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5a.V.ABILITY a= DIFFERENTIAL CPEAATa:IS I: 

DIRECT liN) Se..tl DIRECT PR:DUCTS a= LIE GFO..PS 

P.O. B.!Jttest.i 

1 • I NTFa:li.J:T 10-l 

Let G be a Lie group. The group G acts on itself by left (or 

right) translations. A linear differential operator P on G is said 

to be left (or right) invariant if it commutes. with the left (or right) 

action of G, i.e. if it satisfies 

P(f o L ) = (Pf) o L g g 

for all q e G, f e C~(G). where for x £ G 

= (Pf) o R ) 
g 

The operator P is said to be hi-invariant if it is left and right 

invariant. 

All the Lie groups considered in this paper are real. 

We identify the algebra of left invariant linear differential 

operators on G with the complexified universal enveloping algebra 
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U(g), where g is the Lie algebra of G. Bi-invariant differential 

operators correspond then to e 1 ements of the centre Z (g) of U (g) • 
= = 

il distribution E 1': .f!J' (G) on G is a fundalnental solution of the 

operator P if it satisfies the equation PE = IJ, ~.Jhere 1$ is the 

Dirac distribution at the unit of G. 

left invariant differential operators on a Lie group in general do 

not possess a global ftmdamental solution, but tmder additional 

conditions either on the operator or on the group, we can prove the 

existence of such solutions. 

2. RESULTS 

Let us Hrnt recall the 1100.in results concerning this problem. In 

1955 Ehrenpreis [6] and Malgrange [7] proved that every nonzero 

differential operator with constant coefficients on Rn has a 

fundamen'tsll solution on Rn" Rais [8] established the existence of a 

fundamental solution for every hi-invariant operator on a simply 

connected nEpotent Lie group and Duflo and Rais [5] extended this 

result to simply connected exponential Lie groups. For hi-invariant 

differential operators on simply connected solvable Lie groups, Duflo 

and RaYs [5] 0howed the existence of a local fundamental solution and 

Rouviere [9] proved the existence of semiqlobal fundamental solutions 

(i.e. on every relativel}' compact open subset). 
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In dl the above case2, the group G is ~umed to be simply 

connected. This properly is essential, as can be seen from the result 

condition for left invariant operators on the direct pr:od.uct 

G "' K x Rn, ~here K is 1:1 compact connected Lie group. 

For results on ~isimple Lie groups we refer the reader to [3], 

concerning the existence of global fundamental solutions for hi~ 

invariant operators on the direct product H x K where H and K are 

Lie groups and !< is compact connected. We give a necessary comition 

which coincides ~ith the necessary and sufficient cordition of Cerezo 

and ROUI!ii!re when H = Rn, and, when the group H is solvable and 

simply connected, we obtain a sufficient condition very similar to. the 

necessary one. In particular, we prove that every nom::ero bi-invariant 

operator on a simply connected solvable Lie group admits a global 

fundamental solution. 

In the following section we generalize some of these results to 

certain semidirect products of Lie groups. We define the partial 

Fourier coefficients of a differential operator on a Cartan motion group 

V M K and study the action of K on the elements of the universal 

enveloping algebra U(V e k). Then, use of the partial Fourier 

transform on V ~ K allows us to translate the problem on V ~ K to an 
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equivalent problem on the group V and to prove a necessary condition 

of existence of a fundamental solution for K-bi-invariant, V H K-left 

invariant differential operators on V H K. 

In the last section, we apply these results to the Euclidean motion 

group H(2). In this case we explicitly determine K-bi-invariant and 

H(2)-bi-invariant differential operators respectively. We also show 

that every nonzero hi-invariant operator on H(2) bas a global 

fundamental solution. 

3. 01 AEcr PR:DLCT H x K 

Let H and K be two Lie groups, K compact connected, and 

G = H x K be the direct product. Since K is compact we have a 

A 

partial Fourier transform on· G. Let K denote the dual of K. In 

A 

each equivalence class A £ K, we choose an element also denoted A: A 

is an unitary irreducible representation of K. The partial Fourier 

coefficients of an operator P are defined by 

A 

for every f t: cil<H) and A £ K (tf) (H) denotes the space of compactly 

supported c·-functions on H with its usual topology). 

The PA's are differential operators on H, with coefficients in 

End(HA), where HA is the representation space of A and End(HA) is 

the space of endomorphisms of HA. It is easily seen (using Schur's 
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lemma) that if the operator P is G-bi-invariant then the 's are 

H-bi-invariant scalar operators, 

ar.b.itr&ry ond U on open subset in H. let P .be o l.ine8r 

l'hen P hes a fundamental solution on U x K .if ond .if 

and 

a distr.z:ttut.ion E 
1\ 

on U .'Juch that 

{ 

~o.>!l" 
0
svszy compact .sub...<::et C in U, t.here e.lf.i..<llt o con..crtant 

.n tilnd }XJS.it.ive .integrsrs a and b such that 

"''f £ lJ(C), VA € K, i<EII.,f>l ( AN(.I\)6 Uib 

Here the seminorms ib, b li: N, define the topology of ~(H) and 

A 

N is a positive function on K. 

So it is equivalent to study the existence of a family of 

fundamental solutions for the partial Fourier coefficients PA, 

satisfying a growth condition, 

From this theorem we deduce a necessary condition for the existence 

of a fundamental solution for P, 

Let x1 , ... ,Xn be a basis of the Lie algebra h of H. Then, 
= 

according to the Poincare-Birkho££-Witt theorem, the Xa = 
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U(h) of h. 
= 

We define a norm on U(h), for the operator 0 

t~here c c. 

ll-<EOREM 2: 

.its )':i61rt.icll Four.ie:r COI!?J.Sfic:.ient.s. 11Je condit.lon 

.ls .:~~ nece.sso.ry cond.lt.ion for ex.istence of a funda.wmtol solut.ion for 

P on U x K. 

cordH.ion of Cerezo 01nd Rouv:!.ere. To prove that this condition is 

izhli!lf Hormander' s. constrllction) and they chose a new conto'li!r of 

int•agration cJhic:h avoids the singuL,,rities. In the general case. this 

condition is sufficient but <,ie don't kno1.1 hou to prove it. I 
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The notion of P~convexitv enables us to obtain ~lobal solutions 

from semiglobal solutions (i.e. solutions on every relatively compact 

open subset) • 

DEFINITiG!S: Let G be a Lie group, Q an open subset of G and P 

a linear differential operator on G. Q is P-convex if for every 

compact subset L c !l. there exists a compact subset 1.: c ll such that 

for all 1/1 € ![) un. 

A compact subset L c G is said to be P-full if 

supp P!/Y c: L ~ supp 1/1 c: L 

for all ri; c9lCG). 

EXAMPLE In Rn. the convex subsets are P-full. In the definition 

of P-convex. for L' one can take the convex hull of L. 

~ 3: Let G be a second count<Wle l.ie fT.!'VUP and P 8 

J.intJ<:Jr d.ifferent.i8l operator on G such that 

(.f) Ever_v comp."tct suh .. c:et of G Lr; conta.ined .in a P -full 

com)Xlct subset of G. 

(.i.f) P .lk'ls a Eund.'i111ental solut.ion on every rel."'tively comp.>tct 

open suh...c:et of G. 

Then P b,'Ws a t:rlob..'ll fund.wt:mt.>tl solution on G ,'lnd 

PC.,.(G) = Cm(Gl. 
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The proof of this theorem 'llSes general methods in functional 

analysis. 

£very nonzero i:J.f-.inv&:".itrmt l.ii'J!6'dr d.ifferent.i&l oper&to.r P on G 

Therefore, to study the existence of global solutions it is enough 

to study the existence of semiglobal solutions and P-conveKity. 

property uhen H is solvable si~ruply connected. 

To show the semiglobal solvability of P, I used Roovidl;re's method 

' 2 . l't" ... -ll"K-"'Qtla 1 1es on In the case of one linear differential operator 

on e solvable Lie ~coup, Rouviere [9] proved some inequalities and 

deduced from them the existence of semigloool fundamental solutions for 

this operator. I calculated explicitly the constants in the 

inequalities and studied their dependance on the operator. 

The "winning coefficients" of a nonzero operator P are the 

coefficients which may occur in the final inequality. These 

coefficients turn out to be the maximal elements Un the sense of a 
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Applying this method to the partial Fourier coefficients PA of 

the operator P, toqether with theorems 1 am 3, allows us to prove a 

sufficient coroition for the existence of a global furoamental solution 

for P on H x K. 

TI-E<lAEM s: /.et H t!lnd K .be rtMl /.ie groups, H solv4ble 

simply connected, K com,~Mct connected t!lnd G .be the d.irect 

product H x K. /.et P .be, h.i-.invf!II".J6nt lintMr d.J:fferenti8l 

operf!ltor on G t!lnd P A' A £ it its j:Jf!lrti8l Fourier coeffic.J·ents. 

A 

If far e8c/J A £ K is nonzero t!lnd .1r the 

folltH.1b19' condition .1s Sdt.Jsfied 

tlJen the opert!ltor P /Jds 8 fund8mtmt41 solut.J'on on G t!lnd 

If 0 = [ adKa £ U(h) is nonzero, then IOI' = [lapl for a8 
aeNn = 

winning coefficient. 

4 • CART AN M>T leN GRJ..PS 

Some of the above results can be extended to semi direct products of 

Lie groups. In this section we study the existence of fundamental 

solutions for left invariant linear diffe~ential ope~ato~s on Cartan 

motion groups. 
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Let G be a Lie group" A subgroup K of G is said to be 

reductive in G if there exists a vector space V such that 

q = k & V and Ad(K)V CV 
= = 

where g and k denote the Lie algebras of G and K respectively 
= 

and M is the adjoint representation of G, 

When the group G is semisimple, connected, with finite centre and 

K is a IOOXimal compact subgroup of G, the semidirect product 11 M K 

of 11 by K relative to this action is called the Carlan motion group 

associated to the pair (G,IO. 

The multiplication law in V ~ K is given by 

(v,k)(v' ,k') = (v+k.v' ,kk') for all v,v' c v and k,k' £ K, where 

k.v' = Ad(k)(v'). 

ln this situation, the relationship between existence of 

fundamental solutions for differential operators on G and V ~ K 

respectively is studied in [3]. using contraction maps. 

Since the group K is compact. 1-1e have a partial Fourier transform 

on II ~ K. 

Let P be a left invariant linear differential operator on V ~ K. 

As in the case of a direct product, the partial Fourier coefficients 

A 

PA' A £ K, of P are defined by 
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for every f t ~(V) and At K. They are left invariant differential 

operators on V. 

Let 

algebra V ~ k of V ~ K (here V ~ k is a direct sum of vector 

denote the correspondinq left invariant vector fields on V.K and V ~ K 

respectively. For a= <a1 .... 

.set 

and 

L~6: (IJ Forall X' e V. T' t k, f c S!J(V) 
.. 

and g e C (K) 

we have 

c~<.xvn<v)g(k) 

and 

( ii) For al J X' c V. f c ~ ( V). k c K. a c N and v c V. 
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PROOF (i) We have, fo~ X' c V, 

XV~K(f e g)(v,k) = ~tlt=O (f e g)((v,k)(tX',eK)) 

= ~tlt=O (f e g)(v+tk.X' ,k) 

d d 
= dtl [f(v+tk.X' )g(J~:)] = dtl (f(v+tk.X' ))g(k) 

t=O t=O 

= (.k.xyf)(v)g(k) 

and, fo~ r· € k, 

_g_ 
TVxK(f ~ g)(v,k) - dtlt=O (f e g)((v,k)(OV,exp(tT'))) 

= ~tlt=O (f ~ g)(v,kexp(tT')) 

= ~tlt=O [f(v)g(kexp(tt'))J 

= f(v) ~tl g(kexp(t'r')) 
t=O 

= HvHTKgHk>. 

(ii) Let f £ ~ (V) and put g(v) = f(k.v) for all v £ V, i.e. 

g=foAd(k) (k£10. 

Then. for X' £ V, 

(k X~f)( ) - g_ f(v+tk.X') ·-~ v - dtlt=O 

d -1 
= dtl Hk.(k .v+tx')) 

t=O 

d -1 
= dtlt=O g(k .v+tx') 

-1 = CX.ifgHk ,v). 

So 
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and, by induction, 

q,e.d, 

Let P £ U(V ~ k). According to the Poincare-Birkhoff-Witt 

theorem, P can be written 

where 

Then, for every f s oV(V) and A e K, we have 

P(f e A)(v,k) = L aaS[(k.xv)af](v)A(k)T~ 
(f.,fi 

PRGCf': For f s JJ (V) and A e K we have 

and applying lemma 6 

But 

So 

P(f B A)(v,k) [ a D ~ K(f ~ (T~))(v,k). 
a,fJ a,., ll 

TK8A(k) = A(k)T~ where T, = g_ A(exp(tTK)) 
" " dtlt=O 

P(f ® A)(v,k) = a:(J aaB ~liK(f ~ (AT~))(v,k) 

[ aa(J ~liK(f ~ A)(v,k)T~ 
a,IJ 
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and using lemma 6 again 

P(f 8 A)(v,k) = r aaB[(k.Xy)af](v)A(k)T~. 
a,8 

Now (PAf)(v) = P(f 8 A)(v,eK) 

hence 

= [a:saaB[(k.xy>af](v)A(k)r!ltk=eK 

= r aaB(~f)(v)r! 
a,8 

q.e.d. 

Furthermore, if we choose a system of coordinates <x1 •••• ,xn) on 

.... 
V. the partial Fourier coefficients P A. A £ K, of P can be written 

(1) 

where QA is a polynomial of n variables, with coefficients in 

Let U be an open subset in V and E be a distribution on 

U :a K. 

The partial Fourier coefficients E(v,A) of E are defined as 

follows: 

.... 
<E(v,A),f(v)> = <E(v,k),f(v)A(k)> 

.... 
for all A £ K and f £ .2> (U). 
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They are distributions on U with values in End(HA). Let 

If u is an endomorphism of a vector space, ffiu!HS denotes the 

Hilbert-Schmidt norm of u. Le. 

where u* is the tr&ce o!E 

We have the followinq characterization of distributions on U :ll K: 

be a famil_v of distr.i.but.ions .in 

.J) 'W, ) . The d.istr.flxn'!:.ions m:-e tile Fourier 

coeff.ic.ients !Hv .A) of a d . .istri.bution E on U :m K .if and 

if for every compact subset c .in U. tJJere ex.ist a con..::tant 

A } 0 and pos.itive .integers a and b such tbat 

for a11 !1 e K and f c iJ (U) suclJ tbat supp f c C. 

This result was proved in [4] in the case of the direct product 

Rn x K. The proof given in [4] can be easily adapted to the case of the 

semidirect product V ~ K. 

operator on the Ctlrtan motion ()roup V :li K. 

If tile opertJtor P 

(2) 

.tor everv E c JD · (V M K) 
A 

and I\<: K. 
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By definition of the partial Fourier coefficients of a distribution, ye 

have 

A 
<PE(v,A),f(v)) = <PE(v,k),f(v)A(k)) 

= (E(v,k),~(f u A)(v,k)). 

But ~(f e A)(v,k) = [~(f e A)] o R(Ov,k)(v,eK) 

t = P[(f ~ A) o R(OV,k)](v,eK) 

since the operator P is K-bi-invariant. 

Now, 

Therefore 

and 

= f(v' MOt 'k) 

= f(v' )A(k' )A(k) 

= (f e .1\Hv' ,k' )A(k). 

~[(f e A) o R<Ov,k)](v,eK) = [~(f e A)](v,eK)A(k) 

; [(~)Af](v)A(k) 

(~(v,A),f(v)> = <E(v,k),[(~)Af](v)A(k)> 
A t 

= <E(v,A),[( P)Af](v)) 

t t A 

= < [( P)A]E(v,A),f(v)). 

From these two propositions we deduce the following theorem: 

q.e.d. 
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be an open subset in V. 

Then P has a .fundamental solution on !.l :lll K .if and only .if,. 

en 

(4) ! :~eo=: ~1::.: U~ 
v f II: • v A II: K, 

By partial Fourier transform on K, 

·is equivalent to 

according to proposition 8, we have 

the.t:-e ex.ist a constent 

the equation PE = ~ 
V:!~~K 

So, P has a fundamental solution on U M K if and only if, for each 

that 

and the distributions A c K, are the partial Fourier coefficients 

of a distribution on U N K, 
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By proposition 7, this condition is equivalent to the inequalities 

q.e.d. 

This theorem allows us to give a necessary condition for the 

existence of a fundamental solution for K-bi-invariant differential 

of !'1, tlw.t is the transpose of the matrix of the cofactors of H. We 

have 

co co M.M = M. M = det H.I~ 
A 

where detll is the determinant of the matrix H. 

M(~) denotes the matrix whose coefficients with respect to this basis 

are where 

This definition does not depend on the choice of the orthonormal 

basis in HA and one has 

'~(t)•2 ' 'M(~)(a),H2S_ .... ~ 'HS = L .... ~ • ' 

a eN 

THEORavl 1 0: let V N K he a L':'&rt,:m mot.ion group and U &n open 

ne.ig-hbour/Jood of the or.iq.in in V. Let P he a K-b.i-.invariant, 

V >! K -.left .invar.iant .l.inettr d.ifferent.ial Oper<."ltor on V lll K and, 
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~ 

for A £ K, let Q A he the pol.}'1'101111.illl defined hy ( 1) for the 

oper11tor 1: (,)A]. 

l'he follot.~.if1!1 cond.it.ion 

,. 
3 A> 0, 3a £ N, lriA £ K 

(5) I <coo (0) > -~ 
det OA(~) - 0 and A - < AN(A)a 

(detOA (0)) HS 

.is 11 necess!IIY condition for the existence of 11 funt:kunent11l solution 

for P on U ll K. 

PRXlF Let P £ U(V • k) be K-bi-invariant. 
= 

If P has a fundamental solution on U ll K, then, according to 

theorem 9, for each A £ K, there exists a distribution 

EA £ ~'(U,End(HA)) on U satisfying (3) and (4). 

Since the operators t[(~)A] are differential operators on the 

vector space V, we can use the same arguments as in [ 4] to prove the 

necessity of the condition (5). The idea of the proof is to apply the 

inequalities (4) to particular functions. For the details we refer the 

reader to [4], p.576-577. 

q.e.d. 

5. TI-E EU:l.l DEAN M>T leN GFOJP 

In this section we apply the above results to differential 

operators on the Euclidean motion group H(2). 
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The group M(2) is the Cartan motion group V ~ K when V = R2 

and K = 50(2). In this case the group K acts by rotations on the 

Euclidean plane. 

H we choose a system of cooroiootes (x,y ,8) on M(2), with 

x,y, t R and 8 ~ T ~ R/2xZ, then the multiplication is given by 

(x,y,6)(x' ,y' ,8') = (x+x'cos6-y'sin8,y+y'cos8+x'sin8,6+8') 

Let m(2) be the Lie algebra of M(2), and let (X,Y,T) be a 

basis of m(2) with the brackets 

{
[X, 'l] = 0 
[X,T] = -Y 
[Y,T] = X 

(X,Y & V and T & so(2)). 

The corresponding left invariant vector fields are given by, 

for f c J:}(M(2)), 

{ 

(~( 2 )f)(x,y,9) = cosO ~! + sine :~ 

(Y f)( 8) = -sine £f + cos8 lf H(2) x,y, ax <ly 

ilf 
(TM( 2)f){x,y,6) = aB 

The dual K of K is here isomorphic to Z and we have, for 

n c Z, 
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the partial Fourier coefficients of P are given by 

for all n c z. 

lEM#I. 11: Let P be <i!! left invariant l.ine&~r d.ifferentiel opereto.r 

on H(2). 

(.0 .If P is K-.bi-invar.ient then 

O.i) Jf P .is H(2)-h.i-inv<flr.ient then 

f'RX)F: Since there is no ambiguity here (we consider only vector 

field~ on H(2)), we shall omit the subscript M(2) in this proof. 

(i) P is K-bi-invariant if and only if it satisfies [P,T) = 0. 

In the synm1etric algebra, this condition can be written 

This implies that P is of the form 

where Q is a polynomial of two variables, i.e. 
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UO l? is HC2)-bi-invariant if and only if it satisfies [P ,X] = 

[P,Yl = [P,Tl = D. 

Therefore 

[P,JO = ~'l,X] + ~'r,X] 

6P 
= ~ "' o. 

~nd since P is K-bi-invariant, ~e have 

tet P ~ U(m(2)) loo K-bi-invariant. 

Then 

t__ 2 2 at B 
-p "' [ 8 o:s<Xiic2) + Yl'H2)) < TM(2)) 

a,BcN 

q.e.d. 

(since (Y~( 2 ) + Y~(Z))a is M(2)-bi-invariant and t(~(2 ) + Y~(Z)) = 

x~(2) + Y~(2) L 

So, for all n 1': Z, t~e have 

= p -n 
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Therefore. (2) can be written 

A A 

PE(v.n) = P_0 E(v.n). 

on M(2). By lemma 11(ii), we have 

No~. P (considered as an operator on V) has a global fundamental 

solution F on V. 

0::: ) "" satisfies n n€ .. 

(4) since F is a distribution: for every compact subset C in V, 

there exist a constant A > 0 and a positive integer b such that 

(take U = V. and a= 0 in (4)). 

Hence we have the existence of a qlobal fundamental solution for P 

on M(2) by theorem 9. 

q,e,d. 
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