
281 

INTEGRATION OF CONUCLEAR 

SPACE VALUED FUNCTIONS 

(dedicated to Professor Igor Kluv§nek) 

Susumu Okada 

In the classical theory of the Lebesgue integral, the space of 

integrable functions is introduced as the completion of the space of 

simple functions (or of continuous functions), with respect to the 

topology of convergence in mean, that is, the uniform convergence of 

indefinite integrals. However, if the space of simple functions 

taking values in a Banach space X is considered, then its completion 

can only be realized as the space of integrable functions with values 

in some locally convex space larger than X (see [6]). 

In this note, it is shown that the space of integrable functions 

with values in a conuclear space Y is sequentially complete with 

respect to the topology of convergence in mean. Further, the Y-valued 

simple functions form a dense linear subspace. In this case, there is 

no necessity to integrate functions taking values in a locally convex 

space larger than Y . The class of conuclear spaces includes the 

spaces V, V', E, E', S and S' which arise in distribution theory, 

as well as the product space and the locally convex direct sum of 

countably many copies of the real line. 
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1. THE ARCHIMEDES INTEGRAL 

The real or complex numbers will be referred to simply as 

scalars. 

Let n be a non-empty set. To save subscripts and circumlocution, 

subsets of n will be identified with their characteristic functions. 

Let A be a a-algebra of subsets of n . For a subset E of n , 

let EnA = {EnF : FEOA} • Let A be an extended real valued non-

negative measure on the a-algebra A and let AA = {EEOA: A(E) < oo} 

Let X be a Banach space with norm I· I . The following lemma is 

well-known (cf. [6,Lemma 1]). 

LEMMA 1. Suppose that aj EO X are veato:r>s and Ej EO A sets, j 

suah that 

(1) L Ia ·I A (E.) <"' 
j=l J J 

and also suah that the equality 

"' L a.E.(w) = 0 
j=l J J 

holds fo:r> eve:r>y w EOn satisfying the :r>elation 

(2) 
"' L la.!E.(w) <oo 

j=l J J 

Then, the equality 

holds. 

L a .A(E .) 0 
j=l J J 

1, 2, .•• ' 

Recall that a strongly A-measurable function. f on n is said to 

be Bochner A-integrable if the non-negative valued function lfl is 

A-integrable (cf. [2,Chapter II]). 
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According to [ 4] , a func: tion f : Q +X is Bochner A -integrable 

if and only if there exist vectors c. EX 
J 

and sets 

such that (1) holds and such that the equality 

f(w) I c .E .(w) 
j=l J J 

holds for every wE Q satisfying (2) For such a function f , the 

indefinite Bochner integral fA. : A+ X is defined by 

(3) (fA.)(E) "f. c.A(E.nE) 
j=l J J 

The set function fA. is well-defined by Lemma 1, and it is a-additive 

by the Vitali-Hahn-Saks theorem (cf. [2,Corollary 1.5.10]). Furthermore, 

its variation JfA.J is finite. 

The proof of the following lemma is omitted because it is proved 

similarly to Theorem 3 of [6] . 

LEMMA 2. Suppose that fn : Q +X , n = 1, 2, ... , are Bochner A.-integrable 

functions for which 

L lfnAJ (Q) <co 
n=l 

Let f : Q + X be a function such that 

for every wE Q for which 

I lfn(w) I <co 
n=l 

Then, the function f is Bochner A-integrable and 

N 
limJfA.- If AJ($1) 0. 
N->-co n=l n 
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Let Y be a locally convex Hausdorff space and Y' its dual space. 

Denote by P(Y) the collection of all continuous seminorms on Y • A 

sequence {Wn}~=l of subsets of Y is called unconditionally summable 

if, for any choice of wn"Wn' n = 1,2, •.• , the sequence {wn}~=l is 

unconditionally summable in Y 

A function f: ~-+ Y is said to be Archimedes /..~integrable if 

there exist vectors c. E Y and sets E. E A, j = 1,2, ... , satisfying the 
J J 

following two conditions: 

(i) the sequence {c.A.(E.nA)}"': 1 J J J= 
of subsets of Y is uncondition-

ally sumrnable; and 

(ii) if y' E Y' , then the equality 

(y' ,f(w)) L (y ',c .)E .(w) 
j=l J J 

holds for every w E n for which 

L l(y',c.)IE.(w)<co 
j=l J J 

The indefinite integral fA of such a function f with respect to 

the measure A. is defined as in (3). By Lemma 1, the indefinite 

integral fA. is a well-defined Y-valued set function on A . It is 

a-additive by the Vitali-Hahn-Saks theorem and the Orlicz-Pettis lemma. 

Let f: 0.-+ Y be an Archimedes A.-integrable function. For every 

y' E Y' , let (y 1 ,f) be the function defined by 

(y',f)Cw) 

For a continuous seminorm p on Y , define 

sup I (y ',f)A. I (~) ' 

where the supremum is taken over all vee tors y ' E Y 1 satisfying 
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l(y',y)l ~ p(y) for every yEY. 

The space of all Y-valued Archimedes A-integrable functions on Q 

will be denoted by L(A,Y) , and will be equipped with the topology 

given by the seminorms pA , p E P(Y) , that is, the topology of 

convergence in mean. The set of all AA-simple functions on Q is then 

dense in the space L(A,Y) 

If Y is an infinite dimensional Banach space, then the space 

L(!,,Y) is not always complete. In this case, the space L(A,Y) coincides 

\vith the space of all Y-valued, strongly measurable, Pettis A-integrable 

functions on Q , which is not complete if A is a non-atomic measure 

(see [8,p.l31]). Therefore, it is necessary to integrate functions with 

values in a locally convex space which is larger than the Banach space Y 

needed to accommodate the values of indefinite integrals (see [6]). 

2. INTEGRATION OF CONUCLEAR SPACE VALUED FUNCTIONS 

A balanced convex bounded subset of a locally convex space will be 

called disked. 

Let Y be a sequentially complete locally convex Hausdorff space. 

The linear space YB generated by a closed disked subset B of Y is a 

Banach space, equipped with the gauge of B (cf. [l,Lemma III.3.1]). 

Let C be a collection of closed disked subsets of Y . The 

space Y is said to be conuclear with respect to C if, for each set 

BE C , there exists a set C E C which includes B and for which the 

canonical injection from YB into YC is a nuclear map. For the 

properties of conuclear spaces, see [7], 

THEOREM 3. Let A be an extended real valued non-negative measure on a 

a-algebra A of subsets of a non-empty set Q . Suppose that the space y 
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is aonuaZear~ with respeat to a aoZZeation C of aZosed disked subsets 

of Y, whiah has the property that every weakZy aompaat subset of Y is 

inaZuded in a set from C • Then~ the spaae L(J.. ,Y) is sequentially 

aompZete with respeat to the topology of aonvergenae in mean. 

Proof. Take a Cauchy sequence {fn}~=l from the space L(J..,Y) • Then, 

for every E 10 A , the sequence { (fnJ..) (E) }~=l of vectors is convergent to 

a vector ~(E) in Y since Y is sequentially complete. It follows, 

from the Vitali-Hahn-Saks theorem and the Orlicz-Pettis lemma, that the 

so-defined set function 1.1: A-+Y is a vector measure. Hence, the range 

l.I(A) of 1.1 is a relatively weakly compact subset of Y (cf.[S]). Since 

every nuclear map is compact, there exists a set B belonging to C 

which contains l.I(A) , such that 1.1(A) is a relatively compact subset of 

YB Then, the set ·function 1.1: A-+YB is a vector measure; that is, it 

is a-additive with respect to the topology given by the gauge of B . 

Choose another set C from C which contains B and for which 

the canonical injection J: YB-+YC is a nuclear map. There exist·, an 

absolutely summable sequence {ajlj=l of scalars, a bounded sequence 

{~jlj=l of vectors in the dual of YB , and a bounded sequence {yjlj=l 

of vectors in YC , such that the equality 

00 

J(y) l. a .(c.y)y. 
j=l J J J 

holds in YC (cf. [7, Chapter IV, Part II]). For every j 1,2, ... , 

vanishes outside the union of countably many sets belonging to A). 

the Radon-Nikodym theorem ensures the existence of a scalar valued 

).-integrable function g. 
J 

such that 

Further, by the Nikod§m boundedness theorem, there exists a positive 

number M for which 

Thus, 
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1, 2, 0 0 0 

Now, the functions h.(w) = a.g.(w)y. 
J J J J 

for 

every w E S1 , j = 1, 2,. . . , are Bochner f.-integrable, with the property 

that 

Define the function f : S1 + Y C , by 

f(w) I h .(w) 
j=l J 

for each wE S1 with 

l, jh.(w)j <oo, 
j=I J 

and by f(w) = 0 otherwise. It then follows from Lemma 2 that f is 

Bochner f.-integrable and that 

(ft.)(E) l, (hof.)(E) I a.(g.t.)(E)y. 
J =I J j=l J J J 

00 

I a.(t;.,]l(E))y. J(]l(E)) 
j=I J J J 

for every E E A • 

It is now clear that the function f belongs to the space L(f.,Y) 

and the sequence {fn}~=l is convergent in mean to f . 

If A is a-finite, then the arguments in the proof of the above 

theorem can be used to prove the following. 

COROLLARY 4. Suppose that the space Y satisfies the assumption in 

Theorem 3 and also that Y is quasi-complete (respectively complete). 

Then, the space L(),,Y) is quasi-complete (1oespectively complete) for 

every a-finite non-negative measure f. . 
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A sequentially complete locally convex Hausdorff space is called a 

conuclear space if it is conuclear with respect to the collection of all 

closed disked subsets. It follows from [7, Theorem IV.l, Part II] that 

the spaces V', f, E', S and S', used in distribution theory, are 

all complete conuclear spaces. 

EXAMPLE 5. Let A be the Lebesgue measure in the Euclidean space 

rl = JRn , n 1, 2, ',. Let S be the Schwartz space of rapidly decreasing, 

infinitely differentiable functions on rl , and let S' be its dual 

space equipped with the strong dual topology. Define the Fourier 

transform <P of a function ¢ E S by 

for every 8 E Q • Let f : Q + S' be the function defined by 

(f<w),¢) ¢<-w) ,¢ E S 

for every w E Q • 

If y is a locally \-integrable function on Q which grows at 

infinity more slowly than a polynomial, then the function yf : Q + S 1 is 

Archimedes \-integrable. Indeed, for every ¢ E S and every Borel 

subset E of Q , 

JE (f(w) , <P )y (w) dl- (w) 

JE¢(-w)y(w)d:l.(w) 

Since the Fourier transform ¢1+ ¢, ¢ E S , is a continuous linear map 

from S into itself and since y belongs to S' , there exists a vector 

measure ~ , which is defined on the Borel a-algebra of rl and takes 

values in S' , such that, for every Borel set E , 
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(ll(E),.p) 

In view of the proof of Theorem 3, there exists an Archimedes 

A.-integrable function g: S1+S' such that Jl "'gA. • Since the space 

S, which is the dual space of S' , has a countable total subset, it 

follows that yf is A.-almost everywhere equal to g • Hence, yf is 

Archimedes A.-integrable. 

EXAMPLE 6. Let A. be the Lebesgue measure, in the space S1 :.]Rn 

equipped with the Euclidean norm 1·1 , n"' 1,2, •..• Define the function 

f : S1 + S' as in Example 5. For every real number t , let 

then Example 5 implies that the function ytf : S1 + S' is Archimedes 

A.-integrable. Moreover, for each real number t , the tempered distri-

bution (<Ytf)A.)(n) equals the difference of two oscillatory integrals 

<I>(t,x) "'(27T)-nfn (2ilwl)-lei((x,w)+tlwl)d::\(w) -

- (27T)-nfn (2ilwl )-1 ei<(x,w)- tlwl) d::\(w) 

with phase functions (x,w)t+(x,w) + tlwl and (x,w)t+(x,w)- tlwl , 

(x,w) En X n ' respectively. Let /'; denote the Laplacian in n and 

c0 the Dirac measure at the origin of n As noted in [3, Example 7.8.4], 

the distribution <I> is a solution of the Cauchy problem 

0 in lR x n; <I> ( o, · ) c0 when t 0 • 

Finally, the author wishes to thank Brian Jefferies for valuable 

discussions concerning conuclear space valued measures. 
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