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DEFORMING RIEMANNIAN METRICS ON COMPLEX

PROJECTIVE SPACES

P.R.A.Leviton & J.H.Rubinstein

0. INTRODUCTION

Hamilton [Hml,Hm2] and Huisken [Hs] have given conditions on
the curvature of a compact n-dimensional Riemannian manifold M
under which the metric may be deformed to one of constant
positive curvature. Their method was to allow the metric to

evolve according to the equation

d 2
(0.1) 3{91? = -;rgij - 2Rij ’

where r = IMRdu / fMdu is the average of the scalar curvature, and

study its behaviour as t = o, They proved the following

THEOREM 1£f (a) n = 3 and M has positive Ricci curvature [Hml],

(b) n

I

4 and M has positive curvature operator [HmZ2] or

(c) n 2 4, M has positive scalar curvature and

(0.2) 1wz + |vi?2 < é |uj?,

where W,V and U are the Weyl part, the traceless Ricci part and
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the scalar curvature part of the Riemann curvature tensor and

64 = 1/5, 65 = 1/10 and 6n = 2/(n-2) (n+1) for n > 5, [Hs]

then the equation (0.1) has a unique solution for all €t =2 0 which

converges in the C®—-topology as t — ¢ to a metric of constant

positive curvature. Furthermore, any isometries of M are

preserved as the metric evolves.

The aim of this paper is to prove a similar theorem giving
conditions under which a metric will evolve, according to a
system of equations related to (0.1), to a Kahler metric of
constant positive holomorphic sectional curvature (i.e. a

multiple of the Fubini-Study metric on €P(n)).

We start with a compact, simply connected Riemannian
manifold M of dimension 2n. We then show that under certain
conditions on M there exists a principal S'-bundle over M with a
Riemannian metric which satisfies Huisken's condition (i.e.
condition (c) above) such that the projection map is a Riemannian
submersion. We allow the metric on this bundle to evolve
according to (0.1); by the theorem above it evolves to a metric
of constant positive curvature. As all isometries are preserved,
this induces an evolution of the metric on M, by maintaining the
projection map as a Riemannian submersion, under which it evolves

to a multiple of the Fubini-Study metric.
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The theorem we prove is

MAIN THEOREM rLet M be a compact, simply connected Riemannian

manifold of dimension 2n 2 4. If there exists a closed 2-form @

on M and a function F > 0 on M such that

A(F, D) R - F2|®(? - (2/F)AF > 0 and

B(F,®) = gA(F,®)? - |R,|? + 6FR, @D - 67! @I - 10F! |72

- 24|VFI2|®|? + 240 ,VIFVIF - 472 | VD)2
- 24FVid)jkViF¢'jk - (4/F?) |VVF|? - gFd? ,V'VIF > 0 ,
where R denotes the Riemann curvature tensor, @’ is the symmetric

tensor given by (Dzij = (Dikd)kj, g, = 11/100 and € = §

i1 for n > 2,

then M is diffeomorphic to €P(n) and the system

J 2

2 _2 2
st-gij = kg, — 2R, = 4F cbij + ;ViVjF
(0.3) Or - X rvar-r10
’ ot " 2n+1
° v v 2V 7 2y pv*
—0 =VVeD, K -VVd. K + =VFVF®, - —VFVFO,
or 1J i k3 3 ki F2 i Jjk 2 7 ik
- 3VErv e, + 2VEve. - 2vvire, + 2v.vre
F i~ Jjk F J ik o1 Jk FoJ ik
where k =

fMFA (F,®)du / /MFd/,t, has a unique solution for all t 2 0

and g;; converges in the C®~topology as t — e to a multiple of

the Fubini-Study metric.
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The conditions of the theorem are fairly unpleasant, however

we have

THEOREM rThere exist constants § < 1 and €, E

s €3 > 0 such that if

M is an almost Hermitian manifold whose holomorphic sectional

curvature is O-pinched and whose curvature and almost complex

structure J satisfy |VR | < €, IVJ| <&, and |VVJ| < €, then M
satisfies the conditions of the theorem above with F a constant

function and @ a closed 2-form representing the Chern class of M.

If M is K&hler we need only assume the holomorphic sectional

curvature is O-pinched.

1. CURVATURE OF S'-BUNDLES
Let P be a principal S'-bundle over M with projection map =T.
Let ® and Q be the connection form and curvature form of a

connection I' in the bundle P.

By choosing once and for all an isomorphism between R and

the Lie algebra of 8!, we may consider ® and £ to be real valued
forms on P. £ is invariant, as S! is abelian, and horizontal,

thus Q = " (y) for some 2-form Y on M.
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Let V be the fundamental vertical vector field corresponding

Given a positive function £ on M, we may define an invariant

metric on P by

(1.1) (u,v), = {n'u,m'v), + £2(n(p))@(W)®(v) for u, veT_(P) .
Note that all invariant metrics on P have this form; in fact,
given such a metric, we may recover the connection I', and

therefore the curvature form Q = n*vw, by defining the horizontal

space to be the orthogonal complement of V, we may recover the

metric on M from n*KX,Y&) = (X",Y"),, where X" and ¥ are the

horizontal lifts of X and Y with respect to the connection just

defined, and we may recover f from ® (£2) = GL\DP.

Let K and K denote the scalar curvature and the Riemann
curvature tensor of P. Using the fact that
U1 + |VI2 + |W|2 = |K,|? and |U|2 = K*/n(2n+1) for a
2n+l-dimensional manifold, we see that (0.2) for an Sl-bundle

over M is equivalent to

2 2
gX? - IK,12 > 0.

A tedious but straightforward calculation shows that
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K =n" (R - £2]y]|2 - (2/£)Af) and
1K, 12 = T (IR, 12 = 6£7R ¥y + 6£11y1% + 10£41Y°12 + 241VE|2]y|2
- 24Y%VEEVIE + 4£2|Vy12 4 24fViyjkVifyjk + (4/F2) |VVE|2

+ 8£y%,ViVig) |

2. CONSTRUCTION OF P

We use the following theorem of Kostant [Ks] (see also [T]).

THEOREM et ¥ be a closed, integral 2-form on M. There exists a
principal S'-bundle P over M with projection map # and a

connection in P such that the curvature form of I is = y) .

We also use the following slight generalization of a lemma
of Kobayashi [Kb], the proof of which is nearly identical to

Kobayashi's.

LEMMA ret 6 > 0 and let B be a harmonic 2-form on M. There exists
a real number c and an integral 2-form & on M such that
IB - col? < & and V(B - ca)|? < 6.

Clearly if H?’(M;R) & R then we can choose 8 = 0, i.e. B = co.
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Writing @ as the sum of an exact 2-form and a harmonic

2-form and combining the above results gives

LEMMA Let 6 > 0. There exists a principal Sl-bundle P over M with
projection map %, a connection I in P and a real number ¢ such
that the curvature form of I' is @’ (y) where |@ - cy/? < § and

IV(® - cy) |2 < 8. Furthermore, if H?(M;R) & R then we can choose

6 =0, i.e. @ = cy.

We have assumed that A(F,®) > 0 and B(F,®) > 0. A and B vary
continuously with @® and V® thus there exist P,I',c and Y, as given
by the above lemma, such that A(F,cy) and B(F,cy) are arbitrarily
close to A(F,®) and B(F,®). We choose P,I,c and ¥ such that
A(F,cy) > 0 and B(F,cy) > 0, which is possible as M is compact.
Now A(cF,Y) = A(F,cy) and B(cF,Y) = B(F,cY) so we also have

A(cF,Y) > 0 and B(cF,y) > 0.

Let P have the Riemannian metric determined in (1.1) by the

function cF, the connection I' and the metric on M. Then

K = @ (A(CF,Y)) > 0 and €K? - |K |? = @ (B(cF,Y)) > 0 so P, with

this metric, satisfies Huisken's condition.
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3. EVOLUTION OF THE METRIC

We allow the metric on P to evolve according to (0.1). By
Huisken's theorem, it converges to a metric of constant positive
curvature and furthermore, since the metric was initially

invariant it remains so for all t and thus induces a function £,

a closed 2-form Y and a Riemannian metric on M such that these

determine the metric on P by (1.1). Thus £,Y and the metric on M

all evolve as the metric on P does.

In the limit, P has constant positive curvature and is still
a principal S!'-bundle over M. Let P be the universal cover of P
and endow B with the metric induced from the limit metric on P.
As m, (P) is finite, by using the homotopy sequence of the bundle,

we can show that P is also a principal S'-bundle over M and that

the projection map %:P — M is a Riemannian submersion. Of course

P is isometric to S2"*! with a metric of constant curvature.

In the limit, M is the gquotient of S$?"*! by an orthogonal
Sl-action and so must be CP(n) with a multiple of the Fubini-Study

metric.

As M is diffeomorphic to @P(n), H?(M;R) £ R, thus we may

assume that when we chose ¢ and Y earlier we chose them such that
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The evolution of the metric on M depends on £ and ¥; however,

if we define F = £/c and @ = ¢y for all t 2 0 (which agrees with

their initial wvalues), a calculation shows that the evolution of

the metric on M may be described by (0.3).
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