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ON ISQt.iORPHISMS OF ALGEBRAS OF OPERATORS 

The starting point of the investigations described here is 

Ponh:yag:in duality, If G is a locally compact abelian group, and G 

is its character group, i.e. the group Hom(G,T), then G = G, and 

G ~ G is a contravariant functor on the category LCAG of locally 

compact abelian groups, with morphisms being continuous homomorphisms. 

This theorem, together with its analytic versions, concerning the Fourier 

transfoanation, inspired substantial research on general locally compact 

abelian groups, and at the same time begged the question of what 

analogues hold for other groups, It is generally accepted that the right 

answer to this question involves the continuous unitary representations 

of G, as the natural analogue of Hom(G, 1'), but the structures 

involved are more complicated. 

To describe some further developments, a number of group algebras 

and spaces should be described, For a general locally compact group, G 

denotes the space of continuous irreducible tmitary representations R 

of G on a Hilbert space, HR, modulo unitary equivalence, If G is 

abelian, this coincides with the space G described before, but the fact 

that G is a group is lost unless one considers tensor products of 

representations (corresponding to multiplication of characters), which is 
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unpleasant in the non-abelian situation, since in general the tensor 

product of two irreducible representations is not irreducible. Some kind 

of (generalised) fmction space on G is neede{L The standard spaces 

include: 

(a) (L1(G),+,*), where the convolution product* is given by 

f*g(x) :::: -1 dy f(y) g(y X) 

[here dy is a left-invariant Haar measure on G]; (L1(G);+,*) is 

a Banach algebra which is commutative if and only if G is; 

(b) (M(G),+,*), the space of bounded measures on G, with * 
appropriately defined; 

(c) nnw:;;),+,*), the von Ne1..1Hllann algebra of G, obtained by taking the 

weak closure of 

acts on L2CG) by the left regular representation, A: 

(A(f)h)(x) = f*h(x). 

These algebras incorporate the group multiplication in the 

convolution product. Other algebras, which are always commutative, are 

defined using representations of G: 

(d) (A(G),+,.) is the function algebra (with pointwise operations) 

consisting of all coefficient functions of the regular 

representation A: 

u e A(G) ~ u(x) = (A(x)h,k> 

for some appropriate h,k in L2(G). 

(e) (B(G),+,.) is the function algebra of all coefficient functions of 

all unitary representations: 

Vx t G 
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for some unitary representation n (not necessarily irreducible) 

and vectors ~.n in H~. 

All these spaces can be naturally normed, e.g. 

It is obvious that 1':\(G) is a Banach algebra (+ and • correspond to 

sums and tensor products of unitary representations), but the proof that 

A(G) is an algebra involves some non-trivial operator theory. For a 

locally compact abelian group, G, we have some correspondences under 

the Fourier transformation: 

M(G) ..r--l> EI(G) B(G) +~ M(G) 

.. ~ 

VN(G) +--l> L (G). 

One can prove that VN(G) is always the dual space of A(G), which in 

the abelian case boils down to the familiar duality: 

CO A 1 A * 
L (G) = (L (G)) • 

This duality preserves the Banach space structure, but multiplication is 

lost. 

In the first half of this century, duality for compact groups was 

developed (Peter-Weyl theorem: Tannaka-Krein duality). In this half 

century, we have: 

Note that (VN(G),+,*) does not determine G; for example, 
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In the 1960's, it was observed that (VN(G)+,*,c), where c stands'for 

co-multiplication, does determine G. Knowing the co-multiplication c 

is equivalent to knowing the pointwise multiplication in the predual 

A(G); according toP. Eymard (1964), G "is" the Gelfand spectrum of 

A(G), i.e. the set of (continuous) multiplicative linear functionals on 

A(G), so G is a subspace of VN(G), which gets its multiplication from 

convolution in VN(G). 

H. Walter (1974) showed that (A(G),+,•) determines G, as does 

(B(G),+.·). The idea is that A is a special ideal in B, and that 

Aut(A(G),+,•) ~ Aut(G) x G. Walter picks out the elements of G as the 

translations in Aut(A(G),+.·)). This result seems to have satisfied 

many mathematicians, though some gluttons for punishment (French, 

Luukainen and Price (1982), McMullen (1984) .••• ) have continued working 

on duality. 

We now come to the main part of this discussion. One of the most 

pervasive puns in mathematics was perpetrated by M.M. Day (1957) when he 

called a group amenable if there existed an invariant~ on L .. (G). In 

the 1960's much work was done on amenability, and the following 

characterisation emerged: 

G is amenable if and only if A(G) has an approximate identity, 

i.e. there exists a net (ua) in A(G) with 

luaiA bounded 

ua ~ 1 uniformly on compacta 

(equivalently, uav ~ v in A(G) for all v in A(G)); 

for example, compact and solvable groups are amenable. These ideas 

filtered into Banach algebras and von Neumann algebras in the 1970's. 
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The next idea ~~as discovered by D.A. Kazhdan (1%7), and called "Properly 

T". He showed that some non-amenable groups have the trivial 

repr-esentation isolated in G. The constants are a direct slli!I!Mnd in 

B(G), and this property is equivalent to saying that there is no 

approximate identity in B(G) - C; it is a strong forrn of non

amenability. 

Kazhdan's applications of this idea were to the structure of 

lattices in simple Lie groups, i.e, large (cocompact or of cofinite 

volume) discrete subgroups r of qcoups like SL(n,R). He shows that 

if the rank of G is at least 2 (Le. n # 3 for SL(n,!R)), then 

f/[f : r] is finite. His ideas led to Margulis' Field's medal '1-linning 

work on rigidity of lattices in simple Lie groups. Recently, A, Connes 

has defined property T for arbitrary von Neumann algebras. 

I nm.< want to describe some joint work with U, Haagerup. We use the 

Banach algebra of completely bounded multipliers of the Banach 

algebra A(G)., These aref hssically, the ftmctions v on G with the 

property that for any u € A(G), u.v c A(G), and some extra stability 

properties. It is known that, if MO\CG)) is the space of multipliers of 

A( G), then 

B(G) ~M0(A(G)) ~M(A(G)), 

with equality for amenable G only (V, Losert, (1984)) and it is 

likely that all inequalitiss are strict if G is not amenable. We 

define 

unif, on co~Jacta}. 

We can compute AG for some groups: for G amenable, AG ~ 1, and for 

non-amenable G, 
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G "' SO(n, 1) (n~2) fiG = 1 not T De Canniere and Haagerup (1985) 

G = SU(n,1) (n~2) 1\;; = 1 not 1' Co1.!ling 1983) 

G "' 1) (n#2) "' 2n-1 T Cowling and Haagerup (198G) 

G = SL(n,R) (n~3) AG =+<> i Haagerup (1986) 

Haagerup (1986) defines similarly for an arbitrary von Neumann 

algebra at, and by using ideas from Kazhdan's paper. he shows that, if r 

is a lattice in a simple Lie group G, then and further he 

shows that if Of,= VN(f), A (]I;= .1\r· Then .1\ is a possibly-Property-T-

related index which distinguishes certain von Neumann algebras (VN(r)'s) 

of type xr 1 which, up to now, were not known to be different. In 

particular we have the following result, 

THEOREM (Cowling and Haagerup (1986)): J'he von Nee.mMmn r!llgehras of 

lr!ltt.ices .in SL{2,R) tmdSp(n,1) (n)2) M~? all dist.inct, 

The last development I want to mention is cu_rrent research, If G 

is a connected simple Lie group, non-compact, then I showed (1979) that 

and that, if G is not locally isomorphic to SO(n.1) or SU(n.1), 

there exists an index NG so that 

R. Howe (1980) showed that, for G = Sp(n,R), NG ~ 2n. and what we know 

about general simple groups indicates that, probably 
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+ (N/r t [a,b], a,b t R ). I am presently trying, on one hand, to push 

these results to lattices and from there to von Neumann algebras; on the 

other hand, it seems possible that one can show 

and that 

one should then identify A(G) in M0A(G), and pass to von Neumann 

algebras. (Actually, some parts of this programme already work). 

Last, but not least, let us ask: what is an invariant? Is the 

"cohomology functor" or the "nth Betti number" the "invariant"? Is one 

entitled to call AG or NG an invariant? Or is there a new theory for 

which AG and NG are the tips of the iceberg? 

-A few words about the proofs of these results will be in order. For 

a simple group G, there is always a maximal compact subgroup K, and 

harmonic analysis of K-bi-invariant functions is easier. For example, 

we set 

then there exists an approximate identity in M0(A(G))nCc(G) if and 

only if there exists one in M0(ACG)) nccCK\G/K); also. if 

analysis of K-bi-invariant functions is easier. For instance, L1(G) is 

not commutative, but L1CK\G/K) is, for *· Finally, * gets easier for 
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The "Iwasawa decomposition'" expresses G as ANK = SK, say, where 

left-K-invariance means that fl"' is constant on certain algebraic sets ., 

in s. Further, we may write Haar measure on G as 

dx = dsdk, 

where ds is left-invariant Haar measure on S, and dk is the Haar 

measure of K. for s in S, l~ in K, and f, f' in Cc(K\G/!0, 

f 5 f(s') f'(s' ds 

convolution on the smaller group S holds all the secrets. 

For calculating M0(G) norms, we use the following result: 

PA::FOSITICN: If f £ C(K\G/10, then f l'..ct .in !1 0(JHG)) .if 

ond only if f e M(A(G)) if ond only if f 18 is in B(S); the 

Finally, the problems related to passing to r are closely related 

to the problem of harmonic analysis on trees and graphs which have been 

described recently, by A. Figa-Talamanca and M.A. Picardello (1983), et 

al .. 
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