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A DUALITY THEOREM FOR CROSSED PRODUCTS BY NONABELIAN GROUPS 

Iain Raeburn 

Let a : G ~ Aut A be an action of a locally compact group G on 

a C*-algebra A. When G is abelian, there is a canonical dual action 

of the dual group G on the crossed product A X G, 
a 

and the Takai 

duality theorem asserts that the second crossed product (A xa G) xA G 
a 

is isomorphic to the tensor product A® ~(L2 (G)) of A with the 

algebra ~(L2 (G)) of compact operators on L2 (G). The usual proof of 

this theorem [5,8] uses spatial techniques, but we have recently given a 

new proof in which we exploit the universal properties of crossed 

products·, and which we hope is a bit more transparent [7]. 

Imai and Takai used essentially the same spatial techniques to 

obtain a duality theorem for actions of nonabelian groups [1] . They 

replaced the dual action of G by a "coaction" of G, and defined all 

their crossed products spatially, so for non-amenable G their theorem 

concerns the reduced crossed product Ax G 
a,r 

rather than the full one 

A X G. 
a 

Here we shall show that the approach of [7) can also be 

adapted to the case of nonabelian groups, where it gives a duality 

theorem for the full crossed product. 

We start by describing our notion of coaction, which is slightly 

different from the normal one: usually a coaction of G on A is a 

* homomorphism of A into M(A ®, C (G)), 
m~n r 

whereas ours will be a 

* homomorphism of A into M(A ® C (G)). 
max 

We have deliberately chosen 

to use the full group C*-algebra and the maximal tensor product because 

we are stressing universal properties rather than spatial ones. As a 
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result, we have to handle crossed products by coactions differently. 

We first give a definition of what a crossed product should be, and then 

prove that one exists (Proposition 6); this follows very closely the 

treatment of ordinary crossed products in [7] . Once we have this 

sorted out, it is a relatively simple matter to adapt the argument of 

[7, §2] to the nonabelian setting. We feel that the resulting duality 

theorem is more satisfactory, particularly for non-amenable groups, and 

that its proof is conceptually clearer. 

NOTATION. When G is a locally compact group, we shall write A and 

p for the left and right regular representations of G on L2 (G), M 

for the representation of c0 (G) by multiplication operators on L2 (G), 

and as for the point mass at s E G, viewed as an element of the 

multiplier algebra M(C*(G)). In general, we shall use 1 for the 

identity element of an algebra, and i for an identity mapping betvJeen 

algebras. As in [7], a homomorphism $ of a C*-algebra A into a 

multiplier algebra M(B) will be called nondeqenerate if there is an 

approximate identity {e. l 
J. 

for A such that $ (eil ~ 1 strictly in 

M(B): this implies that $ has a (unique) strictly continuous 

extension to M(A) [4, §1], and we shall use this fact repea·tedly 

* without comment. If f e B , the slice map Sf : A® B ~A is defined 

hence any) C*-tensor product norm, and extends to a stric·tly continuous 

map of M(A ® B) into M(A). 

§1. COACTIONS AN~ THEIR CROSSED PRODUCTS. 

We begin by recalling that if A and B are C*-algebras, the 

maximal tensor product A® B 
max 

is the completion of the algebraic 

tensor product A 0 B in the norm 
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sup { 1\:E n (a.)p (b.lll 
:1. :L 

n and p are commuting 

representations of A and B on the same space). 

We shall often write A ® B for A ® B. 
max 

There is always a natural 

map of M(A) ® M(B) into which in particular allows 
max 

us to view a tensor m ® n of multipliers as a multiplier of A ® B. 
max 

If G is a locally compact group, this construction gives us a strictly 

continuous homomorphism S->/; ®S 
s s 

of G into the unitary group 

UM{C*(G) ®max C*(G)), which we can integrate to obtain a nondegenerate 

homomorphism 

S G : C* (G) -+ M (C* (G) ®max C* (G) ) , 

called the comultiplicaction. of C* (G) (see [2] for more details) . 

DEFINITION 1. A coaction of a locally compact group G on a 

C*-algebra A is a nondegenerate homomorphism S of A into 

M(A ®max C*{G)) satisfying 

1) S (a) (1 ® z) and (1 ® z)S{a) belong to A ® C* (G) 
max 

for 

all a e JA, z " C* (G) ; 

Of course, this requires some explanation. First of all, the 

nondegeneracy of ll and S G imply that. both o ® i and i ® S G extend 

to the multiplier algebra M(A ® C* (G)), so the compositions in (2) a·t 

least make sense. To understand where conditions (1) and (2) come 

from, we consider the case of an abelian g-roup G. Here 

so acts naturally as multipliers of A® C*(G) : condition (1) 

says the range of a coaction of G must lie in this subalgebra. 

Indeed, given an action a of G on A, the analogous coaction Sa 



of G is given as a map from A to 
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by Sa(a) (y) =IX (a). 
'Y 

In general, condition (1) is technically useful because it implies 

Sf(S (a)) e A for a e A, f e B(G) = C*(G)*. The homomomorphism 

property of the action a of G says the two functions 

(y,J() -...a (a (a)) 
y X 

and (y IX) --> a (a) 
n 

agree: this translates into 

condition (2) on the coaction Sa. In general, we refer to (2) as the 

coaction identity, and we think of coactions as an analogue for 

nonabelian groups of actions of the dual group. 

For us, the most important example will be the dual coaction on a 

crossed product. Before describing it, we recall that the crossed 

produc·t by an action of G on A is a C*-algebra A x G \vhose 
a 

representation theory is "the same as" the covariant representation 

theory of the system (A,G,a). Formally, there are embeddings 

iA A -> M(A >'a G) and iG : G --> UM(A xa G) such that 

a) iA(a 3 (a)) = iG(s)iA(a)iG(s)* for a e A, s e G; 

b) if (n,U) is a covariant representation of (A,G,a) 

n(a 3 (a)) = Usn(a)U~), then there is a nondegenerate 

representation n x U of Ax G 
a 

such ·that 

c) the ranges of A X G. 
a 

(i.e. 

Condition (a) implies that for any representation p of A x G, the 
a 

pair is covariant, so the representations of Ax G 
a 

are 

precisely those of the form ~ x U. In the standard construction of 

A xu G as the C*-enveloping algebra of L1 (G,A), we think of iG(s) 

as the point mass 0 
s 

at s e G times the identity for A, and iA (a) 

as the multiple ao 
e 

of the point mass at e (see [5, §7.6]). For a 

detailed discussion of this view of crossed products, and in particular 

for an explanation of what (c) means, we refer to [7, §1]. 
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Now suppose a is an action of G on A, and define maps j,k 

of A,G into M( (A x G) ® C* (G)) 
a max 

by 

Then if we represent (Ax G) ® C*(G) concretely on a Hilbert space 

9£, the pair (j,k) is a covariant representation of the system 

(A,G,a) on 9£, and hence integrates to give a homomorphism a = j x k 

of A xa G into M((A xa G) ® C*(G)). When A is absent, of course, 

is just the comultiplication SG. 

LEMMA 2. The homomorphism a is a coaction of G on A xa G, called 

the dual coaction.· 

PROOF. For a e A and z,w e Cc (G) we have 

a(iA(a)iG(z)) (1 ® w) = (iA(a) ® 1) If z(s)w(s-1t) (iG(t) ® St)dsdt. 

-1 
We can approximate the function (s,t) ~ z(s)w(s t) uniformly by a sum 

L zj ® wj e CC(G) ~ CC(G), and then the right-hand side has the form 

L iAxG(a ® zj) ® wj e (A xa G) 0 C*(G). 

This gives (1) . To check the coacti9n identity, we just have to verify 

that (a® i)oa and (i ® SG)oa agree on the generators iA(a)iG(z) 

for A xa G, and this is a routine computation. 

Next we have to discuss covariant representations of our dual 

systems (A,G,S); the crossed product A x3 G will then be defined as 

a C*-algebra with these representations. In the reduced theory, the 

crossed product came first, defined spatially in terms of generators, 

and only later was the appropriate representation theory developed [4]. 

We shall have to modify this theory slightly to accommodate unreduced 

crossed products, but the ideas are essentially the same. We first 
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define WG : G -> UM(C* (G)) by w (s) = li ; 
G s 

this function is strictly 

continuous, and so defines a unitary multiplier w8 of c0 (G,C*(G)) 

C0 (G) ® C*(G). 

DEFINITION 3. A covariant representation of (A,G,Ii) is a pair (~,~) 

of nondegenerate representations of A and c0 (G), on the same Hilbert 

space 9£, such that, for all a e A, 

n ® i(li (a)) = ~ ® i(w8 ) (n(a) ® 1)~ ® i(WG) 

in M(C* (n (A) ,f.! (C 0 (G))) ®maxC* (G)). 

(*) 

In [4], the role of the unitary w8 was played by the unitary 

operator i"J' 
G 

on L 2 (G X G) given by 
-1 

WG~ (s,t) = ~ (s,s t), which is 

the image under ~ ® ~ of our w8 e M(C0 (G) ® C*(G)). As in the 

spatial theory, we can recover the representation 1-1 from the unitary 

1-1 ® i(WG) by slicing; in fact, for f e A(G) c C*(G)*, we have 

Sf(f.! ® i(WG)) = f.!(Sf(WG)) = f.!(f) for f e A(G). 

When G is abelian, and the coaction Sa is given by an ac'cion a of 

M(C0 (G,C*(G))) 

can be viewed as the function y ~ li ; if 1-1 is given by the unitary 
'Y 

representation u of G, then is the function 

and (*) reduces to the usual covariance condition on (n,U). 

EXAMPLE 4. The pair (~,M) is a covariant representation of 

To see this, we note that (M,A) is a covariant 

representation of 

s e G, we have 

-1 
where 1: (f) (t) = f (s -t). 

s 
Thus for 
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M ® i(WG('(s ® i(WG))) (A.s ® 1) 

M ® i (1 ®.a > (A. ® 1) 
s s 

and integrating both sides to homomorphisms on C*(G) gives the 

covariance condition (*) . 

DEFINITION 5. Let a : A -+ M(A ® C* (G)) be a coaction. A crossed 

product for (A,.G,a) is a C*-algebra B together with nondegenerate 

homomorphisms jA: A-+ M(B), ~(G) c0 (G) -+ M(B) satisfying: 

a) jA ® i(a(a)) = jC(G) ® i(WG)(jA(a) ® 1)jC(G) ® i(WG) 

M(B ® C*(G)); 

in 

b) for every covariant representation (~,~) of (A,G,a) there 

is a nondegenerate representation ~ x ~ of B such that 

(~ x ~)ojA = ~, (~ x ~)ojC(G) = ~; 

c) the span of {jA(a)jC(G) (f) :a e A, f e c0 (G)} is a dense 

subspace of B. 

Of course, condition (a) implies that every nondegenerate 

representation p of B gives rise to a covariant representation 

(pojA, pojC(G)) of (A,G,a), so all the representations of B have 

the form ~ x ~ . It is easy to check that up to isomorphism there is 

at most one such C*-algebra, and we shall soon prove there is always 

one, so we shall call it ~ crossed product and denote it by A xa G. 

PROPOSITION 6. Let a : A -+ M (A ®max C* (G) ) be a coaction of a locally 

compact group G on a C*-algebra A. Then there is a crossed product 

C*-algebra A xa G, and a dual action a of G on A xa G such that 

A 

as(jA(a)jC(G) (f))= jA(a)jC(G) (as(f)) for a e A, f e c0 (G), s e G, 



~~here cr (f) (t) 
s 

f (ts). 
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PROOF. Take a set S of cyclic covariant representations containing a 

representative of each unitary equivalence class, let 

(p,v) =®I (n,IJ.) : (n,IJ.) e Sl 

acting in 1{ = @ Jf(n, ll) , and let B be the closure in B (J{j of ·the 

set {p (a)v (f) a E A, f E C0 (G) } • Because p and v are *-

representations, to show that B is a C*-algebra it is enough to show 

that each product v (f)p (a) belongs to B; further, since A(G) is 

dense in c0 (G), we may suppose f e A(G). Consider the action of 

C*(G) on A(G) defined by 

<g•x,y> = <g,xy> for g e A(G) and x,y e C*(G). 

We have (A(G)•C*(G)) A (G) , so by the Cohen fac-torisation theorem we 

can factor f = gox for some x e C*(G), g e A(G). Then 

v (f) p (a) v (Sf (WG)) p (a) 

Sf(v ® i(WG) (p(a) ® 1)) 

S (p ® i (1i (a) ) v ® i (WG)) 
g•x 

(by covariance of (p,v)) 

We know that (1 ® x)S (a) e A® C*(G), and we can therefore 
max 

approximate it by a finite tensor :2: a, ® x. e A 
~ ~ 

C*(G). Then 

v(f)p(a)- So: (p(a.) ® x._)v ® i(WG)) 
g ~ ~ 

Thus v (f)p (a) does belong to B, and B is a C*-algebra. We define 

jA = p, jC(G) = v; then (c) is satisfied by definition, (a) because 

(p,v) is a covariant representation, and it remains to check (b). But 

this is easy too: the usual arguments show that any covariant 

representation is equivalent to a direct sum of cyclic representations, 
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and hence to a direct sum of subrepresentations of (p,v). Thus 

(B,jA,jC(G)) is the required crossed product for (A,G,a). 

We next claim that if (B,jA,jC(G)) is a crossed product for 

(A,G,a), then so is (B,jA,jC(G)oas). To see this, note that 

as ® i(WG) is the function t -+ a 
ts 

or, in other words, 

WG(1 ®as). Thus 

((jC(G)oas) ® i)WG) (jA(a) ® 1) ((jC(G)oas) ® i) (WG) 

jC(G) ® i(WG) (1 ®as) (jA(a) ® 1) (1 ® a:)jC(G) ® i(WG) 

jA ® i (a (a)), 

and (a) is satisfied. Similarly, if (x,~) is a covariant 

representation of (A,G,a), so is (x,~oas). But then 

(x x (~oas) )ojC(G) = ~oas = ( (x x ~)ojC(G) )oas' 

and (b) holds too. Since condition (c) follows trivially from the 

corresponding property for (B,jA,jC(G)), this justifies our claim. 

From the uniqueness of the crossed product, we obtain an isomorphism 

A A 

a 
s 

of B onto B satisfying asojA jA, asojC(G) = jC(G)oas' and it is 

now routine to verify that s -+ a 
s 

is a strongly continuous action of 

G on B with the required property. This completes the proof of the 

proposition. 

REMARK. We finish our discussion of coactions and crossed products by 

pointing out one other minor difference between our treatment and the 

usual spatial one: we have not assumed our coactions are injective. 

This is definitely not a significant issue; for one thing, all our main 

examples are injective! In general, if a is a coaction of G on A, 

then A decomposes as a direct sum ker a ~ B, and a induces an 

injective coaction £ of G on B such that B x£ G is naturally 

isomorphic to A xa G. To see this, one first computes directly that 
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s1 o3G is the identity on C*(G), where 1 is the identity of 

B (G) = C* (G)*. (This also proves that 3 8 is injective, and the same 

argument shows any dual coaction is injective.) Then the coaction 

identity implies 

3 (S 1 (3 (a)) l = s1 (S ® i (li (a))) = s1 (i ® o G (3 (a))) = a (a), 

so that s1 is a splitting for o: A~ o (A). It is a homomorphism 

because 1 is, and A therefore decomposes as a C*-a1gebraic direct 

sum ker a @ B, as claimed. Given this, the rest of our assertion can 

be routinely verified. 

§2. THE DUALITY THEOREM 

THEOREM 7 Let a: G ~ Aut A be an action of a locally compact group 

G on a C*-algebra A. Then there is an isomorphism of (A X G) X G 
a 

onto A® K(L2 (G)) which carries the second dual action of G into a 

®Ad p. 

PROOF We define ernbeddings 
-1 

a,a 

by 

-1 -1 
a (a) (s) = a 5 (a), a (a) (s) = as (a), 

and embeddings of A, G, c0 (G) in M(A ® ~ by 

( ~ .0. -1 
• ~ M) o a , kG = 1 ®A, kC(G) 1 ® M. 

As in [ 7, p. 9] , (kA,kG) is covariant and therefore gives us a 

homomorphism kA x kG of Ax G 
a 

into M(A ® ~. 

is a crossed product for 

We shall prove that 

(A x G, G, a) • The 
a 

first part is easy: a routine approximation argument shows that the 

elements of the form span a dense subspace of 

A ® '1(. 
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Next we want to prove that (kA x kG, kC(G)l is covariant - in 

other words, that 

for a e A, 

,, 
[ (kA x kG) ® i (a (iA (a) iG (z)) l [kc (Gl ® i (WG)] 

z E c (G). 
c 

The left-hand side L of this equals 

(1 ® (M ® i) (WG) (kA (a) ® 1) (kG (z) ® 1) 

(kA (a) ® 1) (1 ® (M ® i (WG) (A. (z) ® 1))) 

(kA (a) ® 1) (1 ® (1\, ® i) (SG (z))) (1 ® (M ® i) (WG)) 

by the covariance of (A.,M) (see Example 4). Now 

1 ®(A.® i) (SG(z)) (kG® i) <J z(s) (<i 5 ® S 5 )ds) 

( (kA xkG) ® i) (J z (s) (iG (s) 

A 

((kA x kG)® i) (a(iG(z))), 

and L becomes 

(+) 

® li )ds) 
s 

l>~~hich is easily seen to be the right-hand side of (+) • Thus (a) holds. 

Now suppose (x x U, ~~ is a covariant representation of 

(A G, G, a). We claim that (~,U) is then a covariant 

representation of (C0 (G),G,~). The covariance of (n x U, ~) implies 

that for s e G 

A 

(n xU)® i(a(iG(s))) 

which is equivalent to 

u ® li 
s s 

Thus for f e A(G) we have 

where 

that 

Sf(~® i(WG))Us = UsSfeS (~ ® i(WG)), 
s 

<f•Bs,z> = <f,list> for z e C*(G). A quick calculation shows 

f•S 
s 

-1 
1: s (f), and 

~.t(f)U 
s 
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and (~,U) is covariant as claimed. We therefore obtain a 

representation ~ x U of ~ such that (~ x U)oM !l and (fL x U)oil. 

u (see [7, Example 4]). 

The covariance condition for {x x U, ~l also implies 

n (a) ® 1 = ( (n x U) ® i) (a (iA (a))) = Ad !l ® i (WG) (11 (a) ® 1), 

and slicing this gives n(a)!l(f) = !l(f)lt(a) for f e A(G). Thus we 

obtain a representation n ® !l of A® c0 (G) on ~; let 

p = (n ® j.L)oa. The argument in the fourth paragraph of the proof of [7, 

Theorem 6] shows that P (a) commutes with and therefore also with 

the range of !l x U. This gives a representation p ® (!l x U) of 

A ® ~- It is easily verified that 

(p ® (!l x U))okG = U, (p ® (I! x U) )okc (G) = !lv 

and the argument in [7] shows that (p ® (~xU))okA = n. Thus (A® K, 

kA xkG, kC(G)) also satisfies (b), and we have proved that it is a 

crossed product for (A x G, G, a) • 
a 

The uniqueness of the crossed product now implies there is an 

isomorphism 'If : A ® K __, (A xa G) xA G such that 
a 

and 

To check that 'If intertwines a ® Ad p and (a) , we just need to 

verify that 

v<as ® Adps(kA X kG(iA(a)iG(z))kC(G) (f))) 

(a)s(jAxG(iA(a)iG(z))jC(G) (f)). 

We have AdpsoM = Mocr 5 , Adp 5o~ =A, and, by a quick calculation, 

v (kA (a) kG (z) kc (G) (a 8 (f))) jAxG(iA(a)iG(z))jC(G) (crs(f)) 

(a)s (jAxG(iA(a)iG(z)) (a)s(jC(G) (f)), 

as required. This completes the proof of the theorem. 
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CONCLUDING REMARKS. We know of at least two other duality theorems for 

crossed products by nonabelian groups: one for twisted crossed 

products, due to Quigg [6], and another which starts with a coaction, 

due to Katayama [3] . Both of these concern spatially-defined crossed 

products, and it would be interesting to extend them to the full crossed 

products along the lines we have extended Imai and Takai's theorem here. 

A.t present, we are optimistic that this can be done for Quigg's theorem, 

although there are technical problems, but we do not see how to adapt 

these methods to handle Katayama's: certainly the spatial versions of 

both theorems are substantially harder than the one we have discussed 

here. 

ACKNOWLEDGEMENTS. We have recently been working on these duality 

problems in collaboration with John Phillips, and we thank him for 

helpful comments on the material presented here. This research was 

supported by the Australian Research Grants Scheme. 

REFERENCES 

[1] S. Imai and H. Takai, On a duality for C*-crossed products by a 

locally compact group, J. Math. Soc. Japan, 30(1978), 495-504. 

[2] V. de M. Iorio, Hopf C*-algebras and locally compact groups, 

Pacific J. Math. 87 (1980), 75-96. 

[3] Y. Katayama, Takesaki's duality for a nondegenerate coaction, 

Math. Scand. 55 (1985), 141-151. 

[4] M.B. Landstad, J. Phillips, I. Raeburn and C.E. Sutherland, 

Representations of crossed products by coactions and principal 

bundles, Trans. Amer. Math. Soc. 299 (1987), 747-784. 



227 

[5] G.K. Pedersen, C*-algebras and their automorphism groups, Academic 

Press, London and New York, 1979. 

[6] J. Quigg, Duality for reduced twisted crossed products of C*-

algebras, Indiana Univ. Math. J. 35 (1986), 549-557. 

[7] I. Raeburn, On crossed products and Takai duality, Proc. Edin. 

Math. Soc., to appear. 

[8] H. Takai, On a duality for crossed products of C*-algebras, 

J. Funct. Anal. 19 (1975), 25-39. 

School of Mathematics 
University of New South Wales 
P.O. Box 1 
Kensington 
NSW 2033. 


