c.f., [PM]. Also, it is shown in 
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[GZ2] t.hat r 
s 

is strictly 1Meaker than the capacity employed in [Al or 

[EP] in the sense that there exist, compact sets K whose capacity, as 

defined in [Al or [EP] , is positive but r (K) 
s o If (K) ~ C(K) = 0 , 

it can be shm'ln [GZlj that there is a sequence of smooth functions {cc} 
l 

with the following properties 

Os()"sl 
l 

()'i 0 on a neighbourhood of K 

at. + 0 
l 

a.e, as 

where is the adjoint to the heat operator. 

is critical in establishing the following result" [GZll. 

This information 

THEOREM Let K be a compact subset of an open set Q C Rn +l , Let 

U E L~ (n) n l,2W .J be a weak soZution in Q - K of (1) and (2) lU1:th 
oc W10c ' ,-K 

P 2 If r 2 (K) o s then u E w1 ,2 (rn 
10c 

and U is a weak soZution of 

(1) in Q 

Clearly this result is optimal for the class of equations under 

considera'tion, for if r 2 (K) > 0, then ,:he capacity equilibrium potential 

of K is a bounded function on Rn+1 that satisfies the hea't equation on 

Rn+l _ K but not on 

In order to consider weak solutions of (1), (2) for all p > 1 , 

A typical we assume that the constant b O that appears in (2) is zero. 

interpolatory result analogous to that of s.errin"s cited above takes the 

following form, [Z2j. 
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Let K c Q be a compact setl;)ith r s (K) ~ 0 0 If' 

LC[ (Q', n li'P W- K) 
lac lac' 

with P :S S is a "leak soluMon of (I] f (2) 

-then u -is a 'UJeak sotution in Q l?l"Jovided (p-l) (_5_, < q 
~ 's-p' -

A more de·tailed ax!alysis caT! be provid,ad by co.{lsidering sol'v;tions 

t.11d.'C lie i:~L the spa.ces 

( , 

U lui 
Clip 'jl/q 

c1tr 
~ 
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