ASYMPTOTIC LIMITS IN MULTI-PHASE SYSTEMS

Greg Knowles

In this note we consider the asymptotic behaviour of an inviscid fluid with heat conduction. This work has been done in conjunction with J. Ball [2]. The fluid is assumed homogeneous and to occupy a spatial region $\omega \in \mathbb{R}^n$, where ω is bounded and open. At time t and position x e ω the fluid has density $\rho(x,t) \geq 0$, velocity $v(x,t) \in \mathbb{R}^n$, and temperature $\theta(x,t) > 0$. For simplicity we assume there is no external body force or heat supply. The governing equations are then

ρů	=	-	grad p		(1)
p	+	ρ	div(v)	= 0	(2)
ρÛ	÷	ρ	div(v)	+ div(q) = 0	(3)

where the dots denote material time derivatives, p is the pressure, U the internal energy density and q the (spatial) heat flux vector. The constitutive relations are given in terms of the Helmholtz free energy, $A(\rho,\theta)$ and specific entropy $\eta(\rho,\theta)$, by

 $p = \rho^{2} \frac{\partial A}{\partial \rho} , \quad \eta = -\frac{\partial A}{\partial \theta} , \quad U = A + \eta \theta$ (4) $q = q(\rho, \theta, \text{grad } \theta).$

We impose the boundary conditions

$$\mathbf{v} \cdot \mathbf{n} \bigg|_{\partial \omega} = 0$$
 (5)

where n = n(x) is the outward normal to $\partial \omega$ at x, and $\theta_0 > 0$ is constant.

We make the following hypotheses on A

- (i) A: $(0,b)x(0,\infty) \rightarrow R$ is continuous, where b > 0 is a constant
- (ii) for each fixed $\rho \in (0,b)$, $A(\rho, \cdot)$ is C¹
- (iii) for each fixed $\theta \in (0,\infty)$, the function

011

$$f_{\theta}(\rho) \triangleq \rho A(\rho, \theta)$$
 satisfies $\lim_{\rho \to 0^+} f_{\theta}(\rho) = 0$,

$$\lim_{\rho \to 0_{+}} \frac{f_{\theta}(\rho)}{\rho} = -\infty \quad \text{and} \quad \lim_{\rho \to b_{-}} f_{\theta}(\rho) = +\infty$$

(iv) the function $L(\rho, \theta) = \rho[U(\rho, \theta) - \theta_0 \eta(\rho, \theta)]$ attains a strict minimum in θ at $\theta = \theta_0$ for all $\rho \in [0,b]$, and $\lim_{\theta \to 0_+} L(\rho, \theta) = \lim_{\theta \to \infty} L(\rho, \theta) = \infty$ for all $\rho > 0$.

These hypotheses are satisfied by the classical van der Waals' fluid ([7]) for which

$$A(\rho,\theta) = -a\rho + k\theta \log[\frac{\rho}{b-\rho}] - c\theta \log\theta - d\theta + const$$
(7)

where a, k, c are positive constants.

The central mathematical tool in this study is the concept of a <u>Young</u> <u>measure</u> (originally called a generalized curve [9] or a parametrized measure). Namely if E is a compact subset of Rⁿ and Y a locally compact Polish space, the Young measures M(E:Y) are just those Radon measures on ExY whose projection onto E is dx, Lebesgue measure. M(E:Y) is topologized with the vague topology. We can alternately view a Young measure $\mu = (\mu_x)$ as a mapping $x \rightarrow \mu_x$ from E into the probability measures on Y, $M_1^+(Y)$, measurable w.r.t. the vague topology on $M_1^+(Y)$ ([8]). Then $\mu^n = (\mu_x^n) \rightarrow \mu = (\mu_x)$ vaguely, if

 $\int_{E} \int_{Y} f(x,y) d\mu_{x}^{n}(y) dx \rightarrow \int_{E} \int_{Y} f(x,y) d\mu_{x}(y) dx$

for every f $\in C_0^{\infty}(ExY)$.

Given a measurable function g:E+Y, we can associate it with the Young measure $\mu^g = (\delta_{g(\chi)})$, where δ is the Dirac measure. We say a sequence of such functions $g_n \rightarrow \mu$ vaguely, if $\mu^{g_n} \rightarrow \mu$. This is equivalent to $F(g_n) \rightarrow \int_{Y} F(\lambda) d\mu_{\chi}(\lambda)$ in $L^{\infty}(E)$ weak *, for every continuous F: Y + R with compact support ([8]).

To study the asymptotic behaviour of solutions of (1) - (3) we recall a classical result of Duhem [4] (see also [3] for extensions to non-constant θ_0) that

$$E(\rho, v, \theta) \triangleq \int_{\Omega} \rho \left[\frac{1}{2} |v|^{2} + U(\rho, \theta) - \theta_{0} \eta(\rho, \theta) \right] dx \qquad (8)$$

is a Lyapunov function, Of course, we also have conservation of mass

$$\int \rho dx = M$$
(9)
 ω

So if $(\rho(t), v(t), \theta(t))$ is a solution, and $t_j \rightarrow \infty$, then $(\rho(t_j), v(t_j)), \theta(t_j))$ will be a minimizing sequence for E subject to (9), and hence to obtain information about the asymptotic limits of solutions of (1) - (3) we are led to firstly characterize the limits of all minimizing sequences of E, which is (non-convex) problem in the Calculus of Variations. It is an open (and much more difficult) question as to whether all of these limits are actually attained by solutions of (1) - (3) for varying initial conditions (partial results of this type are given in [1]).

We assume that $\partial \omega_2 \neq \phi$. Similar techniques can be used to analyse the Neumann problem, although it is somewhat more complicated. The details are given in [2]. The assumptions on L (assumption (iv)) imply that the integrand in (8) has a strict minimum, for fixed ρ , when v = 0 and $\theta = \theta_0$. Motivated by this we firstly consider the problem of minimizing

$$I(\rho) \stackrel{\Delta}{=} \int_{\omega} \rho[U(\rho, \theta_{0}) - \theta_{0} \eta(\rho, \theta_{0})] dx$$
(10)
$$= \int_{\omega} f_{0}(\rho(x)) dx$$
(11)

amongst measurable functions $\rho:\omega \rightarrow [0,b]$ satisfying (9), where f_{θ_0} (b) is defined to be $+\infty$ to match assumption (iii). Then we shall characterize the solution of the full problem in terms of the minimizers of (10), (11).

We denote by f^{**} the lower convex envelope of f_{θ_0} , i.e. $f_{\theta_0}^{**}(\rho) = \sup\{\alpha + \beta \rho : \alpha + \beta t \le f_{\theta_0}(t), \text{ for all } t \in [0,b)\},$ (12)

204

and the subdifferential by,

$$\partial f_{\theta_0}^{**}(\rho) = \{ \beta \in \mathbb{R} : f_{\theta}^{**}(\rho) + \beta(t-\rho) \leq f_{\theta_0}^{**}(t), \dots, \},$$
(13)

and the Weierstrass set by

$$\mathcal{W} = \{ \rho \in [0,b) \colon f^{**}(\rho) = f(\rho) \},\$$

(${\it W}$ consists of the "points of convexity" of f). Finally define θ_{0}

$$M = M/meas(\omega)$$
(14)

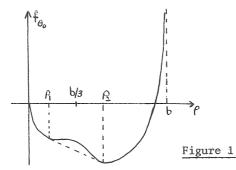
(the mean mass) and

$$S(\vec{M}) = \{\rho \in (0,b): \partial f_{\theta_0}^{**}(\vec{M}) \subset \partial f_{\theta_0}(\rho)\}$$
(15)

It is easily seen that $S(\overline{M}) \subset W$ and that \overline{M} belongs to the convex hull of $S(\overline{M})$. For the van der Waals' fluid with $\frac{ab}{k\theta_0} > (\frac{3}{2})^3$ there exists one non-trivial common tangent to the graph f_{θ_0} with end points ρ_1, ρ_2 as shown in fig. 1. The Weierstrass set

$$W = [0, \rho_1] \cup [\rho_1, b),$$

 $S(\overline{M}) = \begin{cases} \{\overline{M}\} & \text{for } \overline{M} \in (0, \rho_1) \cup (\rho_2, b) \\ \\ \{\rho_1\} \cup \{\rho_2\} & \text{for } \rho_1 \leq \overline{M} \leq \rho_2. \end{cases}$



Since $f_{\theta_0}(\cdot)$ is, in general, not convex, we introduce a relaxed problem which is convex, and which has the same minimum as I. We use the theory of Young measures introduced by L.C. Young [9], which are now playing an increasing role in the study of non-linear partial differential equations, (Tartar [8]). This approach is motivated by the following consideration, if $\delta_{\rho(\mathbf{x})}$ denotes the Dirac measure supported at $\rho(\mathbf{x})$, $0 \leq \mathbf{x} \leq \mathbf{b}$, then

$$I(\rho) = \int_{\omega} f(\rho(x)) dx = \int_{\omega} \int_{\theta_0}^{b} f(\rho) d\delta_{\rho(x)}(\rho) dx.$$
(16)

consequently, if ν = ($\nu_{\chi})$ $\varepsilon~$ M(0,b) is a Young measure, and we define

$$\hat{I}(v) = \int_{\omega}^{b} \int_{0}^{b} f(\rho) dv_{x}(\rho) dx$$
(17)

then $\hat{I}(\delta_{\rho(x)}) = I(\rho)$, and the functional I is now linear in v. Similarly, the constraint (9) can be generalized as

$$\int_{\omega}^{D} \int_{0}^{D} \rho dv_{x}(\rho) dx = M$$
(18)

The characterization of the minimizers and minimizing sequences for (10), (11), (17), (18) can now be stated (for proof see [2], also [5] for related results).

Theorem

(a) The minimum of I(v) subject to (18) is attained. The minimizing Young

measures $\overline{\nu}$ are exactly those satisfying (18) for which $\sup_{X} \overline{\nabla} C S(M)$ a.e. $x \in \omega$.

(b) The minimum value of I subject to (9) is the same as that of I(v) subject to (18), and is attained exactly by the functions ρ satisfying (9) and such that $\rho(x) \in S(\overline{M})$ a.e. $x \in \omega$.

(c) Let $\{\rho_i\}$ be any minimizing sequence for I subject to (9), then there exists a subsequence $\{\rho_{\mu}\}$ and a minimizing Young measure $\bar{\nu}$ for \hat{I} subject to (18) such that $\rho_{\mu} \rightarrow \bar{\nu}$ in the sense of Young measures. Conversely, given any minimizing Young measure $\bar{\nu}$ for \hat{I} subject to (18) there exists a minimizing sequence $\{\rho_{\mu}\}$ of I subject to (9) converging to $\bar{\nu}$ in the sense of Young measures.

Note that part (b) of the Theorem states that only values $\rho \in W$ can be observed in an absolute minimizer, this is the classical <u>Weierstrass con-</u> <u>dition</u> of the calculus of variations. Sometimes it is asserted that because of this 'stability' condition f must be convex; the correct interpretation has been pointed out, by Ericksen [6].

We are now in a position to state our characterization of the minimizers and minimizing sequences of E.

<u>Theorem 2</u> The absolute minimizers of E in the space of bounded measurable functions subject to (9) are of the form $(\rho^*, 0, \theta_0)$ where $\rho^*(x) \in S(\overline{M})$ a.e. x $\in \omega$. For any minimizing sequence $(\rho_j(x), v_j(x), \theta_j(x))$ of E subject to (9), there holds, $v_j(x) \rightarrow 0$, $\theta_j(x) \rightarrow \theta_0$ a.e. x $\in \omega$, and there exists a subsequence $\rho_u \rightarrow \overline{v}$ vaguely, where supp $\overline{v} \subseteq S(\overline{M})$, a.e. x $\in \omega$. There is an interesting possible "physical" explanation of the convergence of the densities $\rho_{\mu} \rightarrow \bar{\nu}$, and the limit "density" $\bar{\nu}$, in the case it is measure. It could represent the creation of "mist" where the phases are mixed more and more finely as $t_{\mu} \rightarrow \infty$, as energy is transferred to higher and higher modes by the non-linear dynamics. Hence in the limit we can really only talk about the probability of the different material phases in a given region of ω . Young measures would seem a natural way to analyse this energy transfer in non-linear systems. Of course, as pointed out earlier, showing that such limits are <u>actually realized</u> from certain initial conditions by <u>solutions</u> of <u>the pde</u> is much more difficult, and seemingly, as yet, unresolved problem. Numerical studies could illuminate this point

REFERENCES

- G. Andrews and J.M. Ball, Asymptotic behaviour and changes of phase in in one-dimensional viscoelasticity, J. Differentials Equations 44(1981), 306-341.
- [2] J.M. Ball and G. Knowles, forthcoming.
- [3] J.M. Ball and G. Knowles, Lyapunov functions for thermomechanics with spatially varying boundary temperatures, Arch. Rat. Mech. Anal. 92(1986), 193-204.
- [4] P. Duhem, Traité d'Energetique ou de Thermodynamique Générale, Gauthier-Villars, Paris, 1911.
- [5] J.E. Dunn and R.L. Fosdick, The morphology and stability of material phases, Arch. Rat. Mech. Anal. 74(1980), 1-99.
- [6] J.L. Ericksen, Thermoelastic stability, Proc. 5th National Cong. Appli. Mech. (1966), 187-193.

208

- [7] L.D. Landau and E.M. Lifshitz, Statistical Physics, Pergamon, Oxford, 1970.
- [8] L. Tartar, Compensated compactness and partial differential equations, in Nonlinear Analysis and Mathematics: Heriot-Watt Symposium, vol IV, pp 136-212, R.J. Knops, Pitman, London, 1979.
- [9] L.C. Young, Lectures on the calculus of variations and optimal control theory, W.B. Saunders, Philadelphia, 1969.

Department of Electrical Engineering Imperial College London