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NeiL S. Trudinger 

In this talk we describe a relatively simple approach to the 

Schauder estimates for general elliptic systems of the type considered 

by Douglis and Nirenberg [1]. Our method, as presented in the 

lectures [6], requires neither preliminary singular integral estimates 

as in [1] nor auxiliary existence results as in those proposed by 

Campanato, (see ), and Safonov [5]. Instead our procedure ;nvolves 

the direct deduction of the Holder estimates from the corresponding L2 

estimates for the constant coefficient case, by means of mollification. 

It is also readily extended to more general classes of operat .. ,s. In 

the special case of a single second order equation, the classical mean 

value inequality for subharmonic functions can be used in place of the 

L2 estimates. 

To illustrate the technique, we confine attention here to elliptic 

systems of the form, 

N 
(1) I 

j=l 
I 

lal=s., 
l 

lf3l=t. 
J 

with complex valued coefficients 

i,j = 1, ... N, Ia I Si, I /31 = tj, 

ij 
aa/3 

in 

I 
lal=s. 

l 

and inhomogeneous 

C' (IRn), 0 < 'Y < 1 

terms fi 
a 

with 

si,ti, i = l, ... N non-negative integers. The full generality of [1] 

may be recovered by some modification together with the standard 

interpolation inequalities, ([!],Section 2,[3],Section 6.8). Indeed we 
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shall only describe the proof here for the case of constant si,ti and 

solutions u = (u1 , ... ~) with compact support. 

The system (1) is elliptic if the determinant of its symbol doesn't 

vanish, that is 

(2) 

-F-0. 

for any E € m~{O}. X € mn. Since ~ is a homogeneous polynomial in 

of degree m = L(s.+t.), 
l. l. 

it is convenient to assume 

(3) l~(x,f)l ~ Alflm, 

for all f,x € mn and some positive contant A . 

In order to formulate the Schauder estimates we recall from [3], 

the following notation for ~older norms and seminorms on an open subset 

(4) 

[u]-r·O = sup 
• x,y€0 

lu{x}-u{y} I 
lx-yi'Y 

When n = mn , we shall write simply lul0 • [u] , lulk . We can now 'Y ,'Y 

assert the following Schauder estimates. 
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u = satisfy (1). 

have the estimates, 

(5) 

where C is a constant depending only on n,N,i,A,m, 1~1 0 

and where ~ = JaijR i,j = l, ... N, lal = s .. i/31 = t,}. 
l a,,.,, 1 J 

f = {r!, i = l, ... N, lal = s1}. 

Then we 

We will deduce Theorem 1 (at least for constant si,ti) f1om the 

corresponding L2 estimate for the constant coefficient case. 

l.e!lima 2 Suppose the coefficients are constant and 

i,j = l, ... ,N, Ia! = s .• 1131 = t .. 
1 J 

Then if i =L ... N. 

satisfy the system (1) we have the estimcttes, 

(6) 

where C is a constant depending only on n,N,m,A and 1~1 0 . 

The estimate (6) follows immediately by Fourier transformation of 

(1). In order to use Lemma 2, let us specialize now to the case 

si = s, ti = t 

form, 

(7) 

fix a point x0 € ffin and write the system (1) in the 
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For positive T , we now invoke the mollification of u , given by 

(8) u(x,T) = u (x) = T-n I p(x-y) u(y)dy 
T T 

where the mollifier p is a fixed, non-negative 

vanishing outside the unit ball and such that Ip 
equation (7) we get the corresponding equation for 

(9) 

co n 
C (!R } function, 

= 1. By mollifying 

u7 , namely 

Since the mollified functions u and gT are smooth on !Rnx!Rn we can 
T + 

differentiate equation (9) , k ~ 1 times to obtain for v = Dku the 
T 

equations, 

(10) 

We now apply a localized version of Lemma 2 which follows by replacement 

of u by ~u for a suitable cut-off function ~-

ellipticity condition (3) holding at x0 . Then for any 0 < a < a' < 1 

we have 

(11) 

where C is a constant depending on n,N,s,t,A and 1~1 0 . 
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Taking k l t and using Lemma 3, in conjunction with 

interpolation, we obtain an estimate 

(12) 

provided 

given by 

(13) 

u is normalized s'o that Dtu(x ) = 0 • T ~ R and A is 
0 

But now, fixing k + s > 1 + ~ andusing. the Sobolev imbedding theorem, 

we obtain 

sup ID1+tu I < C { Dt -{k+s)Rk+s+~A} T - R osc u + T 

BR/2 B2R 

so that. in particular, 

(14) 
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where as above C depends only on n, N, s, t, ~ and l.s41 • 
0 

The final 

key to our approach is the equivalence of the semi-norms [v]'Y and 

(15} 

(In fact, in our notes [6], we employed the operator, 

instead of D but Professor G.C. Dong kindly pointed out that the 

spatial gradient is sufficient for this equivalence). We therefore 

deduce from (14), 

where now C also depends on '1' , so that by fixing T to make the 

ratio T/R sufficiently small, we obtain the Holder estimate, 

(16) 

from which (5), (in the case ti-t), follows by interpolation. 

Remarks(i) Second order equations. In the case of a single second 

order equation, s + t = 2, N = 1, the classical mean value inequality 

for subharmonic functions, ([3], Section 2.1) can be applied directly to 

equation (10) with k = 3 , to yield the estiwate (14). Details are 

carried out in [6]. 
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{ii) Est:ima.t:es at: t:be boundary. For the single second order 

Dirichlet problem, these can be deduced from the corresponding interior 

estimates by means of reflection. The oblique boundary value problem is 

readily reduced to the Dirichlet problem {with s replaced by s+1) 

and interior estimation {with n replaced by n-1). Again, details are 

carried out. in the lecture notes [6]. In more general cases, we have so 

far not been able to avoid the use of auxiliary existence results. 

{iii) LP est:ima.t:es. As is known (see for example [2]), these can 

be deduced by interpolation of L2 and Schauder estimates, utilizing 

the space BMO of functions of bounded mean oscillation. As an 

immediate corollary of Theorem 1, {with~= constant) and Lemma 2, we 

can for example extend {6) to 

with the constant C also depending on p, 1 < p < ro 

{iv) Nonlinear equations. The mollification characterization of 

Holder continuity can also be used to recover Safonov's general results 

on second derivative Holder estimates for fully nonlinear elliptic 

equations [5], although in this situation the procedure is closer to 

that of Safonov. We also emp.loyed this technique in [6] to extend his 

results to oblique boundary value problems; (see also [4]). 
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