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A PROGRESS REPORT ON 1HE UL'f'RASONIC 

DETECTION OF CAVITIES IN METAL CASTINGS 

N. G. Barton 

This project is concerned with an important inverse problem- the 

use of ultrasound to determine the shape of inclusions (or cavities or 

flaws) in metal castings. This problem is severely ill-posed both 

analytically and computationally because it is non-linear and because it 

is an inverse problem in which the shape of the inclusion need not 

depend continuously on the available far-field data. 

The author has been collaborating with the CSIRO Division of 

Applied Physics on certain theoretical, computational and practical 

aspects of this inverse problem. This article gives a progress report 

on the research project from the mathematician's point of view. The 

discussions on the project held at the 1986 Summer Research Institute of 

The Australian :lt!athematical Society are also summarized. 

1. Introduction 

The task at hand is to determine the shape of small inclusions 

(bubbles or flaws) in metal castings. This may be classified under the 

general heading of "non-destructive testing", and the specific 

motivation for the work was an APIP (Applied Physics Industrial Program) 

project at the CSIRO Division of Applied Physics. The metal castings 
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under consideration have typical dimensions of 0.1- l.Om, whereas the 

inclusions are very small with typical dimensions of 10-4 - 10-3m . The 

vehicle for the investigation Is ultrasound at typical. frequencies 

around 10 MHz with wavelengths of about 0.6 x in the castings. 

These scales correspond to the so-called "resonance regime" - that 

is the quantity ka (k = 2'll''/wavelength, a= typical dimension of 

inclusion) is in the range l - 10, and the inclusions m·e said to 

"scatter·" the incident beam of ult:rasou:m:i. Inverse problems associated 

with this regime have been comprehensively surveyed by Colton 

[In contrast, the regime :in which ka is large is called the 

"diffraction" regime, and Sleeman has described the as~nptotic 

analysis required to investigate inverse problems in this case. The 

remaining case, in which ka is small, must be approached using 

perturbation methods; it has not, to the author's knowledge, been the 

subject of a survey article.] 

It is necessary to consider the acquisition of data. The 

laboratory set-up is displayed in Figure 1. The experiments are 

performed in a water bath for two reasons: ultrasound is much less 

attenuated by water than air and the water provides a lower acoustic 

impedance mismatch to the casting than would experiments with air as the 

surrounding medium. At present, a movable transducer piaced close to 

the casting emits a short pulse -7 duration 2 - 3 x 10 sec) of 

ultrasound containing a band of frequencies around 10 J:.l:Hz, and the 

scattered ultrasound is detected either by the same transducer or by 

another movable transducer also placed close to the casting surface. 
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Figure 1. Illustration of the present eh~erimental set-up. Both 
transducers are movable. 
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Figure 2. The idealised set-up. Plane waves moving in the direction a 
impinge on the inclusion(s). The scattered ultrasonic field lu I is 

s 
detected by a movable transducer. The incident ultrasound could be 
replaced by a conical beam without loss of generality. 
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Two major assumptions are now made to facilitate the formulation of 

a tractable inverse problem. First, the generation of a pulse 

containing one dominant frequency is m._rperimentally possible, and this 

is from henceforth considered to be the usual operation of the 

apparatus. Secondly, it is hypothesized that the metal casting extends 

to infinity. This assumption leads to major simplifications, but 

neglects the importaJ:lce of several difficulties such as sound 

trlli"lsmission acro:3s the interface between the transducer and the 

casting, the effect of inhomogeneities in the casting, and echoes and 

reflections of the beam from the surface of the casting. [The caption 

to Figure 9 shows how the need for this second assumption is avoided in 

practice.] Therefore the idealized ultrasound problem sketched in 

Figure 2 is now considered. 

The inverse problem at the heart of this work is as follows: given 

the simplified situation displayed in Figure 2, determine the shape of 

the inclusion(s) from measurements by the receiving transducer of the 

total scattered ultrasound field. The equation which governs the 

scattering is Helrnholtz's equation as explained in Section 2. Details 

that are assumed to be lmown include the nature of the beam from the 

emitting transducer, the nature of the impedance mismatch (and hence the 

relevant boundary condi at the boundary of the inclusion, and the 

acoustical properties of the metal casting. 

It is necessary to mention again the important review paper on this 

topic by Colton (1984) and the more detailed monograph by Colton and 

Kress (1983). It is not intended to repeat their theoretical analysis, 

rather the goal of this research is to examine some of the computational 

and practical aspects of the inverse problem. It is, however, important 
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to mention Colton's conclusions that the inverse problem ts difficult to 

solve because it is non··linear and ill-posed. Indeed, there is very 

little theoretical support for the computational aspects of the inverse 

problem. For example, there appears to be no theory available for 

multiple scatterers, or for single scattere:rs which are either of 

complex shape or not simply connected. In addition, numerical work on 

the inverse problem is, as yet, rudimentary. 

inverse 

problem as presented by 'Col ton, whilst Sect:i.on 3 describes the 

literature of computational 1\'ork on the both direct and inverse acoustic 

prnblems. Section 3 also contains a progress report on the author's 

numerical. work on the two dimensional direct :2md i.nyerse problems. 

aperture" method at present used by the C"SIRO Divtsion of Applied 

Physics to study the inverse problem. The key recommendaticn.s made 

during the 1986 Summer Research Institute are pre wonted in Section 5 and 

a short in Section 6 S1ll11!118.rises the present state of this 

Interesting research project. 

Acoustic wave propagation in a homogeneous, isotropic' medium with 

density p and speed of sound c is now considered. The velocity 

field 'fii and associated pressure field p of the 'il.'ave motion are g:lven 

by 

1) !w ' p -p 
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where U is the velocity potential and Po is the pressure of the 

undisturbed medium. In linear theory, U satisfies the wave equation 

{2.2) 

and, if the motion is harmonic in time, the velocity potential may be 

written as 

{2.3) U(x, t) = u(x) 
-iwt 

e 

where the function u(x) satisfies Helmholtz' equation 

{2.4) 0 

Boundary conditions have to be applied at the boundary of the 

inclusion and as lxl ~ oo . Boundary conditions at the inclusion 

boundary an may be written as 

{2.5) 0 on an 

where v denotes the unit outward normal on aD . and M i)(pW where 

)( is the acoustic impedance of the obstacle D . 

Two important simplifications of (2.5) are frequently made. If the 

total pressure vanishes on aD , the obstacle is called sound-soft and 

(2.5) reduces to 



8 

(2.6) u 0 on BD . 

Alternatively, if the normal component of velocity vanishes on BD, the 

obstacle is sound-hard and (2.5) becomes 

(2. 
au av = 0 on an 0 

In expressions 5- 2.7) u represents the total acoustic 

field and can he written as u u. + u 
l s 

where is the incident 

sound field and u 
s 

is the scattered field. Now the remaining 

boundary condition is the Sommerfeld Radiation Condition which states 

that the energy associated with the scattered field must be 

radiated outwards at infinity. This condition gives 

(2.8a) lim 1/2faus "ku ) 0, lxl 2 r --- 1 r • X E IR • 
r4'! ar s, 

lim r taus - iku ] 0 • lxl 3 r , X € lR , 
r4'! ar s 

(2.8b) 

for two and three-dimensional problems respectively. 

The direct problem posed by equations (2.4, 2.5, 2.8) possesses a 

unique solution exterior to D provided th~t the boundary BD is 

sufficiently smooth in the sense defined precisely by Colton and Kress 

(1983). For our purposes, it is important to consider the far field 

properties of the scattered solution. In the three-dimensional case, 

the scattered solution has the asymptotic behaviour (Colton, 1984) 
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ikr [ ] 7 F(x;k,a) + o 12 
r 

where r - lxl , x := x/r , a gives the direction of the incident beam, 

and F is an analytic function of its variables for x on the unit 

sphere and k > 0 . One statement of the inverse problem to be solved 

is now: given the incident beam u 1 , the wavenumber k , the constant 

M in the boundary condition (2.5) and the far-field F{x;k,a) measured 

for x on the unit sphere. determine the shape of the boundary BD . 

If the far-field f is l<nown exactly, then the following 

(non-constructive) theorem due to Schiffer guarantees the uniqueness of 

the scattering obstacle D 

"&:EDREH (Schiffer) The scattering obstacle D is uniqueLy determined 

by a knowledge of the far-field pattern F for x on some surface 

pa.tch of the wtit sphere and for k on cLny interval. of the positive 

real axis. 

Schiffer's theorem does not give any insight into how the obstacle 

D can be constructed from a knowledge of the far-field pattern, nor 

does it apply in the practically important case when D consists of 

several separate scattering objects. Moreover, the ill-posed aspects of 

the inverse scattering problem are not evident in the statement of the 

theorem. 

We now turn to a summary of the existing mathematical work on the 

inverse scattering problem. Colton's (1984) survey article describes 
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three possible approaches and these are now presented by introducing the 

operator '!! which maps the boundary an and the incident field u. 
1 

., 
tnto the far Held pattern k,a) Sch.iffer' s theorem g.r-uaran te;e.;s 

that H a solution of the inverse problem exists, :i is uni.que; rnnrl this 

establishes the existence"! of :'1-l on R('!J) (the range of :'/") . What is 

now required is to stabilise the inversion: trktt is to determine a 

subset X C and an operator :r-l defined on is the 

. h . IR2 unx t sp ere Jtn . or such that ;r-l = Dn X and Is 

continuous on ][oreover, a constructive method for determining 

A-1 
~ x , x € X , must be found. 

If an initial approximation D0 to the shape of D :is known, the 

calculation of the perturbation ov along the normal required to give 

the exact shape of D is a linear problem and c:an be attacked by a 

range of methods including the Tikhonov selection method and the 

Backus-Gilbert method. To :illustrate the former, suppose that 

If an - aDO is denoted by X and 

F - F0 by y , the linearized problem to be solved is 

'!Jx y 

where the mapping '!Jx = y is now regarded as a linear map provided that 

x is suitably small. The selection method gives a "solution" of ~x = 

y by restricting the class of admissible solutions a priori to a 

compact set x0 C Domain(~) and defining the "solution" to be that x0 

E X0 for which 
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inf II:'Tx - yll 
xEX0 

The implementation of the Backus-Gilbert method for solving the 

linearized problem requires rather more description however; details and 

further references are given by Colton (1984). 

The Ai~lytic Solution of a ~el Inverse Pr~blem 

In the special case of two-dimens:i.on..al problems in which the first 

N Fourier coefficients of the far field pattern F are known exactly. 

Colton (1984) has described an analytic method for determining an 

approximation to the scatterer. The method is based on a recursive 

determination of the unique analytic function f where z = (w) 

conformally maps the exterior of the mi!mown obstacle D onto the 

exterior of the unit disc. A feature of this method is that it is 

possible to deduce mean square error estimates of the form 

where fN is a Laurent series approximation truncated at (N+l) terms 

and a is a constax1t known as the mapping radius. However these bounds 

are only for the truncation error; no such bounds are available for the 

effect of measurement errors. 

Optimal Solution.s of the Inverse Scatteriv_g f7oblem 

We now consider the case where an approximation to BD is not 

knovm, and it is desired to invert the mapping ~(aD) = F . An 
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approximation to an is constructed by minimizing the expression 

ll~(aD)-FII where 11•11 denotes the norm on L2(D) and n is the unit 

sphere in IR2 or IR3 The unknown scattering obstacle an is 

·parameterized by X= f(x)i for x€n. If an is restricted to 

belong to the class ~ which is any compact subset of 

llflll,a ~ b • f(x) l a} • 

then Colton (1984) states theorems which prove that the minimization 

problem 

minimize ll~(aD) - fll subject to an € ~ 

has a solution which depends continuously on the data. In the 

definition above c1 ·a(O) denotes the space of Folder continuously 

differentiable periodic functions defined on the unit sphere, and the 

assumptions imply that the unknown obstacle is star-like with respect to 

the origin, contains a ball of radius a , is contained in a ball of 

radius b and that an has a uniformly bounded Folder continuous 

tangent. 

The above remarks indicate it is theoretically possible to 

stabilize the inverse scattering problem provided that an is 

restricted to lie in a suitable control set. It now remains to 

implement the inversion numerically. In general, this task is performed 

through non-linear minimization: for example, Colton (1984) and Kirsch 

(1982) suggest that f € ~ be written as the Fourier expansion 
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M 
f(8) ao + m~l (amcos me + bm sin me) 

where the real numbers (a , b ) are found by minimizing the 
m m 

expression 

where a(k;a) denotes the scattering cross-section 

a(k;a) I' A 2 
0

!F(x;k,a)l dS. 

It is not necessary to work with the scattering cross-section a or 

even the far field pattern F . Instead the real numbers (am bm) 

[or other parameters describing approxinntions to aD] can be selected 

by minimizing 

where u denotes the total acoustic field measured at angle f3j 

an incident beam angle a 
n 

with 

No matter which representation is chosen, the task to be performed 

is a large non-linear minimization in which the direct problem has to be 

solved at each time step. This direct problem is now addressed. 
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Again, the reader is referred to Colton (1984) for a more complete 

discussion of the issues discussed in this section. The solution of the 

direct problem [that is, compute the scattered field g:i.ven the shape of 

the scatterer and the incident sound field] has been well-understood for 

about 25 years, and there are at least three ways of computing the 

solution. References a:re given by Colton ( and it is notable that 

fresh computational. results are continually being reported- witness the 

wok of Tobocman ( , and Schuster & Smith (1985). Numerical work on 

the inverse problem is much scarcer, perhaps the most notable work is by 

Kirsch ( and very recently by Colton & Monk (1985). 

The Direct Problem 

A numerical solution of the two-dimensional direct problem posed by 

equation (2.4) under the sound-soft boundary condition (2. and the 

Sommerfeld Radiation Condition (2.8a) is now described. For this 

purpose, the two-dimensional Green's function 

(3.1) G(x,y) b::-yl 

is introduced, where is the Hankel function of the first kind. 

The scattered sound field u 5 (x) is represented as the combined single 

and double layer distribution 

(3.2) 
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where v(y) is the outward pointing normal on the boundary aD . If 

the point x is now allowed to approach a point XU on aD , then, 

following the standard discontinuity properties of single and double 

layer distributions, the distribution function ,P(y) must satisfy the 

integral equation 

when the sound-soft boundary condition u 5 (l'Q) + = 0 h_as been 

invoked. This integral equation (3.3) is known to possess a solution 

for all k (see Col ton (1984) for proof), and it remains to introduce a 

numerical method to calculate the solution. 

The boundary aD was discretized by taking values rn = r(8n) 

where the e values 0 < 81 < (:)2 < < eN = 21f were evenly spaced. 

[It is assumed that enough is known of D to place the centre of the 

polar co-ordinates inside D.] The integrals in (3.3) are periodic so 

the trapezoidal rule with evenly spaced intervals was used to 

approximate them. Where necessary, sJ.ng;ular integrals were treated by 

extracting the singularity and integrating analytically. An example of 

this is 

where the first term on the right hand side is non-singular and can be 

approximated by 
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N 
La. G(XQ·Y-) {~(y.)- ~(XQ)} dS(9.) 

j=l J J J J 

(the aj are the weights in the trapezoidal rule), and where the 

singularity in the second term on the right hand side can be evaluated 

analytically. Thus, equation (3.3) can be replaced by the set of 

simultaneous equations 

with complex-valued coefficients A mn 
This system may be solved by 

standard packages; the package used here is LEQTlC of the IMSL 

library. 

Once the distribution function ~(y) has been obtained, it is a 

straightforward matter to evaluate the scattered field us(x) using the 

representation (3.2). In particular, none of the integrals involved are 

singular when X € ffi~ , and straightforward trapezoidal quadrature is 

accurate and easy to apply. 

Several checks are available on the numerical solution. In 

particular, trapezoidal and Simpson's rule quadratures were both coded 

and gave answers that were identical for practical purposes. Also, the 

numerical work was checked against the special case in which the 

scatterer was a circle of radius a In this case, the scattered field 

is given by the separable solution 
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(3.4d) 

A 
0 

A 
m 
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H(l)(kr) {A cos mS + B sin m8} 
m m m 

0 

Here, the incident sound field corresponds to the plane wave ikx 
e 

propagating in the direction of the x axis. The results of these 

computations are shown in Figure 3, and it is held fbat an accurate 

numerical solution of the two-dimensional direct scattering problem is 

now available. 

The Imrerse Pr.oblel!ll 

The inverse problem is a much harder problem to solve numerically 

since it entails solving the above direct problem a large number of 

times as is now illustrated. Consider the situation depicted in Figure 

4 in which it is desired to estimate the mtlmovm radii 'r2, · · · ,rN 

IU I at angles using measurements of the total scattered field 
m£ 

0 < !31 < {32 < . . . < ,BM on the circle r == R produced by plane sound 

waves propagating in the directions 0 < a1 < a2 < ... < ~ . That is, 

to minimize 

(3.5) 
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Figure 3. A polar plot of the magnitude lu I of the scattered field s 
at radius 10 produced by a plane ultrasound wave impinging on a circular 
cylinder of radius 1. The incident beam is from the left and the 
wavenumber k is 3 . The dashed line shows the separable solution 
{3.4), the open circles show the full solution {3.2) whilst the open 
triangles show the leading far-field approximation to {3.2). 
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Figure 4. Illustration of a hypothetical inverse problem. The total 
scattered field is measured at stations ~ 1 .~2 .... , PM at radius 

r ""R . The incident ultrasonic plane waves are propagating in one of 
the directions a 1 ,a2 , ... ,~; and it is required to determine the 

unknown coefficients r 1 ,r2 , ... ,rN by minimizing E as defined in 

equation (3.5). 
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where lu. + u I denotes the total sound field in which the component 
1 s 

us is produced by numerically solving the direct problem as explained 

above. The minimization package LMM was used to minimize E ; it is 

based on the Levenberg-Marquardt algorithm. 

A key step in the minimization routine is the evaluation of the 

derivatives B{lu. + u 1}/Br which are required for the convergence of 
1 s n 

the procedure. The package LMM has an option for these derivatives to 

be calculated using finite differences, but this option entails the 

numerical solution of the direct problem for each near set of values 

r 1 , r 2 , ... ,rN. In general, the finite difference option would require 

of the order of 3N numerical solutions of the direct problem for each 

stage of the calculations in LMM. This procedure was too 

time-consuming to be implemented successfully on a VAX 11/750 and 

comments were invited at the workshop on how to speed up the procedure. 

An alternative approach to obtain derivative information was to 

obtain. the derivatives B{lu. + u 1}/Br analytically. This suggestion 
1 s n 

is discussed in Section 5. 

At the time of the Summer Research Institute, I had realized that 

the minimization using the finite difference calculations was proceeding 

too slowly to be practicable, but I had not embarked on the analytical 

calculation of the derivatives B{lu. + u 1}/Br . Accordingly, 
1 s n 

therefore, there are no worthwhile results to display for the inverse 

problem. It is important to note, however, that the inverse problem 

represents a very large computational task, even without the 
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complications due to the ill-posed nature of the problem. This is 

because the present formalism requires the direct problem to be solved a 

large number of times to obtain the solution to the inverse problem. 

4. The Synthetic Aperture Method 

The inverse problem described in Section 1 is currently being 

solved in the Division of Applied Physics by a version of the "synthetic 

aperture" method. This technique is common in electrical engineering 

(particularly for radar applications) but is probably not so well-known 

to mathematicians and hence is now briefly described. 

Suppose that a transducer is emitting a pulse of ultrasound in a 

conical beam as shown in Figure 5. The duration of the pulse is T 

the half-power beam width is (3 • and the speed of the ultrasound is 

c 0 Then the resolution 

as illustrated in Figure 5. 

in the beam direction is given by 

1 
- CT 
2 

If the typical figures of c = 6000 m 
-1 

sec 

ar1d T = 2.5 x 10-7 sec are substituted, the resolution in the beam 

direction is ~ -4 
pR = 1.5 x 10 m . 

The resolution in the azimuthal direction is inferior, however, as 

is also illustrated in Figure 5. The arc-width of the beam is L ~ (3R 

where f3 is the half-power beam width as shown. Now (3 is given by 

j3 ~ 11/D radial'lS where I\ is the wavelength emitted and D is the 

aperture of the transducer. Hence, the azimuthal resolution is 



22 

PR 

::::IC=-=== = ·~ 
/3 

Figure 5. Illustration of the radial and azimuthal resolutions of a 
pulsed beam. The length of the pulse is T , so that the radial 

1 resolution is pR = 2 cT where c is the speed of ultrasound in the 

medium. The reflected signal could come from the near edge of the zone 
of resolution and occur at the start of the pulse, or from the far edge 
at the end of the pulse. The azimuthal resolution is pA = L . 

DIRECTION OF 
MOVEMENT OF 
TRANSDUCER 

R 

Figure 6. The synthetic aperture method. The actual aperture of the 
transducer is D and the synthetic aperture is L . 
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pA = L ~ ~R ~ XRID o and, for the ty~ical values 
-3 

A = 0.6 x 10 m 

-2 
R = 2.5 x 10 m , 

_-:; 
D = 10 '"' m , we find that 

-2 
pA = 1.5 x 10 m 

which is markedly inferior to the resolution pR in the beam direction. 

This poor resolution in the azimuthal direction is improved by the 

synthetic aperture method which is depicted in Figure 6. Suppose that 

the location of the transducer is moved in a straight line perpendicular 

to the direction of the beam. Then the target at range R will reflect 

a signal whilst the source moves through the distance L ~R . If the 

physical transducer is regarded as one element of a linear array 

extending along the direction of movement, then intuitively it should be 

possible to synthesize an aperture of width L by storing and 

processing the signals received. The angular beam width of this 

synthetic aperture will be fJ' = 7\/L :::: A/{3R D/R where "A. 13 and D 

are as defined in the discussion leading to the derivation :of the 

azimuthal resolution The "azimuthal" resolution p'A of the 

synthetic array is p 'A = {3'R D . Clearly, tlw synthetic aperture 

meth.od can provided excellent "azimuthal" along-track) resolution 

provided th31.t suitable processing of the signals is possible. 

Focussing is also possible in this method. Consider the situation 

of Figure 7 in which a target element is insonified whilst the emitting 

transducer :is at a r&-:tge of locations s1 0 s2 , ... , SN . There will be a 

recorded signal for each of these transducer locations, as shown in 

Figcu·e 8. After amplitude-weighting and phase-shifting the stored data, 

it is then possible to sum coherently the processed data to give the 

synthetic signal produced by the target element. This procedure is 

outlined in Figure 8, and can be repeated for all of the target elements 
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...... 7. IIIUSt<•''"" of ,,ansJuce< looatioOS s,.s2 ....... and th< 

target element. 
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JFJi.g;ure 8. Illustration of the synthesis process. The actual signa.l 
received by the tra.nsduce:r is shown by sol:ld lines. These signals are 
then phase-shifted and amplitude weighted to allow for the fact that the 
tran.sducer is at a different d:[staii!ce from the target element for each 
of the transducer locations S~ ,S,, ... , This produces the processed 

1 .<. 

sign.als shown. by the dashed lines. [Note that location. n is 
used as the reference location- hence the actual and processed signals 
are identical for this location.] The processed signals are then sumT.ed 
and plotted using an arbitrary scale of intensity. 
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EFFECTIVElY, A NARROW 
APERTURE SOURCE 

TRANSDUCER 

APPROXIMATE 
REGION OF ABOVE 
RECONSTRUCTION 

Figure 9. An actual reconstruction. An ultrasound beam is focussed to 
give a spot of diameter about lmm on the surface of a cylinder. This 
spot acts as a narrow aperture source for a conical beam in the 
cylinder. The signal received back at the spot is picked up by the 
focussed transducer. The reconstruction of the hole has been squashed 
in one direction by the plotting algorithm. Other dark zones in the 
reconstruction are caused by ringing - spurious reflections from the 
inside of the cylinder. 
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under consideration. By this process, an image of the object can be 

built up element by element. 

Currently, the Division of Applied Physics is using a variation of 

this procedure with the emitting transducer moving in a circle rather 

than in a straight line. Successful image reconstructions have been 

w.ade; one such is shown in Figure 9, (here the target consists of a 

cylindrical hole in a metal cylinder). 

The synthetic aperture method is in principle no more difficult for 

3 dimensions than for 2 dimensions; there is merely more data to be 

stored and processed, and more target elements to be synthesized. More 

details on applications of the method in radar l1ave been given by Brown 

3, Porcello {1969) and by Skolnik (1980, ch. 14); it is the basis of 

operation of side-looking radar mounted on aircraft and satellites. 

The synthetic aperture method, as described, relies on a number of 

simplifying assumptions. The most important of these is that the 

reconstruction of the image by target elements neglects the fact that 

the scattering object has an effect on the passage of the emitted and 

reflected ultrasound. This point does not apply to side-looking radar 

where the radar signals pass only through aiT, but it does apply in the 

ultrasonic application where the object would affect the passage of the 

ultrasound. Thus there is scope here for an iterative method in which 

the amplitude-weighting and phase-shifting takes account of what is 

known of the scatterer's geometry and properties. 
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5. Disrrnissions during the ~r Research Inst:U:ut:e 

A number of important comments and suggestions were made during the 

SRI; and these and the resulting discussions are now su!Tll11arized here. 

5.:!. Several suggestions conce1·ned ways in which the procedure described 

in Section 3 for the numerical soluUon of the inverse problem could be 

improved. These included using as much data as could be obtained, using 

a range of frequencies (further discussion on this point is presented in 

the next section). and doing the calculations with proper impedance 

boundary conditions rather than using either the sound-soft or 

sound-hard boundary conditions. Also, it was pointed out tln..at it should 

be possible to determine analytically the derivatives lu.+u I 
1 s 

required in the package LMM . Such an analytical procedure ·would 

obviate the need for these derivatives to be approximated using finite 

differences and would markedly speed up the use of the optimization 

method for the determination of the {r As yet, I have not given 

consideration as to how these derivatives could be determined 

analytically. A related suggestion was that information on second 

derivatives a2{ lu. + u 1}/ar ar . if available analytically, might be 
1 s n m 

even more useful in speeding up optimization methods for determining the 

5.2 Subsequent discussions with my colleagues in the Division of 

Applied Physics emphasized the importance of numerical procedures for 

solving the two or three-dimensional direct problem. Experienced users 

could gain understanding about, although not necessarily solve, inverse 
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problems by using the numerical procedures for direct problems as an 

investigative tool. 

5.3 Some alternative strategies are now outlined. It was suggested 

that, in many cases, all that would be required would be bulk properties 

of the scatterer(s), e.g. the location, the volume, and a crude estimate 

of the shape. It was suggested that such information might be deduced 

from simple integrals of the data, although I have not yet seen myself 

how this could be done. However, it should be perfectly possible to 

replace the scatterer(s) by an equivalent circle or ellipse (in 2 

dimensions) or sphere or ellipsoid (in 3 dimensions). All of these 

geometries lead to separable solutions of Helmholtz' equation ir1 

appropriate co-ordinates, and it would be a :relatively simple matter to 

fit the scatterer using these simple geometries. For example, in 2 

dimensions, the use of a circle to model the scatterer(s} would require 

a 3 parameter fit to data (2 parameters to give the location of the 

centre and 1 for the radius), whilst the use of an ellipse would require 

a 5 parameter fit. This suggestion should have a lot of practical 

value. 

5.4 A more speculative suggestion was whether variational methods could 

be employed for the inverse problem. It is knovm, for example, that the 

variat:i.onal method known as the Baiocchi transformation (see e.g. 

Baiocchi et aL, 1973) has been spectacularly successful in finding the 

unknown interface between saturated 2md unsaturated soil in certain 

drainage problems for the flow of water through soil. It is possible 

that a similar variational approach might be useful for the inverse 

ultrasonic problem. 
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Figure 10. Illustration of an arrival time envelope calculation. The 
scattering object lies within the envelope of exclusion; as many 
locations as desired may be taken for the transducer. 
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5.5 A final ingenious suggestion was to use a simpler version of the 

(circular) synthetic aperture method. I shall call this new method the 

arrival time envelope calculation (ATEC). Imagine the situation 

depicted in Figure 10 in which a transducer which emits a conical beam 

moves in a circular path with the beam pointing towards the centre. It 

is known that a scattering object is inside the circle. Then it is a 

simple matter to use the arrival times of reflected sig;nals to determine 

a spherical envelope within which the scatterer car31ot be situated. 

This procedure can be repeated for any location of the transducer, and 

an envelope of exclusion for the scatterer can be built up as shown in 

Figure 10. This method is simple to implement and should be 

particularly useful for studies at shorter wavelengths. [Note that if 

k is the wavenumber of the ultrasound and a is a typical dimension of 

the scatterer, then ¥.a of 0(1) denotes the so-called "resonance 

region" whereas ka )) 1 denotes the short wave asymptotic region. The 

ATEC method should be useful for ka moderate up to ka large.] The 

ATEC method would not be useful for a non-convex scatterer, and would be 

difficult to apply for multiple scatterers. Still, most other methods 

also have some difficulty with these cases. 

6, Discwssion 

The content of this article has not been particularly mathematical. 

This is because the planned mathematical work is incomplete and the rest 

of the article is concerned with ideas and suggestions for future work. 

The article describes the state of the project at the time of the Summer 

Research Institute. 
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TI1e ultrasonic inverse proble111 is under active development 

ovel'seas. A particularly striki.ng example of cun·eut work is that of 

Colton & Monl-c {1985} who have used a variable wavelength method. to solve 

the inverse problem as a non-linear optimization problem without 

recourse to the use of integral equations. The method is spectacularly 

fast in execution. 

From our point of view, the suggestions i.ntemized in the previous 

section are the fruits of the meeting at the SRI, Vo'o:rk is continuing on 

the inverse problem, and the suggestions are under investigation. 

Approximately 3-4 man years of work have been applied to the 

ultrasonic non-destructive testing project by the CSIRO Division of 

Applied Physics. Three-dimensional reconstructions have been made using 

the synthetic aperture method. It is hoped that a prototype instrument 

for ultrasonic non-destructive testing w:i.ll. be developed over the next 

two years. This instrument would have an important place in industry 

and could, hopefully, be commercialized. 

I would like to conclude by thanking the participants for their 

comments at the meeting, and by acknowledging the contributions of my 

colleagues Dr D C Price (CSIRO Div. Applied Physics) and Ms M Masuda 

(CSIRO Div. Maths & Stats) to this article. 
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