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DEFORMING R~EMANNIAN METRICS ON COMPLEX 

PRQ,JECTiVE SPACES 

PoRoAoLeviton & JoHoRubinstein 

0. INTRODUCTION 

Hamilton [Hml,Hm2] and Huisken [Hs] have conditions on 

the curvature of a compact n-dimensional Riemannian manifold M 

under which the metric may be deformed to one of constant 

positive curvat.ure o Their method was to allow the metric to 

evolve according to the equation 

(0 0 1) 

where r 

a 
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JMRdiJ. I JMd!J. is the average of the scalar curvature, and 

study its behaviour as t ~ oo They proved the following 

THEOREM If (a) n = 3 and M has positive Ricci curvature [Hrnl], 

(.b) n = 4 and M has positive curvature operator [Hrn2] or 

(c) n ~ 4, M has positive scalar curvature and 

(0.2) 

where W,V and U are the Weyl part, the traceless Ricci part and 
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the scalar curvature part of the Riemann curvature tensor and 

04 = 1/5, 05 = 1/10 and On = 2/(n-2) (n+1) for n > 5, [Hs] 

then the equation (0.1) has a unique solution for all t ~ 0 which 

converges in the C~-topology as t ~ ~ to a metric of constant 

positive curvature. Furthermore, any isometries of M are 

preserved as the metric evolves. 

The aim of this paper is to prove a similar theorem giving 

conditions under which a metric will evolve, according to a 

system of equations related to (0.1), to a Kahler metric of 

constant positive holomorphic sectional curvature (i.e. a 

multiple of the Fubini-Study metric on ~P(n)). 

We start with a compact, simply connected Riemannian 

manifold M of dimension 2n. We then show that under certain 

conditions on M there exists a principal 8 1-bundle over M with a 

Riemannian metric which satisfies Huiskents condition (i.e. 

condition (c) above) such that the projection map is a Riemannian 

submersion. We allow the metric on this bundle to evolve 

according to (0.1); by the theorem above it evolves to a metric 

of constant positive curvature. As all isometries are preserved, 

this induces an evolution of the metric on M, by maintaining the 

projection map as a Riemannian submersion, under which it evolves 

to a multiple of the Fubini-Study metric. 
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The theorem we prove is 

MAIN THEOREM Let M be a compact, simply connected Riemannian 

manifold of dimension 2n ~ 4" If there exists a closed 2-form ~ 

on M and a function F > 0 on M such that 

B (F1 @) 

where Rm denotes the Riemann curvature tensor, QY is the symmetric 

tensor given by i[)l .. = liP. ~ ., e = 11/100 and e = 02n+l for n > 2, 
2] 2k J 2 n 

then M is diffeomorphic to ~P{n) and the system 

(0.3) 
() 
-F 
dt 

2 2 2 2 
--kg .. - 2R .. - 4F (,l),J. + ..::ov. V.F 
2n+1 2 1 2 J ~ F 2 J 

1 3 2 
= --kF + .dF - F /liP/ 

2n+l 

vi V<Pk1 - v 1 V4»ki + ~ ViFVF<P1k - ~ V1FVF<Pik 
F F 

- 2vFV.4>. + 2vFv.w.k - 2v.ITFCP .k + 2v. VF4>.k , 
F 2 Jk F J 2 F 2 J F 1 2 

where k = ]~A(F,4>)d# I /~d#, has a unique solution for all t ~ 0 

and gij converges in the C00-topology as t ~ co to a multiple of 

the Fubini-Study metric. 
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The conditions of the theorem are fairly unpleasant, however 

vle have 

THEOREM There exist constants 8 < 1 and ere e2F > 0 such that if 

M is an a.lmost Hermitian manifold whose holomorphic sectional 

curvature is 0-pinched and whose curvature and almost complex 

satisfies the conditions of the theorem above with F a constant 

function and 0 a closed 2-form representing the Chern class of M. 

If M is Kahler we need only assume the holomorphic sectional 

curvature is 8-pinched. 

1. CURVATURE OF S1-BUNDLES 

Let P be a principal S1-bundle over M with projection map :n;. 

Let ro and 0 be the connection form and curvature form of a 

connection r in the bundle P. 

By choosing once and for all an isomorphism between R and 

the Lie algebra of S1 , we may consider ro and Q to be real valued 

forms on P. 0 is invariant, as S1 is abelian, and horizontal, 

thus n :n;*(~ for some 2-form yon M. 
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Let V be the fundamental vertical vector field corresponding 

to L 

Given a positive function f on M, we may define an invariant 

metric on P by 

(L 1) v) = p 

Note tha·t all invariant me·t:cics on l? have ·this form; in fac·t, 

given such a metric, we may recover the connection and 

therefore the curvature form n = (y), by defining the horizontal 

space to be the orthogonal complement of v, we may recover the 

metric on M from n:* ((X, Y)Ml = (x*, y*)P, where x* and y* are the 

horizontal lifts of X and Y with respect to the connection just 

defined, and ~;;-e may recover f from 

Let K and Km denote the scalar curvature and the Riemann 

curvature tensor of P. Using the fact that 

2n+l-dimensional manifold, we see that (0.2) for an 51-bundle 

over M is equivalent to 

A tedious but straightforward calculation shows that 
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A,2 ' j + Bfr ijv~v f). 

2. CONSTRUCTION OF P 

We use the following theorem of Kostant [Ks] (see also [T]). 

THEOREM Let r be a closed, integral 2-form on M. There exists a 

principal 51 -bundle P over M with projection map ~ and a 

connection in P such that the curvature form of r is ~· (y). 

We also use the following slight generalization of a lemma 

of Kobayashi [Kb], the proof of which is nearly identical to 

Kobayashi's. 

LEMMA Let /) > 0 and let fJ be a harmonic 2-form on M. There exists 

a real number c and an integral 2-form a on M such that 

1/3- ca/ 2 <I> and tV({J- ca) 12 < 1>. 

Clearly if H2 (M;R) ~ R then we can choose o 0, i.e. 13 ca. 
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Writing ~ as the sum of an exact 2-form and a harmonic 

2-form and combining the above results gives 

LEMMA Let o > 0. There exists a principal 51 -bundle P over M with 

projection map K, a connection r in P and a real number c such 

that the curvature form of r is K* (y) where t<P - cy/ 2 < o and 

IV (<P cy) !2 < o. Furthermore, if H2 (M; lR) ~ 1R then we can choose 

0, i.e. <P cr. 

We have assumed that A(F,~) > 0 and B(F,~) > 0. A and B vary 

continuously with ~ and V~ thus there exist P,r,c andy, as given 

by the above lemma, such that A(F,cy) and B(F,cy) are arbitrarily 

close to A(F,~) and B(F,~). We choose P,r,c andy such that 

A(F,cy) > 0 and B(F,c~ > 0, which is possible as M is compact. 

Now A(cF,y) A(F,cy) and B(cF,y) B(F,cy) so we also have 

A(cF,y) > 0 and B(cF,y) > 0. 

Let P have the Riemannian metric determined in (1.1) by the 

function cF, the connection r and the metric on M. Then 

K = 1t* (A ( cF, y) ) > 0 and E K2 - I K I 2 = 1t* (B ( cF, y) ) > 0 so P, with n m 

this metric, satisfies Huisken's condition. 
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3. EVOLUTiON OF THE METRIC 

We allow the metric on P to evolve according to (0.1). By 

Huisken's theorem, it converges to a metric of constant positive 

curvature and furt.hermore, since the metric was initially 

invariant it remains so for all t and thus induces a function f, 

a closed 2-form y and a Riemannian metric on M such that these 

determine the metric on P by (1.1), Thus f,y and the metric on M 

all evolve as the metric on P does. 

In the limit, P has constant positive curvature and is still 

a principal S1-bundle over M. Let P be the universal cover of P 

and endow P with the metric induced from the limit metric on P. 

As ~1 (P) is finite, by using the homotopy sequence of the bundle, 

we can show that P is also a principal S1-bundle over M and that 

the projection map n:P -t M is a Riemannian submersion. Of course 

P is isometric to s2n+l with a metric of constant curvature. 

In the limit, M is the quotient of s2n+l by an orthogonal 

s 1-action and so must be I!P(n) with a multiple of the Fubini-Study 

metric. 

As M is diffeomorphic to I!P(n), H2 (M;R) ~R, thus we may 

assume that when we chose c and y earlier we chose them such that 
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@ cy. 

The evolution of the me-tric on M depends on f and y; hO'I'Jever, 

if we define F = f/c and ·Q) = cy for all t ;::: 0 (which agrees '"lith 

their initial values), a calculation shows that the evolution of 

the metric on M may be described by (0.3). 
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