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18. DISCRETIZATION AND NUBERICAL STABILITY

We leave the mathematicians’ ideal world of real and complex
numbers to see how the algorithms considererd in the last section can be
implemented on a computer. We shall also estimate the effects of

numerical errors.

Computer arithmetic

It is not possible to represent an arbitrary real number on a

computer. Given a machine base f , precision t , underflow limit
L , and overflow limit U , we can represent only the numbers
e
+ d1 Ce dt x B, 0K di <B ., d1 #0, L<LelU,

together with the number O . These are known as the.floating—point
numbers. The value of (B,t,L,U) for Cyber 180 Model 840 is (2, 48,
-4096, 4095), while for Cray-1 it is (2, 48, -16384, 8191). An
arbitrary real number is ‘approximately represented’ by its nearest
floating-point neighbour if rounded arithmetic is used; in case of a
tie, it is rounded away from zero. A complex number is represented by
the pair of~floating—point representations of its real and imaginary
parts. The errors introduced by this approximate representation while
performing the arithmetic operations + , = , X , / are known as the

round-off errors. One of the ways of reducing these errors is to carry

out certain operations in higher precision, like double (2t) precision

or extended (4t) precision. Taking the inner product
H R ——
(18.1) ¥ x=x(Dy(1) + ... + x(n)y(n)

of two n-vectors x and y is one such operation. In the
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multiplication of two single precision numbers, some computers calculate
the entire 2t-digit product. If the additions in (18.1) are also

performed in 2t precision, then we obtain the so called double precision

accumulation of inner products. (See [ST], p.73.) This is particularly

useful in calculating the residual Io = A§o - b in double precision,
where X0 is an approximate initial solution of the linear system

turns out to be a refinement of

~

-1
1% A I

(Cf. Problem 5.1.) A similar remark holds for the iterative

Ax = b ; 1in this case x
X -
refinement of eigenelements. (Cf. Problem 11.7.) (See [ST] Algorithms

4.5.1 and 5.4.1; [FM], pp.49-54.)

Discretization

If a Banach space X is finite dimensional, then it can be
identified with CM , where M is the dimension of X . Also, x €X
can be represented by a column vector x with M complex entries. If X

is infinite dimensional, we consider a sequence (wn) of projections in

BL(X) such that mX X for every x € X , and for a large enough
positive integer M , approximate x by LT Then there are fl""’fM
in X and f£,....fy in X  such that
E L ED>=6, ., i.i=1,....M,
ji i,
= K EE, 4 ... 4 X EDE, for all x € X
M = <k E O e x, £yt for a x .

We say that x € X is discretized by the column vector
x = [0, Lo fp]"

Let TE€BL(X) and x € X . Then Tx is discretized by the

column vector

% ®¥ -t
[(Tx,f1>,...,§Tx,fM>] .
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Often it is not possible to find <Tx,f;> (i = 1,....M) exactly, in
which case we approximate it by (Twa,f:> . Then Tx is

(approximately) discretized by the column vector

[TMlx .
where
[TM] = [<Tfj,f’i‘>] , o d.j=1,..0M .
Thus, essentially we replace T by WMTFM . If even the scalar
products <Tfj,f?> , i,ij=1,....M, cannot be calculated exactly, we

consider a close approximation T of the operator T and calculate
<Tfj,f:> instead. For example, let X = C([a,b]}) and T be the

integral operator
Tx(s) = Jb k(s.t)x(t)dt , x€ X, s € [a,b] ,
a
where the kernel k is continuous. Then we can consider
x T NN N )
Tx(s) = Y  wSUk(s,t\ 7 )x(ty ) .
o1 j j

where the nodes t%M),...,tﬁM) in [a,b] and the weights

ng),...,wﬁM) in C give a convergent quadrature formula (cf. (16.5))

Qx = wgm)x(th)) , x€X.

1| =

j=1
Coming now to the algorithms given in the last section, we observe

that they depend on the choice of a finite rank operator TO € BL(X):

n
Tx = ) <xx.ox,, x€X,
0 i=1 i1

3% P
with x.,....,x in X and x*,...,x in X
1 n 1 n



332

In the first step of the algorithms we solve an eigenvalue problem

fOI the l“a.tlix
A = <X.,X.> 0 i, = 1 PRPRPE § T
[ J i ] J s ’

We look for a nonzero simple eigenvalue AO of A . Depending on which
eigenvalue A of T we wish to approximate, we choose such a AO and
find a corresponding eigenvector u € €® of A . In order to economize

computer memory and time, we choose n relatively small; in fact, much

100 . We then find an

smaller than M , say, n =10, if M

eigenvector v € " of

Mo e®x>], 1.j=1.....m,
J 1 :
corresponding to XO , which satisfies
XHB = llko .

In the second step, we calculate for j =1,2,..., the j-th
eigenvalue iterate Aj and the j-th eigenvector iterate ¢, . To start
with, we let

9o = u(l)x1 L u(n)xn .
Since
* %® -t .
X, = [<Xi’fi>”"’<xi’fM>] , i=1,...,n,

we see that is discretized by

M
S = [AV]u .
where

[AV] = [<xj,f:>] . i=1,...M, j=1,....n.

This matrix is vertical in the sense that it has many more rows than
s s . 3 .
columns; it is, so to say, the matrix A = [<Xj‘xi>] made vertical.

Hence the name [AV].
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To calculate the eigenvalue iterates

A, = <T x> = % <T v
j = To5_19” = 2 ?i_1-%4 v(i) .
we must find <Tx,x?> , i=1,...,n, for various x € X . Replacing x by
M *
T = Y <x,f>f. we see that
=1 J J
J_
3% * 4t
[<Twa,x1>,...,<Tva,xn>] = [TAH]x ,
where
[TAH] = [(Tfj,x:)] , i=1,...,n, j=1,... .M.

This matrix is horizontal in the sense that it has many more columns
than rows; hence the letter H in its name. For the algorithms 17.10
and 17.11, we also need to find

n
By o= _2

2 L NEPPEY
<T ¢j_1,xi>v(1) .
i=1

This can be done by noting that

* 2 *® -t
[<T2wa,xi>,...,<T ﬂMx,xn>] = [T2AH]x ,
where

[T2AH] = [(Tzfj,x:>] L i=1,...on, j=1,....M.
Thus, if ¢j—1 is discretized by sj—l € CM , then

H H
%j =V [TAH]SJ.__1 and My =Y [T2AH]£J._1 .

To calculate the eigenvector iterate ¢j , we need to solve a system

H
va=0, (A_}\OI)%_Q,]' ,

of n+ 1 equations in the n unknowns «a(l),...,a{(n) ; the given
vector f. satisfies XHEj =0, and is determined by the information

available at this stage. Let us denote the solution by
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t
. = AL), ..., .
g = [ay(1). ..o (n)]
The iterate ¢, is a linear combination of  SEERERE S
¢O""’¢j—1 . ij—l and T2wj_1 , whose coefficients are determined by
Ao,...,kj By aj(l),...,aj(n) . The matrices [AV], [TM] and
[T2M] = [<T2fj,f’i‘>] . i.j=l.... M,
allow us to discretize ¢j , j=1,2,... . For example, in Algorithm

17.9 for the fixed point iteration scheme we have

1
o5 = —Xbﬁzj(l)x1+...+aj(n)xn + (AO Aj)¢j—1 + T¢j_1}

It is discretized by

1
&= [[AV]%. + (gA)gyq * [TM]gJ._l]

Accuracy of the approximations

In the case of all the algorithms of Section 17, the eigenvalue and
eigenvector iterates Aj and wj converge, under suitable conditions
(given in Section 14), to a nonzero simple eigenvalue A and a
corresponding eigenvector ¢ of T , which satisfy
(T¢,w:> = A<¢,¢;> = AN , where ¢: = v(l)x? S v(n)x: . For the
Rayleigh-Schrodinger scheme (11.18) and the fixed point scheme (11.19),
this eigenvalue AN of T 1is the nearest spectral point of T to AO .
(cf. Theorem 11.8.) Since we have replaced the possibly infinite
dimensionalyoperator T on X by the M~dimensional operator [TM] .
and x € X by LIRS in the discretization procedure, the computed Aj’s
will converge to a nonzero simple eigenvalue A(M) of [TM] ., and the

discretizations gj of ¢j will converge to the corresponding

eigenvector g(M) of [TM] which satisfies
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Froange™ - 200

The whole point of going through the iterations is to approximate
the nonzero simple eigenvalues of [TM] (or T) as closely as we wish
without solving the large (or infinite dimensional) eigenvalue problem
for [TM] (or T) . However, for illustrative purposes we may compute
the eigenelements A(M) and S(M) of [TM] directly to get an idea of
the actual accuracy reached at the.j—th iteration, j = 1,2,...

All the same, we must have criteria for deciding when a sufficient
accuracy is reached without actually knowing X(M) and ¢(M) . If such
criteria are satisfied, the iteration should be stopped. The degree of

accuracy can be measured either by the norm of the residual

. =To. - NP, , j=1,2,...,
i B TS SR L S B
or by the relative increment
d, = llg.—p. Il / llg_ I
J %5751 ?3

between two successive iterates. Note that if ¢j—1 is actually an
£
eigenvector of T , then since <¢j_1,¢0> =1, we see that

A (T¢._1,¢S> must be the corresponding eigenvalue of T , so that

J J
O . If X 1is a Hilbert space, then one can compute the Rayleigh

r

J

quotient
aley_q) = <Toy 105 1>/<05 1095 17
and the corresponding residual
rj = I|T‘Pj_1—q(‘Pj_1)‘Pj__1"2

in view of the minimum residual property (8.9) of q(¢j_1) .
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Thus, we stop the iteration if

—to -t
Ir il < B and/or d, < f s

J J

where [ 1is the machine base, and to is a given positive integer less

than or equal to the machine precision t . In order to avoid being on
the boundary of the precision, we take tO =t-1 or t-2. If

X = C([0,1]) with the sup norm, then we can employ the Il I, norm on
CM , and if X 1is a Hilbert space, we can use the Euclidean norm |l H2

OIl(DM.

There is usually a trade-off between the size n of the matrix A
of the initial eigenvalue problem and the number of iterations needed to
gttain a desired accuracy. It is economical to choose a smaller n and
opt for a greater number of iterations. The example in Table 19.9 will.
illus;rates this point.

‘If one needs a highly accurate eigenvalue approximation but only a
moderately accurate eigenvector approximation, then it is perhaps more
practical to carry out two iteration processes simultaneously: one on
the eigenpair (A0,¢o) of TO and the other on the eigenpair (io,wg) of
T; ., as pointed out in Remark 11.9(iv). The generalized Rayleigh

%
quotient based at (¢j,¢j) , namely

3% »*
.= Te., 0. 0/<p ., 9>
qJ wJ ¢J wJ ¢J

will then be an approximation of the eigenvalue A of T of a much

higher order, provided I(T"-Tg)ggll and (T -Ty)Sgll are small. (Cf.

(11.28).) If T and TO are self-adjoint, then it is easy to compute

. kel . .
qj since ¢j = ¢j , so that we do not need to carry out two iteration
processes. In this case, for the Rayleigh-Schrodinger iteration scheme
(11.18), the eigenvalue iterates k2j and A2j+1 can also be computed
on knowing 5 (cf. (10.9)).
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Finally, we make some comments on the relative merits of the
algorithms for the four iterations (11.18), (11.19), (11.31) and

(11.35). The Rayleigh-Schrodinger iteration involves computing the sum
7\1<pj_1 + (7\2—7\1)¢pj_2 + ...+ (7\j—)\j_1)(p0

at the j-th step, where the coefficients (Aj—xj_l) become progressively
small as j increases. This is undesirable in a floating-point
arithmetic. From this point of view, the fixed point iteration (11.31)
should be preferred. The modified fixed point iteration (11.31) and the
Ahués iteration (11.35) involve additional computations of T2¢j_1 and
<T2¢j_1,¢:> at the j-th stage and as such, are more expensive than the
fixed point iteration (11.18). However, the numerical experiments given
in Tables 19.3, 19.4 and 19.5 indicate that the iterations (11.31) and
(11.35) give the desired accuracy very fast; the iteration (11.31) often

converges faster than the iteration (11.35), which was regarded as the

best among those considered in [A]. (See p.157 of [A].)

Numerical stability

The round-off errors caused by floating-point arithmetic can
sometimes assume alarming proportions. A minor change in the data can
give rise to a major deviation in the solution of an eigenvalue problem,
or of a system of linear equations. If we employ a ‘DO’ loop in an
iteration process, the errors can accumulate and cause an overflow or an
underflow. It is advisable, then, to consider some conditions which,
when satisfied, preclude the possibility of small errors in the initial
stage leading up to large errors in the final stage. In that case, the

computations are said to be numerically stable.
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While implementing the algorithms of Section 17, questions of
numerical stability arise at three places: (i) calculation of the
eigenelements AO and u of A, (ii) calculation of the eigenvector y

of A® corresponding to XO , and (iii) solution of the system

H
x % = 0 s (A—)\OI)§ = E

of linear equations. We shall now take up these questions one by one.

Initial eigenvalue problem for A

The entries <xj,x?> , i,j=1,...,n, of the matrix A can, in
general, be calculated only approximately. For some important
eigenvalue routines, the computed eigenvalues are in fact, the
eigenvalues of a nearby matrix A ([GV], p.200). Thus, instead of

finding O # AO €EC and Q #£u € € such that

Au = A

%

we actually find O # XO €C and O # g € € such that

1}
>
%

Au
X

Let E =A - A denote the error matrix as well as the induced operator

on €' . Let % and ¥ denote the spectral projection and the reduced

resolvent associated with A and AO , respectively.

Let Il I denote a norm on C" , and let |l H* be the induced
norm on the adjoint space. For example, if Il Il = |l Hp , then
1l H* =1l "q , Wwhere 1/p+1/g=1, 1<{p<®..

Assume that A bas a simple nonzero eigenvalue AO and a
corresponding eigenvector u , and let w denote the eigenvector of

A* corresponding to A, such that ypg 1 . (See Theorem 8.3.)

0
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Assume that

0 < T = max{ IEull fhwh iz, HELN} < 1/4 .

By applying Theorem 11.5 to TO =A and T=A4, we see that A has

an eigenvalue A, and a corresponding eigenvector u satisfying

0]
H~
wu=1 such that

N g(”’o) -1
a-ull < IEull I ——— |
Ly 4 -
0
[Ag-Rg! < NEQH lxl g(v,) .

where g(t) =1+ t + a2t2 + ... 1is the function defined by (11.1) for
ltl < 1/4 . (See (11.20) and (11.21).) Also, Theorem 11.8 can be

employed to conclude that XO is a simple eigenvalue of A . It will be
nonzero if it is sufficiently near AO .
Now, assume that the eigenvector u of A is scaled so that

llull = 1 . Then

% = (x)u . 190 = gl .

Also,
Hg(e)-1)/tl =1 + 0o(lit]) = lg(e)] as tl -0,
and
7o < NEN U9 19l .
Hence
(18.1) I-ull < WEN Il + O(NENZ) |
(18.2) IRg-No| < NEW 1 + OCUEN?) .

Thus, a small error of size IEll in the formation of the matrix A can
cause an error of size at most |IEll IPll in the eigenvalue AO of A and

of size at most IEll Il in a corresponding eigenvector u of norm 1 .
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For this reason, IlI¥ll is called the condition number for finding the

simple eigenvalue AO , and ¥l is called the condition number for

finding the corresponding unit eigenvector u of A . If a condition

number is small, the relevant problem is said to be well-conditioned,

otherwise it is ill-conditioned. Here are some lower bounds for %l

and ¥l

1
dqistg o NG - "ot <

(18.3) 1<yl = ngn -,

g,

by (2.1) and (7.3). Notice that (18.1) gives a bound on the absolute
error in AO . If |ROI is small compared to IIEll , then the relative
error |XO—AO|/IRO| can be large even if the condition number %l is
small. On the other hand (18.2) gives a bouﬂd on the relative error in
g, since llull =1 .

The relation l/dist(ko,a(A)\{AO}) < ¥l shows that the unit

eigenvector u corresponding to AO is ill-conditioned if AO is not
well-separated from the rest of the spectrum of A . Of course, in
general, the condition number ¥l can be large even if AO is well

separated from o(A) \ {AO} .

Let us now consider the Fuclidean norm on C" :

gy = ()12 + ...+ x(m)1$H)72 | g e .

It can be readily checked that

. H
X=4-WwEy

~ A

is the best approximation to u from the orthogonal complement {E}'L

of {w} . (See [L]. 23.2.) Hence

1 1

27 euly  gisequ, mh)

(18.4) Bl = iyl
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Note that if 6 denotes the acute angle between u and w , then
cos 6 = |<g,g>|/"g"2"g"2 = l/Hﬁ‘ﬁlI2 .

Now, {y}l is the null space of the spectral projection &
associated with A and AO ; it is spanned by the generalized
eigenvectors of A corresponding to its eigenvalues other than AO ,
as we see by (7.18).

If the eigenvector u corresponding to AO is ‘close’ to the other
generalized eigenvectors of A (i.e., u is nearly a linear combination
of them, or the dcute angle 6 between u and w is close to w/2),
then the eigenvalue AO is ill-conditioned.

On the other hand, the condition number for AO is best when

H@H2 =1, i.e., % 1is an orthogonal projection, or 9H =% . This

happens if and only if u is orthogonal to {w}'L , i.e., w=

b=t

because

P = uwH s gHg 1= BHE .

o

In this case, it follows by Problem 8.7 that

(18.5) g, =

==

where p is the smallest nonzero eigenvalue of (AH—XOI)(A—XOI).
If A 1is a normal operator, then H¢H2 =1 (Theorem 8.4 and

Proposition 2.3), ¥ is normal, and by (8.14),
(18.6) gl = r_(¢) = 1/dist(Ay,.0(ANAL}) -

Thus, for a normal operator A , the stability of the eigenvalue
problem Au = Aog depends solely on the distance of Ao from the rest
of the spectrum of A .

It is interesting to note that the condition number for the

eigenvalue A, involves the ‘distance’ of the corresponding unit
0
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eigenvector u from the remaining generalized eigenvectors of A,
while an estimate for the condition number for the eigenvector u
involves the distance of the corresponding eigenvalue AO from the

remaining eigenvalues of A .

Eigenvector of AH corresponding to XO

Since Ao is a simple eigenvalue of A , XO is a simple
eigenvalue of AH (Theorem 8.2(c)). Let u be an eigenvector of A
corresponding to AO . We wish to find an eigenvector y of AH
corresponding to XO such that XHE = 1/7\O .

In case the eigenvector u of A corresponding to AO is known
to be orthogonal to all the other generalized eigenvectors of A
corresponding to the remaining eigenvalues, i.e., u is orthogonal to
{v}l , then

¥ =/ Khar® .

Hence there is no need to do any further work. In the absence of the

knowledge of the orthogonality of u to all the other generalized

eigenvectors of A , there are two ways of proceeding to find v .
Firstly., we can solve the eigenvalue problem for AH . Observing
that XO is one of the eigenvalues of AH ., we pick a unit eigenvector

u' of AH corresponding to A

0 *
u'Hg' #0 , by (8.7).) As before, the condition number for finding

~

and let v =u' / XOE'HB . (Note:

u’ in this manner is W¥'ll , where ¢' 1is the reduced resolvent
associated with AH and XO . But ¥ =¢" by (8.4) . where ¥ s
the reduced resolvent associated with A and ko . Thus, the desired

condition number is ¥ il = I?ll , as earlier.
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Alternatively, (8.7) shows that there is a unique eigenvector ¥
of AH corresponding to XO which satisfies EHQ =1 . Then y is

the unique solution of the system

4x = 13,
(18.7)
(AR 1)x = 0
o/~ T R
of {(n+l) equations in the n wunknowns x(1),....x(n) . Solving this

system is much simpler than solving the eigenvalue problem for AH .

Consider the (n+l) xn coefficient matrix

u(l) ... u(n)| 1
(18.8) C= i -
A - AOI n
of the system (18.7). Since XO is a simple eigenvalue of AH and u
is an eigenvector of (AH)H = A corresponding to fo = AO , it follows

by (8.7) that 65 = 0 implies x = O . Thus, the map C:C"> ®n+1

is one to one, 1i.e., the matrix C has rank n . The system then can
be solved by reducing C to an upper trapezoidal form either by the
Householder orthogonalization method or by Gaussian elimination method
with partial pivoting. (See Theorems 3 and 2 as well as other relevant
comments in Appendix II.) The unique solution of the linear system

(18.7) is given by

v = &'[1/&..0.....01" .

~

0

where ET : ®n+1_6 c® is the Moore—Penrose inverse of C : c” - ®n+1 :

(oL (oi'e) Rty el

(See Appendix II, especially (5).) For every y € c® , there is a

. + .
unique x € Gn 1 (known as the least squares solution) such that
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min Hé% -y, = H6§ -xl, -
gecn 2 2
Theorem II.6 shows that the relative change in the (least squares)

solution y due to perturbations of C and [I/XO.O,...,O] depends on

the condition number

oot
ky(C) = I, 1T, .

We have

(18.9) e = w + (AR D)

Let 01(6) (resp., Un(é)) denote the positive square root of the

largest (resp., smallest) eigenvalue of EHG . Then
k(@) = 0,(8) 7 0 (©) .

by (7) of Appendix II. This perturbation analysis is applicable to the
round-off errors that arise while solving the linear system (18.7) by

the Householder orthogonalization method. (See (20) of Appendix II.)

Solution of the system yx =0, (AAI)x =6 .

~

We now take up the last question regarding numerical stability that
arises while implementing the algorithms of Section 17. Let u be an
eigenvector of A corresponding to a nonzero simple eigenvalue AO
such that EHE = Huug =1 . Let v be the eigenvector of AH
corresponding to XO such that XHB = 1/7\O . The following linear

system occurs in the calculation of the eigenvector iterates

.. J=1,2,...
¢J J

(18.10)
(A_)\OI)?S = E :

where J € " satisfies XHE =0 . (See, e.g., Step 2(ii) of Algorithm
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17.8.) VWhile the right hand side [ changes from iterate to iterate,

the coefficient matrix

(18.11) C=

of the system remains unchanged throughout the iteration process.
The spectral projection associated with A and AO is given by

H
P = XOBX , so that

Z(%) = {f € ¢ : v§ = 0} .

Since xo is simple (and hence semisimple), it follows from Lemma
7.1(b) that R(A—AOI) =Z(%) . Also, the operator (A—%OI)IZ(y) is
invertible. Thus, for every f € c" satisfying XHQ =0, the system
(18.10) has a unique solution x € c" ; in fact, x =98 , where ¢

is the reduced resolvent associated with A and AO . Again, the
solution can be calculated by reducing the system (18.10) to an upper
trapezoidal form by the Householder orthogonalization methed or Gaussian
elimination with partial pivoting. (See Appendix II.)

Now, the matrix C has rank n . For an arbitrary y € c” , the
unique least squares sclution of the system (18.10) is given by
CT[O,y(l),...,y(n)]t ,  where CT = (CHC)—1CH is the Moore-Penrose
inverse of C . As in the case of the matrix C given by (18.8), we

see by (7) of Appendix II that the condition number for the (least

squares) solution x of Cx =f , where XHE =0, is
kz(C) = cl(C) / an(C) .

where al(C) (resp.. an(C)) is the positive square root of the largest

(resp., smallest) eigenvalue of CHC . Note that



346

cic

H H<
Yo+ (ARG} (A-AT)

7y

= 2
N

(18.12) + (X DD

Assume now that @H =% . (We have seen earlier that this case
arises when the eigenvector u of A corresponding to AO is
orthogonal to all the generalized eigenvectors of A corresponding to
the remaining eigenvalues of A . This is certainly true if A is

normal.) We then have

Fo = Lo+ (X DD -

2
W

Since (A—AOI)@ =0 = WH(AH—XOI) , we see that cic commutes with % .

If we let Y =R(®) and Z = Z($) . then by (6.2)

o(ccy = a(CHCIY) u a(CHC|Z) .

1 _
2
W

R((AH-XOI)(A—AOI)) - R(AH—XOI) =7 =7(%) =Z . and

Now, cHC|Y = I|y and CHCIZ = (AH—XOI)(A—AOI)|Z . Also,

Z((AR 1) (AAGT)) = Z(ANSI) = R(%) = Y . Hence

o(clcy = {1;175} u {F P 0%pe a((AB#XOI)(A—AOI))} .
0

Let By 2 o 2 ... Boq be the nonzero eigenvalues of

(AR 1)(A-A,I) . Then
0,(C) = max{;ﬁz', 1/|A0|} . 0.(C) = min{?un_l , 1/IAOI} .

max (. 171051}

(18.13) k., (C) = ‘
2 min{{i_ . 1/Iny1}

Now, since (A"-R,I)(A-AjI) is self-adjoint, we have

2

H_
By = ARG (AN D), = HA-AJTHG
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Also, since % 1is orthogonal, we see by Problem 8.7 that

2
Boq = 1/Ilf>°||2 .
Hence
1
(18.14) k2(C) = max{HA—AOIHZ,-———} max{"yﬂz,lkol} .
A
In particular, let A be normal and let Al""’kn—l be the
~ eigenvalues of A other than A, , arranged so that
< S - H
IK1~AOI > ... 2 lxn_l—xol . Then Al""’xn—l are eigenvalues of A,
2 . _
and we have uy = Iki—kol , i=1,...,n~1 . Thus,
max{ A -yl . 171N 1}
(18.15) %200 = EmIR_ AT 7Ty (A merm=l)

Thus, in this case, the condition number of C depends on 1/IAO| and
on the distances from AO to the remaining eigenvalues of A .
Finally, we remark that the first equation XH§ = 0 of the system
(18.10) can be scaled by multiplying it by a constant { # O , without
affecting the solution of the system. In that case, the coefficient

matrix

tv(1) ... Lv(n)
(18.16) C =
A -2l

of the scaled system has the condition number

max{ a1y IC/A 1}

(18.17) k. (C.)
24T min{Jﬁ;j ,|§/kol}

max{ 1A=, Tlly, 1T/ | }nlax{!l9’I12, In/CI}

If we choose the scaling factor such that IQ/ROI equals {(or is close
to) either Jul or Jun—l , then k2(Cg) equals (or is close to)

J J — A . . irst
Hyq / Mg = A AOIH H9H2 . Thus, k2(C£) is smallest if the firs

2
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row of C 1is changed to

Al [vD). .. ..v([@)] .

where Vv 1is an eigenvector of AH corresponding to XO such that

H H
AOX u=1=yuwu ..

In case @H #% ., it is not clear how k2(Cc) depends on

HA—AOIH2 . H9H2 and H@Hz in a precise manner. Here is a most simple-
1+AO a
minded example. Let A = , a€C . Let
o] A
. 0
-a 0 0 -a

u = Awa? . v = | Nivlal? / Ry . so that %=

1 1 0 1

.1 a . » )
and ¢ = . Then HA-A. Il = WPl = IZl, = N1+]al® . On the

02 2 2
0O o0
other hand, with t = {/A, . we obtain
CH 1 a
C. = , so that
TC 2 1a1ZereZe1al)e)?
2 2.2 172
k2(C§) _ Lrlel [(1+‘a]2)1/2 + [Ia|2 . g1—|t|2)2} ]
21t (1+1t17)
For ( = Ao ., we have
ky(C, ) = {1+1a12 + Jal
- 0
We now describe another way of finding x € €" such that
H

(18.10) vx=0 and (A—ROI)§ =B,

where XHQ = 0 . Consider

- H
(18.18) B= AP+ (AN} = A - A(1+Aquy) -

(Note: 9 = AOEXH .} We show that x satisfies (18.10) if.and only if

Bx =8 : If x satisfies (18.10), then
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By = Ax - Ag(x + Q) =Ax - Apx =§ .

Conversely, let Bx =0 ., 1i.e.,

(18.19) Ax - AO§ - AggXHg =p .

Since (AH—XOI)X =0 , we have XH(A—AOI) =0 . Also, XHE =1/, -

Hence taking inner products with y on both sides of (18.19), we obtain

Since AO # 0 , this implies XH§ =0 . Also, (18.19) gives

A -Ax =8,
as desired.
Now, the operator B commutes with the projection % . With

Y=R(¥) and Z =Z(%) , it follows by (6.2) that
o(B) = a(BIY) U U(Blz) .

But Bl, = —AOIIY , so that U(BIY) = {—AO} . Also, BlZ = (A—AOI)]Z

s

and the spectral decomposition theorem (Theorem 6.3) gives

o(B|;) = {M2 : N€o(A) . A#AG) .

Let, as before, xl""’xn—l be the eigenvalues of A other than
AO , arranged so that IRI—AOI > .. 2 Ikn_l—kol . Then

(18.20) o(B) = {ko} U {Al—ko,...,xn_l—ho} .

Since AO # 0 and ko # Ai , i=1,....n-1, we see that B is

invertible. The solution x of (18.10) can thus be obtained by solving
Bx = B . by Gaussian elimination with partial pivoting or by the

Householder orthogonalization method, the condition number for the

solution being
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k(B) = mBn 1B~ ln .

For the Euclidean norm | H2 , we have
(B) o,(B)
ky 5 (B’

where al(B) (resp.. an(B)) is the largest (resp., smallest)

eigenvalue of BHﬁ . Now,

i)

177 + (X DanD) - E

where

o]
1}

H - = oH
AO(A —AOI)9 + A09 (A—AOI) .
Recalling (18.12) and (18.16), we see that
BHB = c?cg - E, where ( = D\OI2 .

If # is orthogonal, then (A'-A )% = (-X,1)9" = 0 and similarly

F(A-NT) = F(A-NJI) =0 , so that E=0 . Thus, BB = c‘gcc with

¢ = I)\OI2 , and the stability considerations are exactly as before. In
particular,
ma-x{l”l s D\Ol}

(18.21)  ky(B) = = max{IIA-A,Ill,, I\, | }max{lill,, 1/ 1A 1},

min{Jun_l,Ikol}
where By is the largest eigenvalue of (AH—XOI)(A—ROI) , and Ko g
is its smallest nonzero eigenvalue. (See (18.17).) In case A is
2 .
1= lxn_l—xol . This result also
follows directly if we note that B is normal and use (18.20).

normal, then By = IAI-Aolz and [T



