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A COUNTEREXAMPLE TO LOCALIZATION FOR MULTIPLE 

FOtl'RIER SERIES 

John Price and Larry Shepp 

ABSTRACT 

An explicit description is given of a real-valued function f 

on 
2 

[-n,n] which is zero in a neighbourhood of 0 but for 

which the square partial Fourier sums 

Furthermore, the function is infinitely 

differentiable everywhere except along the y-axis where it is 

continuous. Also its support is contained in a square at 

dis·tance n/2 from 0 and the square may be chosen to have 

arbitrarily small sides. Finally, neither of the axes 

intersect the interior of the support of f. 

Roughly speaking, localization for Fourier series means that the 

behaviour of a Fourier series at a point {or set) depends only on the 

function in a neighbourhood of that point (or set) . For example, in one 

dimension if an integrable function f is zero in a neighbourhood U 

of 0, then its Fourier series converges uniformly to zero on every 

compact subset of U [6]. Igari [4] showed that this is not the case 

for square summation in dimensions exceeding 1. Analysis of his proof 

shows that he established the following: (by using the Banach-Steinhaus 
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uniform boundedness principle and estimates of certain linear 

functionals) : 

1. THEOREM There exists a continuous function f 
d' 

on C( [-~t,lt] ) , d 2: 2, 

which is zero in a neighbourhood of 0 such that 

(1) lim sup~Nf(Q, ... ,O) = ~. 

Here l: I I I I f (n1' ... 'nd> ' . n1 SN, ... , nd SN 
where the 

make up the usual Fourier coefficients in d-dimensions, 

that is, 

Since we are dealing with square partial sums, 

Using more constructive methods, Goffman and Liu [3] describe an 

everywhere differentiable function f of two variables which does not 

have the localization property. Since DN(x)DN(y) is bounded as N ~ ~ 

except along the axes (and their 2~t-translates), the criteria of 

whether or not a function possesses the localization property will 

necessarily involve the relationship between the support of the function 

and these axes. In the example of Goffman and Liu an axis passes 

through the interior of the support of f. 
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In this note we give a quite explici·t method for constructing a 

function as described in the abstract. As shown by Proposition 5, this 

example is best possible in a number of senses. 

For further information on multiple Fourier series and the 

localization property, see Ash [1] or Zhizhiashvili [5] and the 

references given there. We mention in particular the extension of the 

Carleson-Hunt theorem due to Fefferman [2] that if f e Lp([-n,n]d), 

p > 1, then SNf ~ f almost everywhere as N ~ =. 

2. THE FIRST EXAMPLE For me let (m) 

m 
5(22 -1)/2. 

(Notice that the fractional part of (m) is always Choose n e 

with n ~ 10 and define 

sin Y. X 
2 

s y :5 11: + ~) 
2 (n) 

~= sin(m)y x 
m=n 

-1/2 2m (n/2+2nj 3n/4+2nj) 
m E j=O X (m) S x S • • (m) , 

where x<asxsb) is the characteristic function of the interval [a,b]. 

Some immediate obs.erva·tions are: 

(i) All the intervals in x are disjoint. 

(ii) The period of sin(n)y is 2n/(n) and this is divisible by 

2n I (m), the period of sin(m)y, for each m ~ n. Hence the functions 

{sin(m)y m ~ n) are orthogonal on rc !!.. 2rc [2, 2 + (n)]. Furthermore, on 

this interval 

f sin(m)y sin(m)y dy = n/(n) for m ~ n. 

(iii) The support of f is con·tained in a rectangle with sides 

(3n/4 + 2n2n) I (n) x 2n/ (n), and so can be made as small as ''le please by 

taking n sufficiently large. 
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(iv) Because of the disjointness of the intervals in x and the 

factor 
-1/2 

m , f(x,y) ~ 0 as X~ 0+ for ea.ch value of 

We now state and prove the crucial property of f: 

PROPERTY lim s 1 f(O,Ol 
(N) -2 

P:r·oof. Application of the definition of f gives 

S 1 f(O,Ol 
(N)-2 

3lt /4+2::ti 

as 

_1_ E"" m-1/2 

(Zn) 2 m=n j=O 
J (m) 

:EJ?+2nj 
(rn) 

sin (N)_?E d." x 
sinx/2 

n: 2n: -+-

.( (n) 

2 

sin y/2 sin(m)y sin(tllY d 
siny/2 y. 

After cancelling siny/2 and applying the orthogonality properties 

1.2(ii), this expression becomes 

.2!_ __ 1~ N-1/2 

(n) (2lt )2 

N 
2 

l: . 0 J= 

3n /4+2n j_ f (N) 

l1: /2+21t i 
(N) 

sin(N)x 
sinx/2 dx · 

In each of the intervals of integration 

sin(N)x 2sin(N)x 
sinx/2 "' x "' 

2sin3rc /4 8 (N) 

{3x/4+2nj) I (N) ...J2x (3+8j) 

and so each of the integrals is bounded below by 

_:n: __ X 

4(N) 
8 (N) 2 

..Jzx !3+8jl ...J2 (3+8j) 

Hence 

S 1 f(O,O) 

(N) -2 
-1/2 2N _1_ 

2! const. N Ej=O 3+Sj 
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-1/2 N 
- canst. N log 2 ~ = as N ~ =, 

as asserted. 

4. THE SECOND EXAMPLE According to properties 2(iii), 2(iv) and 3, the 

function f described above has all the properties described in the 

abstract except that. it is not infinitely differentiable away from the 

y axis. This last requiremen·t is achieved by defining f# as f 

except that each of the functions 

sin.Y, sin(m)y ",!. < ,; !. + ~) 
2 "''2 - y 2 (n) 

and 

are replaced by functions which equal these except that they are 

modified in small intervals within, but at the edges of, their supports. 

This is ·to be done in such a way as to make them c"" but also the 

values of the integrals used in calculating S(N)-l/Zf(O,O) are to be 

disturbed by such small amounts that f# still has Property 3. This 

new function t* has all the features described in the abstract. 

The following proposition demonstrates ways in which the previous 

construction is best possible. 

5. PROPOSITION Suppose f is an .integrable function on 
2 

[-n,n] with 

support in a rectangle [a,b] x [c,d], where 0,; a< b < 11: and 

0 < c < d < n . Then 

as 
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provided 

(a) a > 0, or 

(b) a 0 and 0 uniformly in y" (For 

af/ax exists along the y-axis and f is continuous in a. 

neighbourhood of this axis") 

Proof" The proof of pa:ct (a) follows from the Riemann Lebesgue lemma 

since f(x,yl/14 sin x/2"sin y/21 is integrable. 

Under the hypotheses of part (b) for each e > 0 there exists 

lf(x,y)/2sin x/21 ~ e for I xi s o. 

The absolute value of the first double integral is bounded by 

fd dy r lf(x,y)/2s:i.n x/2ilsin(N+~)xiiDN(y) ldx 
c 0 

fd 
J IDN(y) ldy s 

c 
const.E 

since c > 0, while the second converges to 0 as N ~ ~ as in part 

(a). Hence SNf(O,O) ~ 0 as N ~ oo, as required" 

6 0 HIGHER DIMENSIONS Similar procedures show that functions with 

properties analogous to those described in the abstract can be 

constructed for any dimension exceeding 1. They will be infinitely 

differentiable except along one of the axes. 
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