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1. Introduction 

By def:ini ti.on an aquifer :is a formation that ,contains suffic:ient 

saturated permeable llk<tterial to ytel.d significant quanti ties of water to 

weJ.ls and spd.ngs. Aqu:Ifers, or ·~rater-hearing formations, can be 

characterised largely by two parameters: the storage coefficient S and 

the transmissivity T 

The storage coefficient is defined as the volume of water that a 

vertical column of aquifer with a unit area will release or take up if 

the piezometric surface changes by one uni to The coefficient is 

dimensionless involving a volume of water per unit volume of aquifer. 

The transmissivity of ru1 aquifer is defined to be the product of 

its thickness b by its hydraulic conductivity k , viz. 

(1) T kb . 

As the dimension of k is [LT-1] , the dimension of transmissivity is 

[L2T-1] . 

Any project for development of groundwater resources in a given 

region requires a good knowledge of the aquifer's quantitiative and 
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qualitative properties. Moreover, it is important to be able to predict 

the effect of groundwater development schemes (such as drilling of new 

bores, artificial recharge, etc.) on the behaviour of the aquifer. 

Powerful tools for achieving the above objectives are mathematical 

groundwater models based on solution of the following partial 

differential equation (e.g. Bear, 1972) representing two-dimensional 

transient flow in a confined aquifer 

(2) Sa<P+ ( ) at q x,y,t 0 

Here x and y are the cartesian coordinates and t is time, while T 

is transmissivity and S is the storage coefficient (both of which tend 

to be largely unknown except for some point estimates), <P is the 

hydraulic head (which is known reasonably well spatially), and q(x,y) 

is the source or sink term (some component of which may be known). 

Equation (2), with T and 
·~ 

S as the dependent variables, is often 

termed the aquifer identification (AI) problem. It is clear that to set 

up a mathematical model of aquifer behaviour an accurate distribution of 

these values is required. However, in most cases these distributions 

are not available and mathematical modellers tend to use a trial and 

error technique, involving tests of the effect of different 

distributions of T and S on the computed piezometric heads to get 

the best possible match between measured and computed values. Such 

trial and error techniques are very time consuming and their accuracy 

depends on the accuracy of the other data supplied. Thus during the 
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last decade attention has been given largely to the development of 

techniques for more e:xl)l ici t solution for the parameters in the AI 

problem , ru1d to determination of the properties of resultant 

approximations and their dependence on the form of the input data. 

It is instructive to describe the particular aquifer and associated 

problems with which we are presently dealing in the Mi.ldura-JI'!erbein 

area, as well as some of our results using the trial and error 

technique. The River Murray Basin is a large shall.mv basin filled by 

Tertiary and Quaternary sediments, resting uncomformably on a basement 

of mainly Palaeozoic sedimentary and crystalline rocks. This 

sedimentary basin contains, from bottom to top, the follow:!.ng major 

aquifers: Warina :sand of Paleocene-Eocene age, Duddo limestone of 

Oligocene-Miocene age, and Parilla sand of Pliocene age. In the 

Mildura-Merbein area. only the Parilla sand aquifer has been simulated 

(Ghassemi et al, 1986), as accurate information regarding the deep 

aquifers is unavailable. This necessitated simplification of the model 

to a two-dimensional structure. The dimensions of the study grid were 

chosen to give a discreti:sation step of 200m, yielding 40 x 31 modes. 

Due to the geometry of the aquifer about 800 of these are active. 

Piezometric measurements in the Mildura-:Merbein area commenced in 

1967 in 15 locations. These measurements ceased in July 1968 and 

resumed in November 1970. More piezometers were installed in three 

subsequent periods: 1970, 1973 and 1979-80. Now there are more than 

150 piezometers in this area. Most of the piezometers are located 

adjacent to the River Murray, but there is also a s1nall percentage of 

piezometers scattered sparsely throughout the remainder of the study 

area. 
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Piezometric measurements before 1980 are temporally sparse and gaps 

of a few years in the records are not unusual. However, from the end of 

1979 measurements became more regular and more reliable. Thus the 

period from January 1980 to March 1983 was selected for piezometric data 

analysis and for calibration of our mathematical models on the basis of 

the accuracy of piezometric data and their good correlation with 

hydrographic measurements. 

Figure 1 is a stylised map of the Mildura-Merbein study area 

showing piezometric contours for the month of January in 1980. 

Piezometric maps for this and other months show that: (a) the 

piezometric heads of the aquifer range from over 38m to about 31m in 

transects from south to north; {b) the hydraulic gradient is steeper 

close to the River rather than in the south; (c) the River Murray is 

the discharge zone of the aquifer; and {d) the closed contour lines of 

36m and above on the north east of Lake Ranfurly are due to irrigation. 

With a contour map of the area, the piezometric values can easily be 

converted to groundwater depth. The groundwater depth map of January 

1980 shows that in general the piezometric level of the aquifer is more 

than three metres deep with a maximum depth of about eight metres 

between Lake Ranfurly and the Murray. 

It will be shown in Section 2 how pumping tests can be used to 

obtain point estimates of T and S values. The results of pumping 

tests carried out in 1973 on the Mildura aquifer have been reported by 

the State Rivers and Water Supply Commission of Victoria. Here the 

2 transmissivity values range from 80 to 500m /day and storage coefficient 

values vary from 0.001 to 0.05. 
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More recent measurements of T values provided by the Rural Water 

Commission of Victoria indicate higher values of T with a maximum of 

2 1300m /day. It should be noted that in both cases all measurements have 

been performed in the northern part of the aquifer adjacent to the 

river. Figure 2 shows the location of transmissivity point 

measurements. The poor spatial distribution of T and S measurements 

and doubt about their accuracy have been major problems in the 

calibration of mathematical models of the Mildura aquifer. 

Other data required for calibration of the T and S values in 

the groundwater flow model in the Mildura-Merbein area include: 

boundary conditions and recharge estimates and discharge rates (the q 

term). The Murray and the Lakes (P~nfurly and Hawthorn, shown in 

Figure 1) were simulated as fixed head boundaries; the eastern boundary 

not covered by the Murray is a non-flow boundary; and the southern and 

western boundaries are inflow boundaries. Daily rainfall and monthly 

irrigation data were used to develop recharge estilTk'l tes. During the 

model calibration the rate of percolation was estirnated to be 5% of 

rainfall for the city area, 10% of rainfall for the rural areas, 20% of 

irrigation supply for vineyards and citrus orchards, and 40% of 

irrigation for pastures. The remainder is considered to be used by 

pl~~ts, drained by tile drainage or evaporated from the soil surface. 

Significant leakage from a lagoon was also found; this was estiwated 

during the model calibration phase. Discharge in the form of withdrawal 

from interception bores is well measured and does not require 

estimation. 
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In summary, the model calibration involves not only estimation of 

T and S values, but also of recharge rates and boundary conditions. 

However prior data and hydrogeological k:nowledge helps to pin down 

candidate parameter values. Therefore information is available on all 

variables but the precision of such information varies widely with the 

variable and the location, For example, <P , T and S estimates are 

available :i.n some areas, only <P in some others, while in some there is 

no inforw.:ation about any. Thus in the AI problem <P is classified as 

data while T and S are classified as unkn.owns simply because more 

inform9.tion is available on <P than on T and S , In practice the 

problem is rather to use the given data on <p , T , S and q together 

with. the model in equation (2) of flow in an aquifer to extrapolate <p , 

T and S across the entire aquifer. 

Unfortunately this problem is effectively intractable in its full 

generality, Therefore the paper will concentrate on the special case of 

steady-state flow, i.e. on the case when inflows and outflows to and 

from the aquifer balance so that 

0 

In this case the parameter S vanishes from (2) and only <fJ and T 

are to be determined. Note that it is not necessary that a<p/at vanish 

identically for all time in order to derive a steady state problem. For 

example, if the aquifer displays some sort of cyclic behaviour, e.g. on 

an annual basis . so that 
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lf'(X,y,t) y,t+l) 

It+]. 
8'{> 
at = 0 

t 

and (2} becomes 

[~[T~] + ~[T~]]Jt+\ dt ax ax ay ay t 
y, t)dt . 

To conclude the introduct:i.on, we provide some results using the 

trial and error method with constant zonation for solving (2) for T 

Figure 3 shows the calibrated T values for the IJ!ildura aquifer in 

steady-state. The <p data used are those contoured in Figure 1 for 

January 1980. Note that transmissivity has been assumed constant in 

five different zones. The zones were chosen on the basis of 

hydrogeological knowledge and hypothesis testing using the trial and 

error tecl!nique. Thus a distribution of T values is assumed and then 

(2) is solved for If' this is the forward problem. The agreement 

between measured and computed ~ is then assessed and, if necessary, a 

new distribution of T values is hypothesised followed by a further 

solution of the forward problem. This process continues until 

satisfactory agreement has been obtained for If' together with a 

solution for T consistent with the known hydrogeological properties 

and behaviour of the aquifer. Figure 4 shows the relationship between 

measured and computed ~ values for the steady-state case in January 

1980. 
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The remainder of the paper is as follows. In Section 2 it is seen 

how T and S can be measured in practice. Section 3 examines the 

form of the inverse problems considered here in particular the problem 

of estimating T from a steady-state model. A cursory review of the 

literature is presented in Section 4. Section 5 illustrates the 

importance of low parameterisation in providing a unique and stable 

solution to AI. Tikhonov regularisation is discussed in Section 6. In 

Section 7 we examine the merits and drawbacks of the geostatistical 

approach. Section 8 contains the conclusions and in particular notes a 

method being presently explored as a result of discussion at the 

workshop. 

2. M'ea..'i:Urement of T and S values 

The tecl1nique for measurement of T and S from pumping tests 

(see Figure 5) is based on the solution of a partial differential 

equation of unsteady radial flow in a confined aquifer (Todd, 1980). 

The equation is 

(3) S B<p 
f Bt 

in which 

<p is the piezometric head of the aquifer; 

r is the radial distance of the observation well from the 

pumped well; 

S is the storage coefficient (assumed constant); 

T is the transmissivity (assumed constant); 

t is time . 
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Theis (1935}. provided a solution for (3) under a few assumptions 

including.the.following: the aquifer is homogeneous, isotropic·of 

uniform thicknes·s and of infinite extent; before pumping the piezometric 

surface· is horizontaL; the well is pumped at a constant discharge rate Q 

; the pumped well penetrates the entire aquifer; and flow within the 

aquifer is everywher<e horizontal to the welL The solution i.s: 

(4) s 

where 

s is the drawdown (this is a simple function of C); 

Q is the constant well discharge; 

and 

(5) u 

The integral (4) can be expanded as a convergent series so that the 

equation becomes 

(6) s 
Q . u2 u3 u4 

471T [ -0.5772 - ln u + u - 2 _21 + 3 _31 - 4 .4! + ... ] 

or 

(7) s 
Q 

41fT W(u) 

where W(u) is known as the well function and whose values are 

tabulated in most hydrogeological handbooks (Freeze, 1979 and Todd, 

1980). 
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Observation •1en Q 

:Li-L¥u.L<-y["'-L'.'JJ-'CL!l.LLI"-'l1 1<..I.J..ULr..Ji.Lc.J..L~r.LJ..LLLi.LLt. 

b 
-11--
~· :: _ Confined aquifer 

II 
-11~ 

lmpermeab 1 e 

}?:i.glllre 5 Pumping test in a confined aquifer 

In practice, during the pumping test the drawdown s is an 

observation well at a distance r from the pumping well is measured at 

different times t On the basis of the s , t and r values, a plot 

is constructed of s versus r 2/t on a logarithmic scale. Values of 

W(u) and u are also plotted on a logarithmic scale. The two sheets 

are superimposed and shifted with coordinate a:<:es parallel until the 

observation point coincides with the curve of W(u) versus u Then 

an arbitrary match point is selected. Reading the coordinates of the 

match point on both logarithmic graphs (see Figure 6) yields 4 values of 

2 
s , r /t , u and W(u) . Substitution of these 4 values in the 

following equations (derived from equations (7) and (5) respectively) 

provides T and S values for the aquifer in the region of influence 

of the pump test, with 

T 

s 4Tu 

2/ r t 
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Figure 15 Superposition of two plots to obtain coincident curves 

and selection of match point (after Bouwer, 1978). 

Pumping tests are time consuming and expensive. Therefore it is 

not practical to use them extensively for the measurement of 

transmissivity and storage coefficient values in different parts of the 

aquifer. In practice, hydrogeologists use prior knowledge of the 

aquifer's geology to try to extrapolate measured values through the 

whole aquifer. 

3. Inverse aquifer identification problems 

Here attention is restricted to the steady-state, 2 dimensional 

flow equation for a confined, isotropic and non-homogeneous aquifer, In 

this case the governing PDE {2) linking the piezometric head ~ , 
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transmissivity T and sink term q can be concisely written as 

(8) 17 • (TV<P) q on 

subject to appropriate boundary conditions on an . Here V denotes 

the gradient operator, • an inner product, and 

boundary an 

0 the flow dorrain with 

Let us first mention the forward problem which arnounts to solving 

(8} for the dependent variable 'P given models for T ar1d q as well 

as Dirichlet and/or Neumann boundary conditions for <P on an This 

formulation represents an elliptic PDE for the head <p It is well 

known (Courant and Hilbert, 1962) that given appropriate boundary 

conditions the solution of elliptic PDE's is a properly posed problem. 

As well as guaranteeing existence and uniqueness, this implies that <p 

depends continuously on T and q . As a consequence, methods for 

solving the forward problem are straightforward (Pinder and Gray, 1977). 

Turning attention to the :inverse problem, its exact form depends on 

whether it is only T , T and q , or any combination of T , q and 

boundary conditions, which are the unknowns. Consequently, rather than 

a single problem, one has a variety of inverse problems for which 

different methodologies must be developed in order to fully utilize the 

information contained in the available data. In fact it is essential to 

ascertain that for a given form of AI the data contain sufficient 

information to, at least in principle, yield a unique and meariingful 

solution. In this paper we shall examine the standard AI problem where 

T is the n.ajor unknown and the following information is given 
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I head measurements 'Pi i=l. ... ,I; 

Dirichlet and/or Neumann boundary conditions for 'P 

J transmissivity measurements Tj 

with J<<I; 

j = 1, ... ,J 

a model of the sink term q(x,y) . (x,y) € n . 

This AI problem amounts to deriving a model for T(x,y) so that 

solution of the PDE {8) yields a function <p(x,y) that fits the 

piezometric head data <pi in some optimal way. This of course will 

involve a trade-off between fidelity to the <pi data and the 

construction of a realistic solution T(x,y). 

4. OJ.rsory review of the li terat:ure 

Neuman {1979) has provided a classification of AI methodologies 

into direct and indirect methods. Upon discretisation of the aquifer, 

direct methods reduce {8) to the matrix equation 

AT= b + ~::. 

where A is a known matrix function of <pi , T is the unknown vector 

containing transmissivity values at each node of the grid, b is a 

known vector funtion of and q,and ~::. is a residual term 

representing water mass balance errors at each node of the grid. The 

transmissivity is then estimated by linear least squares procedures. 

The estimation procedure is computationally simple. It is, however, 

unstable in the presence of noise in piezometric head measurements. 
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On the other hand, indirect approaches solve the forward problem 

for ~(T) iteratively. The error in history matching for ~ can be 

written in m.atrix form as 

where C is a matrix containing the unknown. transmissivity values: \"' 

is the dependent vector of piezometric head; is the vector of 

observed piezometric heads; and n is a vector of history matching 

errors. The transmissivity is then estimated by minimising the output 

error n This requires non-linear least squares estimation since <p 

is not a linear function of T . The search for a minimum is usually 

performed by gradient-type methods (Cooley, 1977, 1982; Neuma_n, 1980) or 

control-oriented techniques (Chen et al., 1974: Chavent et al., 

This approach is basically stable, but uniqueness of the solution cannot 

be guaranteed when noise in the data causes the error surface to be 

non-convex, Thus the solution may depend strongly on the initial 

estimates of the parameters. In addition the indirect approach is 

computationally expensive, although highly efficient algorithms based on 

thte adjoint state theory of Chavent (197L 1975) and reported in Neuman 

have considerably reduced the computer time allocated to gradient 

estimation. 

It is worth mentioning that most methods reported in the 

literature, whether direct or indirect, set the AI problem vd thin a 

deterministic framework and statistical tools are used only to process 

error terms. For more details the reader is referred to Yeh (1986) who 

provides a very thorough and comprehensive updated review of the 

deterministic methodologies. 
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Compared with deterministic techniques, stochastic approaches are 

somewhat new and less well documented. Bastin {1981} treats the 

one-dimensional case and provides an estimator for the transmissivity by 

assuming it to be a random walk in space. However, his method cannot be 

extended to two dimensional problems. Yakowitz {1976} uses methods from 

clustering and time series analysis to provide a model-free estimation 

of parameters. Vomvoris {1983), Hoeksema and Kitanidis {1984} and Dagan 

{1985} use concepts borrowed from the theory of random fields {Wiener 

and Masani, 1958; Matheron, 1973} to develop the so-called 

geostatistical approach to the AI. In this direct methodology, the 

unknown transmissity is assumed to be random so that its identification 

reduces to deriving a stationary structure which is linear in the 

parameters for the mean {also called the drift} and the covariance. 

Under certain ergodic assumptions about the unknown transmissivity 

{Papoulis, 1964} a maximum likelihood estimation of the parameters can 

be carried out directly with use of the whole data set, assuming that 

the sample distribution of transmissivity is lognormal {Bakr et al., 

1978}. 

The geostatistical approach is intuitively appealing in that it 

recognises that the transmissivity can only be known in a statistical 

sense. In addition, the assumed form of the covariance structure 

stabilizes the problem and the method automatically chooses an 

appropriate stabilization parameter {q.v. Sections 5 and 6 below}. Thus 

the method always determines a unique solution even when only a 

relatively small amount of independent data is available. 
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However there are a number of drawbacks in the method as proposed 

in the literature. In order to avoid large nonlinear optimization 

problems the determination of parameters by maximum likelihood 

estimation is broken up into several stages. The approximations needed 

to carry this out may lead to inconsistent problems if care is not 

taken, and may also be so severe as to vitiate the method. For example, 

a recent implementation by Kuiper (1986) performed no better than a 

simple indirect algorithm. These points are discussed further in 

Section 7. 

5. Mathemati.cal structure of the AI proble11111 

Equation (8) is a first order hyperbolic equation in the dependent 

variable T . Its continuous solution (see Appendix over any 

characteristic r defined by Vh = (dx/d9 . dy/d9) is 

(9) T(fl) rrB~ ] ~(B) Uo +(~) + c 

where '!;(~) = exp [-~il'l'(f)df] , c is a constant and 11 denotes the 

Laplacian operator. 

Equation (9) shows that the solution for T exists and is unique 

along a characteristic r if and only if li,o ~ 0 and there is exactly 

one piece of inforwation about T so that the constant c is 

determined uniquely. This means that T exists and is unique in fl 

provided a value of T , the so-called Cauchy data, is knovrn on each 

characteristic in 0 The following points can now be deduced directly 

from the structure of equation (9): 
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(5.1} In the absence of transmissivity data the solution for T is 

not uniquely determined, even though ~ and q may be known 

exactly. 

(5.2} Even when T exists and is unique it does not depend 

continuously on the piezometric head data since T is defined 

in terms of derivatives of ~ In other words, small errors 

in measurements of ~ may be magnified in V~ and thereby 

lead to unstable estimates of T . 

(5.3} T depends continuously on q and on c , i.e. small errors 

in q and T data yield only small errors in 

estimates of T . 

(5.2} shows that the inverse problem of AI is only mildly improperly 

posed in that it corresponds to one differentiation of the head ~ . 

The improperly posedness of (5.1} and (5.2} resulting from the structure 

of equation (9} is still present when the aquifer is discretised and the 

transmissivity is parameterised. To illustrate this important point, 

assume a finite parameterisation of the transmissivity T viz. 

(10} 

where the 

N 
T(x,y) I 

n=1 
T v (x,y} nn 

vn(x,y} are known independent basis functions and the T 
n 

are the associated unknown coefficients. AI then amounts to estimating 

the N parameters T 
n 

Providing there are N independent pieces of 

information in the data base, in principle a unique solution for T 
n 

can be computed even though no transmissivity data are available at all. 
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However, -che solution obtained via such a simple algebraic method is 

' very unstable. TI~erefore, in the presence of small errors in head 

measurements realisations of the true solution are likely to show lcLrge 

oscillations and are therefore unacceptable. 

An obvious stabilisation ted:'Jlique is to reduce N :and derive a 

solution for the overdetermined algebraic system, say, by least square 

procedures. At the limit N "" 1 .g. T being assumed constant over 

the whole aquifer,) the ill-posedness of the discrete AI is completely 

removed. This obviously is done at the cost of the degree of resolution 

of ti'al1.Smissivi ty estimation. This is a typical feature of 

stabilisation; a trade-off must be made between the degree of numerical 

il!-posedness and the resolution of the estimated tra.n.smi:ssivity. 

Therefore one has to forgo accuracy in estimates of T in order to 

decrease the degree of ill-posedness. Note that in the frequency domain 

this feature is equivalent to the suppression of high harmonics in 

estili'fi2Ltes of T (Allison and Peck~ 

Thus a fundamental question in discrete AI is the search for 

optimum N and basi.s functions This question has been 

add:ressed in several papers (Sun <:md Yeh, 1985); due to the intrinsic 

ms1thematical difficulties satisfactory answers have yet to be found. 

6. Tikhonov regularisa:tion. 

In the search for a practically useful solution to AI the choice of 

an adequate s tabi lisa t ion procedure is essential. Apart from 

maintaining a low parameterisation for the transmissivity T some 



56 

authors :i.n their formulation add to the norm of the model errors a norm 

of the form * 1\IIT-T II , where is determined by prior transmissivity 

data and 1\ is the regularisation parameter, The norm itself may be 

weighted by the inverse of a covariance matrix for T when prior 

knowledge about the system allows such a rmltrix to be derived (Carrera 

and Neuman, 1986}, It should be noted that the estimation procedure for 

obtaining an optimal value for A. as well as the rigorous derivation of 

statistical properties of the errors is far from obvious when an 

indirect approach is used. The principal reason is that such a 

procedure involves non-linear regression. On the other hand, while 

direct approaches are amenable to linear regression, the approximations 

generated are unstable in the presence of piezometric head measurement 

noise. 

An interesting approach to stabilisation reported in Allison and 

Peck (1985) is Tikhonov regularisation. Suppose we wish to solve 

Lu = q for u with L assumed to be a bounded linear operator. If L 

has an unbounded inverse, a regularised solution uA is sought by 

minimising 

IILu - qll2 + A.IIPull 

where 1\ is the regularisation parameter and P is a linear 

differential operator. Under rather general conditions theorems on the 

existence and uniqueness of uA may be derived (Kravaris and Seinfeld, 

1985) and an optimum choice of basis functions for T made (Luk.as, 

1980). 
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Again, the regularisation approach involves a trade-off between 

accuracy and stability of the solution of the improperly posed problem. 

Here, it is determined by the weight A . When its value increases, the 

solution becomes more stable but less accurate. So far Tikhonov 

regularisation does not seem to have been used for aquifer 

identification via direct approaches. Its potential justifies further 

investigations. 

7. The geostatist:ical approach to AI: Merits and drawbacks 

Among direct methods for the inverse problem in aquifer 

identification is a relatively new geostatistical approach reported with 

two dimensional case studies in Hoeksema and Kitanidis (1985) (see also 

Kuiper (1986)). However Dietrich et al (1986) have found that the 

methodology as proposed has a number of flaws. In order to clarify 

these flaws and to indicate possible alternatives, the essence of the 

methodology is first outlined. 

The logarithm of the transmissivity Y(x,y) = ln T(x,y) is viewed 

as a random field with Gaussian distribution. It is decomposed into its 

deterministic mean F(x,y), also called the drift, and a random part 

f(x,y) , so that Y = F + f with the expectation E(f) = 0 . A 

stationary structure is assumed for the covariance Qff while the mean 

F is allowed to have a linear trend. A classical choice is 

F Mo + M1x + M2Y 

906(z1.z2) + 91 exp(-lz1 - z2l/2f) 
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where {~i} , {Bj} and if are the parameters to be determined, oij 

is the Kronecker delta and z = (x,y) . 

For a given Y = F + f the piezometric head is now decomposed into 

~ = H + h where H and h are the deterministic and random components 

corresponding to F and f respectively. The boundary conditions and 

q are assumed to be fixed once and for all. In terms of 

logtransmissivity Y , equation (8) becomes 

VY • V~ + A~ -Y qe 

Replacing Y and ~ by their respective values leads to 

V(F+f) • V(H+h) + A(H+h) = qe-(F+f) . 

If it may be assumed that inner products of perturbation gradients are 

negligible, the equations for the mean and random terms are 

(11) 

(12) -F VF • Vh + Ah = -qe f - VH • V f . 

Upon discretisation of the aquifer domain 0 , the mean piezometric head 

H is given by (11). At the discretisation nodes equation (12) now 

provides the matrix equation 

(13) 
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where h a."!J.d f are vectors and K is a matrix that depends on the 

{?li} . E:A.'""j:)loi tat ion of (13} provides a simple structure for the joint 

piezometric head and transmissivity random field at the measurement 

nodes with 

E[h] = KE[f] = 0 

Qhh : E[:l:.ihT] = KE[HT JKT - KQffKT 

: E[bfT] = KE[ffT] = KQff 

The joint covariance matrix therefore becomes 

(H) l [ 
At this stage tb.e distinction must be dravm between measurement 

nodes a:nd discx·etization nodes. On a 10km by lOkm aquifer in which 

there are no large variations :in transmissivity and piezometric head, a 

rectangular grid with 500m bctvoeen points might be expected to give 

reasonable converge. This leads to a discret:i.zation relating head and 

transmj ssivi ty values ax some 400 nodes. Actual head measurem•ents are 

likely to be available at only some 50-100 nodes, &"1d actual 

transmissivity measurements at only some 10 nodes (i.e. I~50, 

Therefore the vectors h and f must be split up into components 

and where ~ , fk are the lmown measurements 

l' ... ,YJ) (minus the mea11 fields), and 

values at the remaining nodes. 

h 
u 

f are the unknown 
u 

[lhhl k "j 

u 
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It remains to determine the parameters and unknown field 

componentso In the geostatist:iical approach they a:re chosen so as to 

maximize the likelihood function, i oeo to solve 

max p(ml{pi},{Sj},ef,hu,fu) 

(15) 1 1 T -1 = N exp [- ~m-E(m)) Q (m-E(m))] 
(2v) IQI 

where !Jill is the vector [~] 'llld N :Is th<?. si.ze of the discretization. 

In principle this minimization should be carried out simultaneously 

in all the unknowns. Since this is a nonlinear problem in several 

hundred variables in practice it is approximated by splitting it up into 

a series of smaller subproblems, such that each has a linear solution. 

First the correlation length ef is specified in advance using 

prior knowledge (calculations have shown that the likelihood function is 

not very sensitive to changes in if) . Next the parameters {~1 } fu!d 

{9j} are estimated by maximizing a reduced likelihood function. This 

is derived by eliminating the unknowns 

replaced by a coarser discretization 

(16) 

h and 
u 

f 
u 

Thus {13) is 

that links only known data points, and m is replaced by ~ = [~] . 

This gives an approximate covariance structure for h and f , and the 

unknowns hu and fu are now estimated by kriging. 
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However there are a number of drawbacks with the approach as 

out lined above. The first is that given the wide range of 

transmissivity values observed in practice it is by no means certain 

that the expansion in first order terms tha.t leads to (11) and ( is a 

sufficiently good approximation of the true system. This issue is 

further discussed in Appendix C. 

The second drawback is more :immediate. As Appendix B shows. the Q 

of (14) does not ·have an inverse, so the likelihood function of (15) is 

not well defined. This problem may be remedied in a number of ways. 

First, if (13) is kept as is. then (15) should be replaced by the 

constrained optimization problem: 

max p(fl{l-\},{8j},Ef' 

- 1 exp [-
(21T}K/21Qff I 

subject to 

However a more sensible approach is to note that {13) cannot be an 

exact relation as stated and that it should actually be written as 

(17) h 

where is the vector of errors made during actual head measurements. 

"1J is the discretization error incurred in replacing the continuous 

fields by discrete pointwise approximations, and ~- is the truncation 

error incurred by neglecting second order terms. It is reasonable to 

assume that these errors are uncorrelated with each other, have zero 

meaur, and furthermore that if their covariance matrices are denoted by 



62 

i.e. 

The structure of Itr is discussed in Appendix C . 

If (13) is now replaced by ( then 

+ + R,· 

and if this is substituted into (14) then the overall covariance matrix 

Q is now invertible and the geostatistical approach may be carried out 

as described. However a further drawback is immediately apparent. If 

(13} is replaced by (16) the discretization error incurred will increase 

dramatically and. is likely to be sufficiently great that ( actually 

contributes very little towards estimation of Qff . Therefore the 

geostatistical approach as described will make no effective use of the 

flow equation. 

Thus, if the information in the flow equation is to be used, the 

vector fu must be chosen to be large enough to reduce the 

discretization error to within reasonable levels, and the likelihood 

function must be maximized simultaneously in both f and the 
u 

Unfortunately this is a large nonlinear 

problem; and the computational difficulty of solving it, together with 

the possible errors introduced by the approximations used in deriving 

the model leave the utility of the geostatistical approach open to 

question, 
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S. Conclusions 

Motivation for solving inverse problems relating to the 

parameterisation of aquifer parameters has been provided. A~ analytical 

solution for the transmissivity T of a two-dimensional, confined a..Dd 

isotropic aquifer has been given and the structure of the solution 

illustrates the improperly posedness of this AI problem. Upon 

discretisation of the aquifer the interconnection between existence, 

uniqueness, stability and the level of parameterisation of the unknowns 

has been examined. 

Tilr_honov regularisation has been proposed as an obvious technique 

for stabilising the class of direct methods based on equation error 

criterion. The geostatistical approach to AI is analysed in some 

detail. Although its features are attractive it is demonstrated that 

linearisation of the perturbations equation is an over-simplification 

since it does not provide a covari.ance matrix that is positive defi.ni te 0 

Recent work (Dietrich and Jakeman, 1986) questions the viability of this 

new method, given the strong assumptions needed to derive a solution. 

Following discussion at the workshop, a new method based upon a 

weak formulation of the PDE (8) is being investigated (Dietrich and 

Anderssen, 1986}. The formulation involves integrating both sides of 

the PDE against appropriate test functions so that the solution is found 

by variational methods" The main advantage of such an approach is that 

differentiation of the piezometric head ~ may be transferred by 

integration by parts to differentiation of the test functions, which may 
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then be performed analytically. Thi.s overcomes the problerlll of 

instability due to the presence of high frequency noise in ~9 

measurements. Initial results are encouraging for simulated 

two·-dimensional aquifers where the basis functions in (10) are 

exactly known and noise with normal distribution N(O,a2 ) has been 

added to <p • Good estimates of the parameters T n 
in equation ( 

have been obtained for value of 2 
u as high as ten per cent of the mean 

drop of the head over the domain However" the method appears to be 

sensitive to the choice of the basis function At the present 

stage, further work is required to improve and test the procedure so 

that comparisons can be made with other approaches to AI. 

Appendix A 

The governing PDE (8) with ~(z) known and T being the dependent 

variable can be written as 

(Al) VT(z) • V~(z) + T(z)A~(z) q(z) 

with A being the Laplace operator and (z1 ,z2 ) € 0. Setting 

i 1,2 

we obtain a family of characteristic curves z(S) in n parameterised 

by e . If f is one particular element of such a family, along r 

equation (Al) becomes 
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(A2) dT(~~Bll + T(z(fl)) A ~(z(B)) q(z(B)) 

{A2) is a first order ordinary differential equation for T(z(S)) and 

its solution along the cha.racteristic f is (Kaplan and Lewis, 1971) 

) = .,P(fl) [J8 g(z(Tl))dn + const] 
0 ..P(Tl) 

with 

Tj € [0. 

Appendix B 

If Q is a block matrix [ ~ ~ ] with ID I # 0 we have 

(Graybill, 1983) IQI = IDI IA-BD-1CI. 

Appendix C 

An alternative approach that exploits the prior information 

represented by the PDE (8) and avoids making linear approximations is to 

assume a structure for Y and then derive a structure for <{J via 

equations (11} and (12). In the case of a one-dimensional aquifer it is 

easy to show that if the transmissivity T is decomposed into its mean 

G and random component g , the corresponding random element h for 

the head <p satisfies the following matrix equation 
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00 

h = I Ki ID!(i) 
i=l 

where the vector n = giG is assumed to have norm < 1 , is the 

vector obtained from u by taking the i-th power of each component, 

and the Ki are matrices resulting from discretisation of (8). 

If v is normally distributed then all odd moments are equal to 

zero, so that 

E(h) 0 0 

If only first and second order terms are taken in (14) we have 

so that 

where is a vector of unit elements and a2 is the variance of 

The covariance matrix for the head Qhh then becomes 

with 

E[hll] = K1E[m_,T] Ki + K1E[vD(2)T]K~ 
+ K2E[v(2)DT] Ki + K2E[D(2)u(2)T]K~ 

ll . 



67 

and 

E[h]E[h]T 

Since all odd moments are equal to :zero and the fourth moment 

'2' E[u\ 1' hJ equal to (JLnderson, 1958) (where 

is obtained by multiplying each coefficient of by itself), we 

obtain 

and 

The determinant of Q is now given by 

IQI IQ I • 12 K Q(2 ) KT I . 
vv 2 vv 2 

Since Qvv is assumed to be positive definite, is positive 

definite (Graybill, 1983) and, provided K1 and K2 are not singular, 

Q itself becomes positive definite. 

Note that singularity may still result from ill-conditioning of K1 

or K2 . However, this would only reflect lack of independence in the 

available data. 
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Extension of equation (C1) to a two-dimensional aquifer is in 

general not possible since no explicit form for h as a function of the 

logtransmissivi ty perturbation f is available. For the particular 

case where the mean logtransmissivity is assumed constant, Dietrich and 

Jakeman (1986) use the Green's function for the two-dimensional. 

Laplacian operator 11 to derive a formal expression for ail terms 

involving first and second order perturbations. Since in most practical 

cases the Green's function is not known due to the complicated geometry 

of the aquifer boundary, simplifying assumptions have to be invoked. 

Dietrich and Jakeman (1986) show that if the aquifer is strongly excited 

by an inflow q assumed to be non zero everywhere, or if f and Af 

remain snnll while q is set to zero, then second order perturhattons 

can be derived without explicit knowledge of the Green's function. 

However, such assumptions are seldom valid. Therefore it is argued thus 

that these difficulties further limit the generality of the 

geostatistical approach to AI. 
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