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ON THE L1 BEHAVIOR OF EIGENFUNCTION EXPANSIONS 

AND SINGULAR INTEGRAL OPERATORS 

Michael Christl and Christopher D. Sogge 2 

1. INTRODUCTION 

Let M be a compact, smooth manifold, without boundary, of dimension n ;::: 

2. Suppose that D is a pseudodifferential operator of the class Sro on M, self

adjoint with respect to some measure jJ, with a smooth, nonvanishing density in local 

coordinates. Suppose further that either D is an elliptic differential operator whose 

principal symbol is real and nonnegative, or that m = 1 and D is a pseudodiiferential 

operator whose symbol a(x, e) has the property that 

lim a(x,s() 
8->00 

exists and is real and positive for all ~ i- O. For any such operator, L2(M,jJ,) admits 

an orthogonal decomposition 
00 

L2 = EeEj 
j=O 

where each Ej is a finite-dimensional eigenspace of D with eigenvalue Aj. These 

eigenvalues are distinct and form a discrete sequence which tends to +00. Denote by 

7rj the orthogonal projection of L2 onto Ej. Then 

sU = L 7fjf -" f 
Aj"St 

in L2 norm as j -" 00, for all f E L2, and 

2 ""' 12 IlfllL2 = L..1I7rjf 1£2 . 

1 Supported by the Australian National University and the National Science Foun-

dation of the USA. 
2 Supported in part by the National Science Foundation. 
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We are interested in the convergence of the series for f E L1 rather than L2. However 

since the characteristic function of the unit ball is not a Fourier multiplier of Ll(IR,n) 

(an elementary calculation), it cannot be true that S~ f -+ f in L1 for all f E L\ 

when M is the n- torus and D is the ordinary Laplace operator. In fact general 

transplantation theorems imply that L1 convergence fails for all M and D. 

But consider the Riesz means 

sUCx) = L (1- Aj/t)6 rrj f(x) , 
>'j9 

for 6 ;::= O. It is well known in the context of Fourier series that {Sf f} has better 

convergence properties when Ii > 0 than when Ii = 0, and in fact sf f - f in L1 

norm as t _ 00 for aU f E L1 as soon as Ii > O. Furthermore in IR", n ;::= 2, the 

Bochner-Riesz means 

sU(x) = r e2lfix·e(1-leI2/t2)!<e)de 
Jlf,l~t 

are known to become better behaved as Ii increases. In this case 

IISU- -0 as t -+ 00 for all f E 

precisely when Ii > (n - 1)/2, the so-called critical index. Moreover when Ii equals 

the critical index a weaker result remains valid: Sf f - f in the weak V norm, for 

all f E L1 [7]. This "norm" is 

IlfI11,oc, = ~up AI {x : Il(x)! > I: 
A>O 

and L1,00 is the set of aU measurable f with finite "norm". An operator bounded 

from L1 to L1,0c> is said to be of weak type (1, The Hardy-Littlewood maximal 

function and the Hilbert transform are fundamental examples of opertators which 

map 1/ boundedly to L1,00 but not to r.1 . 

When 6 < (n - 1) /2 even L1 ,00 convergence fails for st in JR n. The delicacy 

of the situation is further evidenced by the fact that Sf f need not converge almost 

everywhere to fELl when 5 = -1)/2 [24]. 
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In the context of an elliptic operator on a compact manifold it was proved more 

recently [21] thai still Sf f -? f in L1 for all I E L1, for all 8 > (n - 1)/2, which still 

is a necessary restriction. Thus one was led to hope for the sharp result: 

THEOREM Ao [11) Let M, D be as above and b = (n - 1)/2. Then there exists 

C < 00 such tbat for all f E L1 and t ;::: 0, 

list Ilk"", ~ CIIflh . 

Moreover 

liS: f - IIh,co -? 0 ast-loOO 

for all I E L1. 

There is a very closely related result for Fourier multipliers in IR". Let b be a function 

supported in a compact subset of ]Rn. Write 

:lR,n = {(ZI, zn) E IRn - 1 x IR} . 

Suppose that bE Coo off of the hyperplane {zn = O} and that for each (J and i 

I ai3 ai I 
az1fj az~ b(z) ~ C,e,i!Zn!6-i 

where as usual 5 = (n -1 )/2. Suppose.p is a Coo diffeomorphism of a neighbourhood 

of the support of b into :lR,n, and let 

m(~) = b(.p-l(O) 

and 

(TfrW = J(e)m(O . 

THEOREM B. Tis of weak type (1,1). 

This was previously known only in the case where the manifold ~({zn = O}) has 

nonvanishing scalar curvature at every point [7] (and only for a prototypical subclass 

of b's). 
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There are two obstacles to be overcome in proving Theorem A. First it is neces

sary to obtain some more explicit grasp of the operators S2 than is afforded by their 

abstract definition in terms of eigenfunction expansions. The proof in [111 relies on 

Hormander's work [17] on the Weyl formula for the distribution of the eigenvalues, 

following earlier work of Sogge [20], [21]. 

The second problem is how to establish weak (1,1) bounds, even for an operator 

which is described very explicitly. In the present article we discuss only this second 

issue, on which some progress has been made in a series of comparatively recent 

works [3], [7], [10], [11]. A fairly flexible method has been developed; we attempt to 

describe the method and several distinct results which it yields. In the last section 

of the article we sketch its application to Theorem B. 

2. THE CLASSICAL THEORY 

There are two prototypes for the various operators which we shall discuss. The 

maximal function of Hardy and Littlewood is 

(2.0) Mf(x) = sup ( If(x - ry)1 dy 
r>oJIIM;,l 

for F E L}oc(JRn). The fundamental result is that M is of weak type (1,1), which 

by int~olation implies LP boundedness for all p > 1. Second is a class of singular 

integral operators treated by Calder6n and Zygmund: 

(2.1) Tf(x) = pvf * K(x) 

with three hypotheses: 

(2~2) T is bounded on L2 

(2.3) K(x) = Ixl-nn(xllxl) 

= lim ( f(x - y)K(y)dy .-0 J1Y1?'f 

(2.4) n E AO/(sn-l) for some a > 0 

where AO/ denotes the Holder class. Then again T is of weak type (1,1) and bounded 

on LP for all p > 1. All the operators discussed in this article are fairly easily seen 
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to be bounded on L2 or on Loo, so that the weak (1,1) property is sharper than LP 

boundedness. Furthermore they were all known already to be bounded on LP for all 

p E (1,00) before weak (1,1) boundedness was proved. Thus the weak (1,1) property 

was sought as an endpoint result'the sharper the existing theory, rather than in order 

to deduce the LP boundedness as for (2.0) and (2.1). 

The theory is not limited to convolution operators; for more general integral 

operators 

Tf(x) = J K(x,y)f(y)dy 

(where K is associated to T in the sense of [13]) the natural generalization is to retain 

(2.2) and to replace (2.3) and (2.4) by 

(2.5) IK(x, y)1 :5 Clx _ yl-n 

plus 

(2.6) IV K(x, y)1 :5 Clx _ yl-n-l 

or a weaker version of (2.6) involving Holder rather than Lipschitz continuity. (2.2) 

plus (2.5) and (2.6) imply weak type (1,1). These hypotheses are not optimal; for 

instance (2.4) may be replaced by an L1 Dini condition. But the "classical" theory 

as formulated for instance in [16] always required some regularity for the kernel K. 

In contrast Calderon and Zygmund [2] showed that if nELl is odd, then (2.1) and 

(2.2) alone imply LP boundedness for all p > 1. 

To see where regularity of K comes into play let us recall the method of Calderon 

and Zygmund. Using L2 boundedness and a decomposition of an arbitrary L1 func

tion, they reduce matters to showing that if A > 0, if B = EQ b9 where the Q 

are distinct dyadic cubes, bQ is supported on Q, IIbQlh :5 CAIQI, J bQ = 0 and 

EQ IQI:5 CA-1I1 B Il1, then 

(2.7) I{x: ITB(x)1 > A}I :5 CA-1 I1Blh . 
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They form the exceptional set 

E=U2Q 
Q 

where CQ denote the cube concentric with Q but C times as large. lEI S cn L: IQI :::; 

C).-1IlBII1, so it is only necessary to consider x ¢ E in (2.7). By Chebychev's 

inequality it suffices to prove that 

(2.8) IITBIIL1(lRn \E) :::; CIIBlh , 

which by the triangle inequality follows from 

(2.9) IITbQII£1(lR"\2Q) :::; ClIbQ11t for all Q . 

The reduction to a single cube via the triangle inequality is a small but pivotal step; 

it is made possible by the introduction of the L1 norm in (2.8). For L1 ,00 there is the 

quasi-norm property 

III + gilt ,00 S 211/111,00 + 211g111,00 

but no equivalent norm satisfies a true triangle inequality. Thus infinite series can

not be summed in L 1 ,00 in a straightforward way. This is one of the two essential 

difficulties in dealing with L1 ,00. 

The advantage of considering lEI. single bQ is that now the regularity hypothesis 

n E ACt coupled with the condition J bQ = 0 gives the pointwise bound 

(2.10) ITbQ(x}1 S 2-nj(2-i lx - xQI)-n-"'lIbQlh 

where IQI = 2"i, and similarly (with a = 1) if IVI«x,y)1 :5 - yl-n-l. This 

implies (2.9). In the sequel we shall treat opera.tors for which the best pointwise 

bound is (2.10) with a = 0; TbQ will belong to L1,oo but not to L\ and the method 

breaks down for lack of a triangle inequality. 

3. VARIANTS INVOLVING OSCILLATORY FACTORS 

C. Fefferman [15] examined the LP boundedness of operators T f = I * K on 

lRn , with 

(3.1) K(x) = ei(lxl·)lxl-cXI~I$l 
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where a < O. The fundamental result was that when c = n, T is of weak type (1,1), 

for any a < 0; LP results could then be obtained by an interpolation based on the 

analytic family of operators obtained by varying the parameters c and a. Let us 

restrict our attention to the case c = n. Then IK(x)1 ::; Clxl-n , and a calculation 

shows that K E LOO. However 

IV'K(x)1 '" Ixl-n - Ha as x ....... 0 , 

as (2.6) fails and the "classical" arguments don't apply. Nonetheless Fefferman estab

lished the weak (1,1) property, and from his proof may be extracted a rather general 

principle: In place of (2.8) it suffices to have 

(3.2) IITBII12(JR"\E) ::; CAIIBlh . 

For then (2.7) still follows by Chebychev's inequality. (The homogeneity appears 

to be inconsistent in (3.2), but actually it is correct because A scales proportionally 

to E.) The analysis in [15] also involved considerations more closely tied to the 

nature of the particular kernels (3.1), relying in particular on the Fourier transform, 

Plancherel's theorem and an explicit bound 

IKWI::; C(l + IW-b 

where b > 0 is a known function of a whose precise value is needed in the argument. 

Subsequently several authors, in particular Chanillo, Kuntz, Miyachi and Samp

son, studied operators of the same form but with 0 < a::f. 1, and with XI~I:;' replaced 

by XI"'I;;:' as it must be, relying on the basic method of [15]. Later Ricci and Stein 

[19J were led to consider operators Tf(x) = J f(y)J((x,y)dy with 

(3.3) I«x,y) = eiP(x'Y)L(x -y) 

where P : mn x lRn ....... lR is any polynomial and L is a classical Calder6n-Zygmund 

kernel, homogeneous of degree -n, COO on the unit sphere and having mean value 
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zero there. They proved the LI' boundedness for all p E (1,00). But again the 

condition IVK(x,y)1 s Clx - yl-n-l fails badly. 

How might one obtain the LI) boundedness without first proving the weak (1,1) 

property and then interpolating? Consider the special case n = 1, L( x, y) = (x _ y)-l 

and P{x, y) = (x - y)2, a convolution operator with kernel eO'" x-1 , Fix an auxillary 

function, E C8"OR), supported in H < Ixl < 1}, satisfying 

Set 

and 

Then 

A calculation gives 

(3.4) 

= 
L(2- j x) = 1 on IRn\{o} . 
-00 

Kj(x) = K(x)(2- i x) = eix' x-1(2- i x) 

Tjl = I *Kj. 

IITj/ll1 s CllflhllKjlh 

S Cllfill' 

ilkj S C2-<i 

for some € > 0, for j ~ 0, so IITjfl12 S C2-fj IIf1l2. Therefore interpolation gives for 

eachpE (1,00) 

IITjfllp S C2-8i llf111' 

for all f ELP, with Ii = 6(p) > O. Summing the series yields L1' boundedness for 

Lj?:o Tj (it turns out that the classical theory a.pplies to Lj<o Tj). The is the 

strong L2 bound (3.4). More sophisticated versions of the a.rgument apply to a variety 

of singular integral operators [4], [5], [14], [12]. Here the fact that £1' is between L1 

and L2, for p E (1,2), is exploited; L1 is not between any two (useful) spaces, and 

this is the second fundamental difficulty in dealing with weak type (1,1) estimates. 

S. Chanillo raised the question of whether operators of the class (3.3) are of weak 

type (1,1), and it was proved in to be so, using the basic idea of (3.2). However 
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(3.2) can no longer be verified by means of the Fourier transform, and one is led to 

work directly with the kernel K. The fact that the L2 norm in (3.2) is taken over 

the somewhat irregular set IRn\E is awkward, for it is reasonable to expect that 

orthogonality considerations will be useful in proving an L2 estimate. On the other 

hand it is too much to hope that any B will be mapped to L2(lRn), so the deletion 

of E must playa significant role. In [3] a truncation T' was constructed so that 

T'B == TB on IR"\E 

and it was then shown that 

liT' Bll12(JRn) $ CAIIBlh . 

The truncation was of the form T' B = L: TQbQ where TQ depends on Qi see [3] for 

details. 

Now (3.2) would follow from the pointwise bound 

IIT'*T'Blloo $ C)' . 

Thus whereas the classical theory relied on pointwise bounds for TbQ, roughly speak

ing the new method requires pointwise bounds for T*T B (disregarding the trunca

tion). Actually the variant (3.8) below is more typical of the applications. 

The distribution-kernel for T" T' is 

J(x,y) = J K(z,x)K'(z,y)dz 

where K' is the kernel for T'. It turns out that except for certain degenerate P, 

IJ(x, y)1 S; C(1 + Ix _ yl)-n-. 

for some €(P) > 0, for "most" (x, y). Thus the kernel for T" T' is significantly better 

behaved than the kernel for T itself. This happens in a variety of situations and is at 

the heart of applications of the method. The technical issue in [3] was to make precise 
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the meaning of "most". This necessitated a quantitative analysis of the zero variety 

of an arbitrary real-valued polynomial on mn , based on some elementary algebraic 

geometry. 

Historically the next advance was made in [6], but it was only recognized oome

what later [7] that a general technique with a variety of applications was at hand. 

The least tractable of the oscillatory kernels (3.1) had turned out to be the case 

a= 1, 

]((x) = e*ljxl-nXI~I;::l . 

This is a case of intrinsic interest. For setting 

stf(x) = r e2w;",·e /(e)(1-IW8 de 
J1ltl9 

with lj = (n - 1)/2 in lRn, gives sf! = f * K where K is Coo and radial, and as 

x -+ 00 admits an asymptotic expansion 

K(x) = cos(211"lxl + ,8)(colxl-n + cllxl-n - 1 + ... ) 

with Co "I 0 and ,8 a calculable constant. The oscillatory factors cos(2?rlx/ + ,8) and 

e*'1 turn out to have equivalent behavior for our purpose, so when a = 1 we have 

returned to a special case of the original question of' convergence of eigenfunction 

expansions. 

Let us set out the skeleton of the proof' in some generality, then examine its 

specialization to the particular kernel eilxlJxl-nXI"I~l' Suppose J( is some distribution 

with k E Loo and J( = 'E~oo Kj with [(j supported where '" 2i , and make the 

rather minimal size hypothesis that Kj is a finite measure, possibly singular, with 

total mass bounded uniformly in j. To prove that Tf = f '" K is of weak type (1,1) 

it suffices to show that if B is as above and E is the union of' the dilated cubes GoQ 

for some large Co then (3.2) holds, Now all the cubes Q are dyadic, so B = E~oo Bj 

where 

= L bQ. 
IQI=2nj 
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On IRn\E 

TB = 2: 2: Bj * Ki 
j i?i 

= ~(~Bj * Ki+s ) 

00 

(3.5) == 2: TsB 
s=o 

since bq*Ki is supported on CoQ c E if IQI = 2ni , i < j, and Co is chosen sufficiently 

large. This last expression will replace the truncation T' B. 

It now suffices to show that 

(3.6) IITsBII12(JR.n) ~ C2-u 'xIIBII1 

for some E > o. It is useful to group the terms Bj * Ki together according to 

the difference 8 = j - i, which from the geometric point of view has a natural 

interpretation as the (logarithm of the) ratio of the scales 2i and 2i associated to B j 

and to Ki, respectively. In the classical case where K satisfies (2.6), 

IIKi+8 * bqlh ~ CTSllbqlh 

when IQI = 2nj j the nontrivial factor of 2-S is just this ratio of scales. This motivates 

hoping for the decaying factor of 2"-" in (3.6). 

Of course 

(3.7) 2 ""-II TsBII2 = L)Kj+s * Ki+8 * Bj,Bj } 
j 

+ 2 ~( \~< .. Ki+s * Ki+8 * Bi,Bj ) ) 
J • J 

where Kj( x) = K j( -x). The off-diagonal terms must be reckoned with, but to see 

the principal thrust of the analysis let us restrict attention to the sum of the diagonal 

terms, i = j. It suffices to show that 

(3.8) IIKi+8 * Ki+s * Bjlloo ~ C2-E8 ,X. 
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The essential properties of Bj involve both cancellation and size restrictions: Bj has 

mean value zero on every dyadic cube of sidelength 2i in IRB, and JQJB;I :5 CAIQI 

for every cube of sidelength greater than or equal to 2j . The latter condition says 

heuristically that on scales ~ 2j , Bj looks like a bounded function with LOO norm 

CA. This is clearly relevant to (3.8), where we seek an Loo estimate. This property 

was not exploited in the classical theory but will be crucial for us. 

So far the analysis has been purely formal, but the behavior of Kj*Kj will depend 

on the nature of the particular kernels (or measures) at hand. If IK(x)1 :5 Clxl-n then 

(3.8) holds trivially with E = 0, and the issue is the decaying factor 2-E ... There are 

two senses in which Kj+6 * Kj+8 may be better behaved than Kj+8 itself, namely in 

terms of smoothness or of size, and either one might potentially be exploited because 

of the two properties of Bj. In the instance K = eil"'ljxl-nXI"'I>l' a calculation using . -
the method of stationary phase gives 

IKi * Ki(X)1 :5 C2-ni(i + Ixl)-(n-l)/2 , 

the latter factor capturing the improvement relative to IKi(X)1 = C2-ni • (3.8) fol-

lows. 

4. SMOOTHNESS CONDITIONS 

Let F be a distribution supported in a fixed compact region in IR n. There are 

many senses in which F may be said to possess some degree of smoothness. Several of 

these notions and the distinctions between them are quite relevant to the appucations 

of the general method just outlined. Let us digress to contemplate some of them. 

Consider 

(A) FE ACt for some a> O. 

(B) J(suPIII-"'I:5r IF(x) - F(y)l)dx:5 CrE 

for all r E [0,1], for some E > O. 

(C) SUPlhl:5r J IF(x + h) - F(x)1 dx :5 CrE 

for all r E (0, 1], for some € > O. 
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(D) r-n J J IF(z) - F(y)1 dz dy $ CrE 

Iz-yl::;r 
for some E > O. 

(E) F E V. for some p ~ 1 and E. > O. 

(Fp) IIQr(J * F)lIp $ CrEllflip 

for all f E LP and r E (0,1], for some E > 0, where 

(Qtfne) = ~(te)j(e) , 

and ~ E CQ"'(lRn) is an auxiliary function identically zero near the origin but 

nonvanishing everywhere on some annulus. p E [1,00) is a parameter; a different 

condition (F p) corresponds to each p. 

(0) IF(e)1 $ C(l + leI)-E 

for some E > O. 

(H) fol wI(r)d: < 00 

where 

wI(r) = sup J IF(z + h) - F(z)1 dz . 
Ihl::;r 

The following implications are valid: 

(D) # (E) 
~ ~ 

(A) => (B) => (C) # (F1 ) => (Fq) => (F2 ) => (0) 
.u. 

(H) 

where q E (1,2), and the implication (O)=>(Fq) is valid under the additional assump

tion that F is a finite measure. Of course it is implicitly assumed in (B), (C) and 

(D) that F is a function. 

To each condition (.) corresponds (.), 

F * F satisfies (-). 

In each case (.) => (.)', and (0)#(0)'. 

We consider these conditions with F = Ko = (K, where ( is as before and K is 

some distribution with k E Loo, which we would like to show defines by cOllvolution 
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an operator of weak type (1,1). (Kj = «2-j ·)K should be analyzed by passing to 

Kj(x) = 21Oj«x)K(2j x).) The most relevant conditions are (H), (B)' and (G). If K 

is homogeneous of degree -n and if F = (K satisfies (H) then 

IIbQ * KII Ll (1R!'\2Q) ~ CllbQlh 

for all bQ of the type described in section 2; (H) is the weakest condition with this 

property. (See [23], Remark 6.10, page 51.) Thus (H) is really the limit of the range 

of applicability of the classical analysis. 

(B) was first made explicit in this context in [10]; it is actually completely 

equivalent to the inequality 

IIF * B-slloo ~ CTES.A for all s ~ 0, all B- s and some e > ° , 
where B- s satisfies the cancellation and size conditions spelled out at the close of 

section 3. Thus (in the most typical applications) our method depends on knowing 

that Ko satisfies (B)'. However we should emphasize that details of the method vary 

from one application to another, and in fact these smoothness conditions do not really 

enter into the proof of Theorem B or into the treatment of eil"'lx-lXI"I~l' which rely 

on the size condition on B-s but not its cancellation property. 

In the next section we discuss a case in which Ko satisfies the weak condition 

(G). Recall that when n ~ 4, the normal derivative of surface measure on the unit 

sphere S1O-l satisfies (G) with e = 1/2, and that on UV, for any e < 1/2 there exists 

~ toJ;allysing!1lM Ip.e~ure:w);lich s~ti~fiell (0) w~th that v:alu~ gfe, so (0) is real,ly 

quite weak. In particular it does not imply (BY. 

(Fp) is used in [8], and an L2 variant of (D) arises in [9]. 

5. MAXIMAL FUNCTIONS 

Consider a variant of the Hardy-Littlewood maximal function: In ntn , n ~ 2, 

let S be a measurable set with finite measure, star-shaped about the origin. Let 

Msf(x) = sup r If(x-ry)dy. 
r>oJs 
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Write S = ((r,8) ; 0 $; r $; h(8)} in polar coordinates and note that S has finite 

measure if and only if hE Ln(sn-l). A very closely related type of maximal function 

is 

Mnf(x) = sup r If(x - ry)ln(y/lyl)dy, 
r>oilYl9 

n 6' L1 (S"-1) nonnegative. It is quite easy to use the method of rotations [2] to 

show that Ms and Mn are bounded on LP(IRn) for all p > 1, for all h E Ln and 

n E L1, respectively, but it is an open question for which S and which n they are of 

weak type (1,1), and consequently when differentiation results such as 

limlSI-1 (f(x-ry)dY-7f(x) a.e. 'ilfELI ,,_0 is 
are valid. No example of S nor of n is known for which the maximal function is 

not weak type (1,1). The application of the method of rotations breaks down for 

L 1 ,00 because it relies on the triangle inequality, in the form of Minkowski's integral 

inequality. 

R. Fe:lferman and later F. Soria [22] have shown that Mn maps L1 to L1,00 if n 

satisfies an entropy condition. More recently S. Hudson [18J obtained an interesting 

positive result in m.2 , assuming n E L1 (S1) to be monotone with respect to some 

choice of an origin on Sl, and making an additional hypothesis on the geometric 

structure of n. With only a size hypothesis onn, the best that is known [10J is that 

Mn is of weak type (1,1) if n E L(logL), that is, 

r nlog+n < 00. isn-l 
An easy corollary [10] is that Ms is weak (1,1) if 

{ hn log+ h < 00 . 

isn-' 
In order to apply our now-familiar technique to Mill, :fix an auxiliary function 

( E CO'(IR+), nonnegative and identically one on [1/2,1]. Then pointwise, for all 

f? 0, 

Mnf(x) $; CTf(x) 
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Tf(x) = sup If * [(j(x) I 
j 

[(j(X) = (2- j lxI)O(x/lxi) . 

Let B be as before. Introduce the quadratic expressions 

(5.1) ( )
1/2 

TsB(x) = L IBj-s * 1(j(xW , 
J 

and observe that 
00 

ITBI ~ LITsBI 
s=() 

pointwise off of E. Therefore it suffices to prove that 

IITeBlli2(lRn) ~ C2-·8 AllBlll , 

which by homogeneity follows from the familiar inequality 

(5.2) IIKo * 1(0 >I< B_.lloo :5 C2-£8 >. . 

A simple interpolation with crude estimates for the case U E L1 reduces our task to 

proving (5.2) for 0 E Loo, with a bound proportional to IIUII;,; actually (5.2) won't 

hold unless n E L2. 

In m.2 it is easy to see that Ko * J{o is Holder continuous (except at 0). Define 

measures !-te, for e E sn-l, by 

J fd/1-9 = I f(r8)r n - 1(r)dr. 

Then 

Ko * 1(0 = J JCP-e >I< !-tw)UC8)n(w)d6Jdw. 

In ]R2, P-e * JAw is clearly absolutely continuous and has a smooth density when 

fj =f:. ±w. Making this quantitative and integrating with respect to da dw yields the 
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Holder continuity except at 0, where the bounds blow up at a rate which may be 

estimated [7]. 

In higher dimensions fi,e * f.1.w will be supported on a two-dimensional plane, 

hence certainly will be singular. The situation is subtle: the threefold convolution 

Ko *Ko *Ko is Holder continuous in any dimension, indeed this holds for any Ko E L2 

satisfying (G); yet it is possible to construct an example with 11 E Loo but ko * Ko 

not Holder continuous, even away from 0, in :lR3 • 

It was proved in [10] that ko * Ko satisfies the smoothness condition CB), in all 

dimensions, for all 11 E Loo ; in other words Ko satisfies (B)'. The proof involved 

writing 

(ko * Ko * B_s)(O) = (L11,11) 

where L : L""(sn-l) -+ L1(S ... -1) is a linear operator which depends implicitly on 

B_. and is rather singular; it involves integrations over curves on S ... -1. The L2-based 

technique of [4] and [5] can then be applied to L. 

Perhaps the most interesting question in this area is whether there is an L1 

theory for a dass of more singular maximal functions involving integrations over 

lower-dimensional sets, of which a typical example is 

where 

Mf(x) = sup If * J-tj(x)1 
j 

/f = f f(2-i x )dcr(x) 
}sn-l 

and IJ' is surface measure on the unit sphere. An extension of the basic technique 

was introduced in [6] and used to show that this A1 maps the real-variable Hardy 

space Hl(JR") to L1,00, a result intermediate in strength between LP boundedness 

for p > 1 and weak type (1,1). 

6. PROOF OF THEOREM B (SKETCH) 

The obstacle to applying the general method is that unless the singular locus 

M = \1>( {z" = O}) has nonvanishing scalar curvature at every point, one cannot 
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hope to obtain any explicit expression for l( = m. In fact its behavior changes 

dramatically from the case where M is curved to the case where it is a hyperplane. 

The real complications arise when M is flat to infinite order, but not linear, at some 

points. Therefore we are led to work less with J( and more on the Fourier transform 

side, bringing Plancherel's theorem into play in a decisive way. However it is too much 

to hope to get away with Fourier transform side arguments alone, for the properties 

of B admit no direct re-interpretation in terms of B. 

Let 1] E C8" (JR +) satisfy 

00 

L 1](2-i t) == 1 on JR+ 
-00 

and ij E C8"(lR ,,-1) satisfy 

L ij(Zl + v) == 1 onlR,,-l. 
VEZ,,-l 

Set 

bj(z) = b(z)1](2ilznD and bj(z) = bj (z)ij(2i / 2 Z 1 + v) , 

so that b = 2: hj = L: 2: bj, where j ranges only over Z+, modulo a Crr function 

which may be disregarded. Composing with ~ produces a corresponding decomposi

tion of m. Set 

(Tift = jmj and (Tr If = jm} . 

Let B be as before and decompose it as Bi as in section 3, except that B, = 0 

for all i < 0, and Bo = 2: bQj summed over all Q with IQI ::; 1. It suffices to prove 

that 

II LTH.Bj 112 ::; C2-<8 AIIBlll 
j>() £2(lRn l 

for s ~ 0 , (6.1) 

(6.2) II LTi+8Bjll ::; C28 11Blh 
j>O L'(JRn\E) 

for s < 0 , 

and 

(6.3) IIT.Bolli2(lR") ::; C2-·$ AIIBoIIl for s ~ 0 . 
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To prove (6.2) we need some crude estimates on the inverse Fourier transforms 

of the mj. Fix j and v, let w be any fixed point in the support of bj, and rotate 

coordinates in the e-space so that at <I?(w), (D<I?)(8/8zn ) points in the direction of 

8/8en. Then a careful integration by parts establishes pointwise bounds for (mjt, 

in the coordinates (x', xn ) dual to these rotated e-coordinates. 

LEMMA 1. l(mjnx)l:5 CN2-in(1 + 2-i /2Ix/l + 2-i lxn l)-N for all N,j, v. 

Since the rotation depends on j and v it is not possible to sum over j and v 

to obtain pointwise bounds for m, without sacrificing essential information. But 

Lemma 1 does yield 

LEMMA 2. II(mjtIlLl{j.,1;?:2.+i }:5 CN2-Ns2-i (n-1)/2 for all j,v,N and all 8 ~ O. 

Summing over v, which ranges over an index set of cardinality comparable to 

2i (n-1)/2, gives a bound of CN2-Ns for the L1 norm of mj on the same region. Now 

(6.2) follows at once. 

As for (6.1), there exists C < 00 such that no e is contained in the supports of 

more than C of the mj, so Plancherel's theorem yields a bound of 

LIITj+sBill~ 
;,11 

for the left-hand side of (6.1). This innocuous exploitation of orthogonality is a key 

step. Since there are about 2i(n-i)/2 values of v for each j, it suffices to show that 

(6.4) IIT!'*T!' B· II < C2-i (n-1)/2 A2-ES 
J J J-S 00 -

for all j > 8 ~ 0 and all v. 

Fix j and v. The multiplier for Tj*Tj is Imjl2, which has the same size and 

smoothness properties as 2-i (n-1)/2 m j. Thus in the coordinates of Lemma 1 the 

same integration by parts argument establishes the following. 

LEMMA 3. The convoluUon kernel for Tj*Tj is majorized pointwise by 

CN2-i (n-1)/2Tin(1 + 2-i / 2 Ix/l + 2-i lxD-N 
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for all N. 

It is straightforward to see that m'; is supported in 

{e: Ie' - w'l S; C2- ij2 and len - wnl S; C2-i } 

for some C independent of j and v, in the rotated coordinates adopted above. More

over for all i, f3 

(6.5) II af3 ai II ae'f3 aeh mj 00 S; C2-j(n-l)!22il.8I/22j; 

where C depends on i, f3 but not on j, v. This follows from the chain rule. Lemmas 1 

and 3 follow from (6.5) by a straightforward integration by parts. 

Roughly speaking, Lemma 3 implies that (m';t is supported essentially on a 

rectangle of dimensions C2jf2 in the x, directions and C2i in the x" direction, and 

satisfies a certain favorable Loo bound. We have already remarked that on scales 

larger than 2', B; behaves like an LOO function with norm at most CA. When i S; j /2 

we may clearly combine these two facts in a straightforward way to obtain an upper 

bound on II Tj"'Tj B,lloo, and a slightly more careful analysis yields for all i S; j 

with € = (n - 1)/4. (6.3) follows in the same way. The proof of Theorem B is, in 

outline, complete. More details may be found in the proof of Theorem A in [11], 

though the notation there must be unraveled. 

The decomposition of m as L: is both natural and in a sense optimal for 

our purpose. The first decomposition as :L mj has two motivations: first, in the 

case = distance which inspires the more general multipliers of the the-

orem, mj is roughly the same as m((2-i x), and second, it respects the homogeneity 

of distance ee, M). Unfortunately no satisfactory bounds hold for mj and a further 

decomposition is suggested. We have chosen the coarsest decomposition for which 

pointwise bounds may be obtained for the m'1 without sacrificing essential informa

tion. Given that bj is to be supported on a rectangle with one side of length compa

rable to 2-j, purely geometric considerations suggest that the other sides should be 
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chosen to have lengths no longer than C2- j /2. This choice gives the largest rectangles 

which, under an arbitrary diffeomorphism, are mapped to sets which in a reasonable 

sense look like rectangles, with comparable dimensions. 
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