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CLASSIFICATION OF MINIMIZING HYPERSURFACES 

n·1 
ASYMPTOTIC TO QUADRATIC CONES IN fR T 

Leon Simon B Bruce Solomon 

A celebrated theorem of S. Bernstein states that in R3 , every 

entire minimal graph is an affine plane [B]. Nowadays, Bernstein's 

theorem can be understood as a corollary to a much broader result, 

sometimes called the parametric Bernste.in theorem: when n :S. 7 , every 

area-minimizing hypersurface in 
n+l 

IR is an affine hyperplane. 

hypersurface means a current S of the form 

s a[UJ!, 

Here. 

where IUJ denotes the current corresponding to oriented integration of 

(n+l) -fOL'mS over an open set u c IRn+l. We say that s is area-

minimizing if, whenever r > 0 and B r 
{x E. 

IRn+l : lxl < r}' we have 

IISIIB :$ IIS+ZIIB 
r r 

for all hypersurfaces Z supported within Br. (i.e., inside Br, S 

has less n-area than any other hypersurface which agrees with it outside 

Br.) In particular, a Standard Stokes' Theorem argument (see e.g. [SL3]) 

immediately shows that entire minimal graphs are area-minimizing; this 

is why the original theorem of Bernstein follows from the later 

parametric version. 

Here, we concern ourselves with the question of what happens when 

the parametric Bernstein theorem fails, as it does when n 2: 8. This 
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failure was discovered in 1968 by Bombieri, DeGiorgi, & Giusti [BDG], 

and a considerable number of counterexamples in high dimensions are now 

known. Simplest among these are the hypercones Cp,q with 

min(p+q,pq} > 5 , defined as follows. 

qlxl 2 < plyl 2} . 

As first noted by W.H Fleming [F], hypercones play a central role 

in the study of area-minimizing hypersurfaces. Indeed, if S is any 

area-minimizing hypersurface, then S is asymptotic to an area-

minimizing hypercone near infinity. By this we mean there is a sequence 

{r1} of radii decreasing to zero, and an area-minimizing hypercone C = 

C(S,{r.}) such that 
1 

Here denotes the homothety x ~-> r.x 
l 

in IRn+l, and is 

taken in the appropriate weak sense (the integral flat topology [SLl]). 

This asymptotically conical behaviour suggests that one should try 

to classify area-minimizing hypersurfaces according to their asymptotic 

limits. While such a classification appears formidably difficult in 

general, we can report here a complete solution of the problem for the 

particular cones Cp,q defined above: 

THEOREM: ([SS)): If S is an area-minimizing hypersurface asymptotic 

p,q f 1 ron+l, to C near in inity, then up to simi arities of ·~ S is either 
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To clarify this statement, we should say that similarity means an 

isometry of ~n+l composed with a homothety. We also need to make the 

following definition. 

DEFINITION: Tp,q is the unique area-minimizing hypersurface in Up,q 

having unit distance to the origin 0 e ~n+l. 

The existence and uniqueness of Tp,q is a special case of a 

result of Hardt & Simon [HS]. Tp,q is also smooth, and its bomothetic 

images (r) Tp,q , r >0 , 
:11: 

foliate uP' q. 

We now give an overview of the proof of our theorem. 

PROOF: It is well-known that Cp,q n Sn =: 
,q 

is isometrically a 

product of spheres: 

[Jn~l) sP x [Jn~l] n+l 
iR . 

~p,q is of course a minimal hypersurface in S0 , and has constant 

length second fundamental form, so that its second variation operator 

Jt has the very simple expression 

By .1.<: 1~e denote the intrinsic covariant laplacian of zp,q. Using the 

classical theory of spherical harmonics, it is possible to compute 

explicity the spectral decomposition of L2(tp,q) relative to the 

self-adjoint elliptic operator Jz. In particular, we have the 

following proposition concerning the first three eigenspaces of lz· 

Below, the normal v on ,q is the restriction to zp,q of an 
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orienting .unit normal vectorfield 

on Below M>(n+l) denotes the L.ie algebra of the special 

orthogonal group SO(n+l); i.e. the (n+l) x (n+l) skew-symmetric 

matrices. 

PROPOSITION: [SS]. Let v1 ' v2 ' vs be the first three eigen:spaces 

of on .Gp,q. if 1' ... v. then for all (,) ... ,q 
1 ' 

( i) 'f' is constant, when i = 1, 

( ii) '!"(~) v(w) ·z for some z ... !Rn+l when i = 2, 

(iii) i"(w) Gw·LJ(w) for some G E. il.-O-(n+l) when i = 3. 

It also happens that is the kernel of JI, otherwise known as 

the space of Jacobi fields on zp,q Conclusion (iii) above therefore 

shows that every Jacobi field is the initial normal velocity of a 

one-parameter family of rotations of Xp,q . This is a powerful fact. 

In particular, it implies that S decays to 
,q 

polynomially near 

infinity, by a theorem of Almgren & Allard ([AA] or [SL2]). More 

precisely, it means there is a function u : Cp,q ~ ~ , such that 

(after rescaling if necessary) 

spt(S) c {x+lxlu(x)v(x) X e. 

and rather importantly, with r := lxl , 
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for some a> 0 . In other words, for sufficiently large r > 0 , S 

is the graph over Cp,q of a "rapidly" decaying function. 

Since S is minimal, it now follows that for r > 1 , 

( 1) 0 . 

Here AI is the mean curvature operator on Cp,q. On the other hand, 

since u decays to zero as r ~ ~ , it turns out to be useful to write 

(1) as 

( 2) Ju f, 

where 1 is the linearization of ~ at u : 0 . More specifically, 

+ .! :1' 
r X 

The function f in (2) is simply the nonlinearity [M-j]u . Note also 

that the spherical part of I is precisely the operator lz discussed 

earlier. 

Now, by studying (2), and using the decay estimate u; O(r-01 ) 

cited above, we derive an asymptotic expansion for u as r ~ oo, and 

find that exactly one of the following three alternatives applies. 

( 3) 

( 4) 

( 5) 

Here 
-'If 

r 

u(r~) 
1 1 

for r: l"((,l J + o(-;l some 0 ¢ 'f' .;. v2. 

u(r~) 
-·r --"( 

for 
"' vl. l"(~)r + o(r ) some 0 'f' "" 

u(r~) 
-y 

o(r ) 

is the leading term in the analogous asymptotic expansion 

which one obtains for Tp,q and Tq,p as opposed to S. 
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Suppose (3) obtains. Using conclusion (ii) of our proposition, we 

rewrite ~(~) = v(~)·z . 1 But r(v(~)·z) agrees, to first order as 

r ~ m , with the function on Cp,q whose graph is merely the translate 

of Cp,q by z e Rn+1 . We then show that, by applying the translation 

-z to our original hypersurface S , we reduc~ to the case in which 

either (4) or (5), but no longer (3), must obtain. 

Consider then (4). Since every ~ e v1 is a constant, (4) 

implies, in particular, that for sufficiently larg~ r > 0 , u has a 

fixed sign; i.e. S lies on one side of cp,q near infinity. A 

comparison argument based on [SL1, 37.10] then shows that S lies on 

one side of cp,q globally-- i.e. or The uniqueness 

result of Hardt & Simon quoted after our definition of Tp,q now shows 

that if (4) obtains, S is (up to similarit·y) either Tp,q or Tq,p 

Finally, in case of (5), we see that S actually equals Cp,q . 

For, (5) says that S decays to Cp,q faster than any homothety of 

or as r-+ m • By the same type of comparison argument 

used above, it follows that S is then disjoint, globally, from every 

homothetic image of Tp,q and Tq,p . But these homotheties of Tp,q 

and Tq,p actually foliate all of Rn+1 - cp,q s is therefore 

constrained within Cp,q , hence equals Cp,q by the constancy theorem 

for currents [SL1] // . 

For further discussion of this theorem, and some remarks about its 

generalizability to a wider class of minimizing hypercones, we refer the 

reader to [SS]. 
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