
113 

HARMONIC ANALYSIS OF THE QUANTUM NONLINEAR 

SCHRODINGER EQUATION 

gu,gene Glltkin 

ABSTRACT 

The Hamiltonian of the quantum nonlinear Schrodinger equation is a selfadjoint 

operator on Fock space whose eigenstates are given by the Bethe Ansatz. The 

quantum inverse scattering method of the physics literature introduced two families of 

operators which have been claimed to satisfy important properties. Operators of one 

family are diagonal on the Bethe Ansatz eigenstates, while the other family creates the 

Bethe Ansatz eigenstates. In the present work we examine these operators. VVe 

establish some of the claims and show the inconsistency of others. 

INTRODUCTION 

The quantum nonlinear SchrOdinger equation (QNLS) 

(1.1) 
J. .~ 

iW = -\Ii + 2cW(x) I 1J!(x) " 
t xx 

is an integrable model of quantum field theory in 1 + 1 space- time. Eq. (1.1) has 

been much studied in the literature. Recently, a method of solution of has been 

[10], which became known as the inverse method [4] 

(QISM). The method consists of two parts: the direct and the inverse. The direct 

part associates Yvith the standard quantum field , \Iit(y) , two families 

of quantum acting on the Fock space 1{. Taking for initial 

condition in eq. (1.1) we obtain the time-dependent QNLS field \Ii(x,t). The 

corresponding time-dependent families \,1,) satisfy 

(1.2) = 0 , iB(;\,t)t = \2B(A,t) . 

The inverse part of the method reconstructs the quantum field \Ii(x,t) from /\,t) , 
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B().,t). Since equations (1.2) have an explicit solution, QISM provides a way of 

solving the Cauchy problem for the nonlinear quantum equation (1.1). 

The quantum inverse method relies on the relations between the operators 

A('-\), B()') and the QNLS Hamiltonian 

(1.3) H = [ dx[ III t III + clll t (x)21l1(x)2] 
x x 

-00 

as well as on the commutation relations between A()'), B('-\) and their Hermitian 

adjoints At (tt), B t (tt). The derivation of these relations in the QISM literature is 

not satisfactory. It is based on formal manipulations with the formal expansions of 

, B(A) in the quantum fields lJ!(x), IlIt(y). Working with A(A) , B()'), 

"formally-algebraically" [10] is not acceptable since we are dealing with very singular 

operators here. 

A different approach to the QNLS is provided by the method of intertwining 

operators [3,6,7], which we abbreviate as MIO. The MIO expressions for the 

operators A()'), B()') and for the QNLS field llI(x,t) [7] are different from the 

QISM formulas. Ref. [8] contains a critical exposition of QISM and a comparison of 

MIO and QISM expressions. The conclusion is that despite the formal difference, the 

two methods define the same operators A(A), B(A). The present paper is a 

byproduct of the work on [8]. Here we investigate the action of the QISM operators 

, B(\) , At (p), B t (t&) from the of view of the generalized eigenstates of 

the QNLS Hamiltonian (1.3). The eigenstate decomposition of a selfadjoint operator is 

the harmonic analysis of the operator, which explains the title of the paper. 

Some of the work reported here was done while the author was visiting the 

Australian National University, and was partially supported by ARGS. Other results 

of the comparative study of the two methods of solution of QNLS appear in a joint 

publication with Brian Davies [3]. The author would like to thank the Mathematics 

Department and the Centre for Mathematical Analysis of the Australian National 

University for the hospitality during his visit. 
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2. PRELIMINARIES 

(2.1) 

QNLS (1.1) takes place on the bosonic Fock space 

00 

1:: e llN 
N::O 

of the quantum field theory in 1 + 1 space-time. For N > 0 there is a (noncanonical) 

isomorphism of the N-particle sector llN and the Hilbert space L;YID(RN) of 

square-integrable functions f(x1, ... ,xN), symmetric with respect to permutations of 

x1' ... ,xN . We denote by x --; wx the action of the permutation group WN . The 

space 10 is one-dimensional and is spanned by the vacuum vector 10>. We say that 

we have a quantum field when there is a family w(x) of operators on 11, and their 

adjoints w T (x) satisfying the canonical commutation relations (CCR) 

(2.2) [w(x),w(y)]:: 0, [W(x),wT(y)]:: o(x-y) . 

The reader can find a mathematical treatment of CCR in [1], for instance. Here we 

only point out that w(x), wT(y) are not really operators but the operator-valued 

distributions (operator densities in physics terminology). We further require that 

(2.3) iJ! t (x) : 1lN --; 1lN+1' \]:I(x): llN --; 1lN- 1 

and that the action of iJ! t (x) on 10> generates 1. The densities \]:It (x) are called 

creation operators and W(y) are the annihilation operators. It is known that any 

representation of CCR satisfying conditions above, is unitarily equivalent to the 

standard representation Wo(x) , wt(y) 

(2.4) (Wo(x)f)(xl" .. 'xN_1) =: -iN f(x,x1, .. ·,xN_1) , 

t N+l. 
(wo(y)f)(xp-"'xN+1):: (l/{N+I) i~l O(xj-y)f(x1,···,\,···,xN+1)· 

A quantum field W{x), WT(y) can be used to represent operators on 1l in the 

normal ordered form [1]. For instance, eq. (1.3) represents the QNLS Hamiltonian in 

normal form, where w{x}, \]:It(x) in (1.3) mean the standard quantum field (2.4). 
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An expression in W(x) , W t (y) is said to be in normal form if the creation operators 

are on the left of aU annihilation operators. 

The Hamiltonian (1.3) is the second quantized form [1] of the bosonic 

many-body problem (in one dimension) with the delta-function interaction [2,9]. 

More precisely, the QNLS Hamiltonian preserves the N-particle sectors, and the 

restriction of H to IN is given by 

(2.5) 
N n2 2 

HN == - ~ (Flax. + c 1. 8(x.-x.) 
i= 1 I i1j I J 

which is the N-body Hamiltonian with the potential v(x) == cb{x). Physically, (2.5) 

describes the system of N quantum bans of unit mass on the line, interacting by 

elastic collisions, and c is the strength of interaction. When c == 0, there is no 

interaction, tlllS is the free case, c > 0 is the repulsive case which is simpler than the 

attractive case, c < I). The many-body problem {2.5} is called in the physics 

literature the Bose delta-gas. 

By discussion above, the eigenstates of the QNLS Hamiltonian H are the 

eigenstates of HN for N ::: O. The eigenstates of the delta-gas Hamiltonians have 

been known in the literature since [2,9J, and later were nicknamed the Bethe Ansatz 

eigenstates (BAE's), see, e.g., [5J and the bibliography there. We denote by 

I kp- .. ,kN> c the BAE of (2.5) corresponding to N distinct real quantum numbers 

kl f. ... "'" kN · Since Ik1,· .. ,kN>C is a symmetric -function of xl'""'xN , it is 

determined bv its values for Xl > ... > xN . We have (see, e.g. 

(2.6) Ik1,···,kN\(x1 > ... > xN)::: 

(N!rt L 
w=(il" 

c+i(k. -k.) i(ki x1+···+k. x~) 
II " . if IS e 1 IN N 

r<s l(k. -k. ) 
I r ! S 

We rewrite eq. (2.6) in shorthand as 
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(2.7) /kl'" .. ,kN) c(xi > ... >XN) = 

.1 {C+i(k.-k.) 1 
(N!f2 I w .1<1. i(k.~k .~ exp(i(k/x») 

w 1 J 1 J 

where the permutations w act on the vector k = (kl, ... ,kN) . 

The BAE's (2.7) belong to the absolutely continuous spectrum of H 

(2.8) H /kl,···,kN) c = (k~ + ... + k~) / kl' ... ,kN) c . 

They are orthogonal in the generalized sense but not normalized to the 8-function. In 

fact, they are very singular because of the denominators (k.-k.) in (2.7). The BAE's 
1 J 

are complete in 1 only if c 2: 0, which makes the repulsive case easier. The proofs 

of the assertions above use the fact that the delta-gas Hamiltonian (2.5) is equal to the 

Laplacean with special boundary conditions on the hyperplanes {x. = x.}, i < j (see, 
1 J 

e.g. [6]). Denote by (8/ 8x. - 8/ 8x.)f/ ± the jump of the normal derivative across the 
1 J 

hyperplane x. == x .. The boundary conditions for HN are 
1 J 

(2.9) (8/8x. - 8/8x.)f/± = 2cf. 
1 J 

Since we are dealing with symmetric functions f(xl' ... 'xN), the boundary conditions 

(2.9) can be translated into conditions on the inbound normal derivatives of f on the 

walls {Xl > ... > \ = xi+1 > xi+2 > ... > xN} of the fundamental region 

{Xl 2: ..• 2: xN}. There are N - 1 walls corresponding to i = 1, ... ,N.,.1. The 

conditions are 

(2.10) (8/8xi - 8/8xi+1)f = cf . 

Solution of the classical nonlinear SchrMinger equation (CNLS) by the classical 

inverse scattering method [11] associates with CNLS an auxiliary spectral problem, the 

Zakharov-Shabat problem. The matrix entries a(>.), b(>') of the monodromy matrix 

of Zakharov-Shabat problem are functions of the spectral parameter >. and 

functionals of the CNLS field tP(x,t). They satisfy equations [11] 
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(2.11) at (-\) = 0, ibt (-\) = -\ 2b(-\) 

which is crucial for the solution of CNLS. 

The quantum inverse method associates with QNLS the quantized 

Zakharov-Shabat problem [10]. The matrix entries of the quantum monodromy 

matrix are the Fock space operators obtained by quantizing a(-\) and b(-\). The 

quantization in question is called normal ordering and, in standard notation, we have 

(2.12) A{-\) = :a(-\):, B(-\) = :b(-\): . 

Definition (2.12) corresponds to explicit expansions of A(-\) , B(-\) in terms of the 

standard quantum field 'f! (we drop the subscript zero from now on) 

00 n J 2n i-\(e2n-+···-el ) 
(2.13) A(-\) = Jo c de O(e2n > ... > el ) e 

'f!t(e2n) ... 'f!t(e2)'f!(e2n_l ) ... 'f!(el ) . 

_ 00 n J 2n+l i-\(-e2n+1+-···- el) t 
(2.14) B(-\) - n~o C de O(e2n+1 > ... > el ) e 'f! (e2n) ... 

'f!t(e2)'f!(e2n+1) ..• 'f!(e1) . 

Notation O(e2n > ... > el ) in (2.13) means that the integration is over the region 

{e2n > ... > el} , and analogously in (2.14), the integration is over 

{e2n+1 > ... > el }. At this point we forget about the quantum inverse method, and 

investigate the operators given by eqs. (2.13), (2.14) and their adjoints A t(-\) , 

Bt(-\) . 

3. OPERATORS A(-\) AND BAE's. 

To simplify notation, we take i-\ for the basic spectral parameter in eqs. 

(2.13), (2.14), denote it by ,\ and let ,\ be arbitrary complex. We want to translate 

the formal expansion (2.13) into the action of A('\) on the Fock space states If). In 
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what follows we denote by I f) arbitrary functions of xl""'xN , invariant under 

permutations of variables. We denote by if)(xl > ... > xN) the value of If) on 

x = (xl> .. , > xN)· The hat sign over a variable, like xi' means that xi is deleted. 

The following proposition is proved in [8]. The proof is by straightforward 

computations using eq. (2.4) for the standard fields. 

3.1 PROPOSITION The action of opemiors A(A), A t(A) on N-pariicle states is 

given by 

A(x. + ... +x. ) 
(3.1) A("\) If)(x1 > ... > xN) = L en e 11 In 

1:Si1< ... <i :SN 
11 

JXil x. 
d1/1 ... J In d1] e->'(1/1+ .. ·+1]n) 

x. n 
12 -00 

f(1/1,···,r; , Xl'''''X' , ... ,X. , ... ,XN) . 
11 11 In 

(3.2) 
t A(x. + ... +X. ) 

A (A)lf)(x1 > ... > xN) = L en e 11 In 

1:s i l < ... < in:S N 

00 x. J d J!n-l -,.\( 1/ d 1]1 + ... +r; ) 
x. 1 ... lin e n 

11 Xin 

f( 1/1''''''f/ , X1'''''X' , ... ,X. , ... ,XN) . n 11 In 

A few comments on eqs. (3.1), (3.2). The summation is over all n-tuples 

1 :S i l < ... < in :S N, where n runs from 0 to N. The term with n = 0 is the 

identity operator. For each N, we interpret A(/\) , At(A) as integral operators on 

symmetric functions f(x1, ... ,xN ) defined on all If) for which the integrals in (3.1), 

(3.2) converge. For instance, A(;\) and At (;\) are certainly defined on continuous 

functions with compact support. For Re;\ < 0, the operators A(A) are defined on 

bounded functions. The same holds for A t(A) if Re A > 0 . 

We are interested in the action of integral operators A(;\) on the BAE's. It is 

convenient to change notation slightly from §2. In this section we denote by 
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I kl' ... ,kN> c the symmetric function of N variables determined 

1 { c+ (k . - k.) } 
(3.3) Ik1, .. ·,kN\ (Xl>'" > XN ) = (N!f'.L W .n. (k.~k.) exp(klx) 

w I<J I J 

The BAE I kl' ... ,kN> c is defined for any N-tuple of distinct complex numbers 

#: ... :f kN · The BAE's of §2 correspond to purely imaginary kl' ... ,kN . 

Denote TN the space of bounded continuous symmetric functions 

f(x1, ... ,XN) which are continuously differentiable everywhere except maybe on the 

hyperplanes {x. = x., i < j}, where the derivatives of f have at most jump 
I J 

discontinuities. The boundary conditions (2.10) make sense for f in TN' By 

remarks above, A(A) is defined on f in for Re A < 0, and is defined on 

f in TN for Re A > 0 . 

3.2. LEMMA Let f bea function in TN satisfying the boundary conditions (2.10). 

Then A(A)f satisfies (2.10) for all A such that Re A < 0 . 

Proof Denote A(A)f by g, and, in view of (3.1), using the self-explanatory 

notation, we set 

(3.4) g _ ~ n - L. C g. . . 
l::::h< ... <in::::N 11· .. ln 

For Re A < 0, the integrals in eq. (2.13) converge, and we can differentiate under 

the integral sign. We divide the set I of mul.tl--indiees < into fOllr 

disjoint groups: 10 are the multi-indices that contain neither 1 nor 2, II are those 

that contain 1 but not 2, 12 are those that contain 2 but not 1, and 11,2 contain 

both. 

By symmetry, it suffices to check that g satisfies (2.10) on the wall 

{Xl = x2 "" x > Xii > 00' > xN} . An elementary calculation shows that for any 

(il < ... < iN) from 10 
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(3.5) (a/flxl - {)/flx2)~1 .. .in(x,x > xs > ... > xN) = 

c g. . (x,x > Xs > 0" > xN) 
It···ln -

Le. that g. . satisfies (2.10). A multi-index in 11 or 12 is determined by 
11··· In -

i2 < '" < in with 12 > 2. An elementary but long calculation, which we skip, gives 

(3.6) UJ! fix - afflx)(g. . + g. .) = 0 1 2 1,12, ... ,ln 2,12, ... ,ln 

on the wall {x = x > Xs > ... > xN}. Another elementary calculation shows that for a 

multi-index (l < 2 < is < ... < in) in 11,2 

(8/ flxl - {)/ {)x2)gl,2,i3, ... ,in = gl,iS,.,.,in + g2,i3, ... ,in 

on the wall above. Combining the preceding equations, we obtain that on the wall in 

question 

({)/ Ox1 - 8/ Ox2)g = c 2:;/ en giti2 ... i n 

where the summation E' is over the multi-indices that don't belong to I1,2 0 Since 

for any multi-index from 

>X3 >···> =0 

we can replaceE / in summation over all multi-indices, which proves the 

Lemma. 

Pm any we denote 

with wave numbers kl' ... ,kN , i.e. the 

Ik1,o .. ,kN)S the "symmetric plane wa-ve" 

symmetric function of xl""'xN , such 

that 

Ik1,,.·,kN)S(X1 ::: ... ::: xN) = exp[k1x1 + ... + kNxNl . 

Let EN be the space of functions generated by all IkF .. ,kN)s. The N-particle 

BAEls in the sense of (3.3) belong to EN' We want to determine, which functions in 

EN satisfy (2.10). 
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3.3 LEMMA A function f::: L b(k) I kl' ... ,kN) s in EN satisfies (2.10) if and only if 
k 

for any i::: 1, ... ,N-l and any (N-l)-tuple f::: (fl'''''~-l) 

(3.11) L [(kC ki+1)-c]b(k) ::: 0 

where the summation is over all k such that k1 ::: fl , .. , ki + ki+1 ::: f j , ki+2 ::: fi+1, ... , 

kN::: ~-l . 

Proof It suffices to prove the assertion for i::: 1. The restriction of f to the waH 

{xl = x2 ::: X > x3 > ... > xN} is given by 

(3.12) ~ [ r b(kl]eflX+k3X3+ .. ·+kNX 
k1+k =f N 2 1 ' 

Denote by K the set of k such that b(k) f 0, Then the first summation in (3.12) is 

over the set L of exponents f::: (.el""'.eN- I ) such that f::: (k1 +k2,k3, ... ,kN) for 

kEK. 

The inward derivative (fJ/fJx1-fJ/8x'})f on the wall {Xl::: X2 ::: x > 

Xii > ... > xN} is given 

(3.13) &L [k J =f (kl_k2)b(kl]el'lXl+k3X3+ .. ·+kNXN 
1 2 1 . 

By linear independence of exponential functions with different exponents, f satisfies 

(2.10) on the wall in question if and only if :lor any .e E L, E[(kck2-clb(k)::: 0 , 

where the summation is over the inverse image of .e in K, I.e. over k such that 

kl -} == f1 , k3 == t2,· .. ,kN :: fN_1 · This proves the Lemmao The foHowing is 

immediate. 

COROLLARY Let K be a finite set and let f == L b(k) Ikl' ... ,kN>s be a function 
kEK 

in EN satisfying (2.10). If some index 1::::: i::; N and some (N-l}-tuple 

(zl',o.,zN_l) there is only one exponent k E K such that k1 :: zl,· .. ,ki_1 :: zi_l ' 

k. + k.+l == z., k. 2 == z. 1, .. ·,kN == ZN l' then either k. - k. 1 == c or b(k) == 0 0 

1 I I 1+ 1+ - 1 1+ 
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For any complex ), and any N-tuple k we define the set L{k,A) of 

N-tuples C as follows. For any multi-index 1 :::; il < jl < ... < in < jn :::; N , we set 

(3.14) C = [k1,···,k. 1'),' k. , ... ,k. 1 + k. -)" k. +l,···,kN] . 
11- 11 J1- Jl J1 

In (3.14) we have ), on places il, ... ,i and k. 1 + k. - )" ... ,k. 1 + k. -), on places 
n J1- Jl In- In 

jl, .. ,jn' The set L(k,),) consists of the exponents (3.14) for n > O. When n = 0 , 

eq. (3.14) produces the exponent k . 

3.4 LEMMA Let A and k = (k1, ... ,kN) be such that A(A)lk)s is defined. Then 

A(A) Ik)s E EN and 

(3.15) A(A) I kl , ... ,kN> S = ~ a(f) ll'l' ... ,lN>S 

where the summation is over the set {k} U L{k,),) . 

Proof By (3.1), we have 

(3.16) A(A)lkl' ... ,kN>S (xl ~ ... ~ XN) = 

x. X \' J in . L en In )dx -
l:':;i < ... <i <N d1J1 .. ·J d,., e l it 1J1)+ .. ·+(x. -'fl )] 

1 n- x. 'In In n 
12 -00 

I kl'".,kN> S(X1, .. ·,1l1'· .. ,1JN'·"'XN) . 

The domain of integration in (3.16) partitions into subdomains of the form 

x. > 'fl1 > x. l'·"'x. > 'f/ > x. 1 where 1:.:; i l :.:; jl < ... < i :5 j :::; N. In each 
J1 J1+ In n In+ n n 

subdomain the integrand in (3.16) is an exponential function, and, since the subdomain 

is a product of intervals, the integral is a linear combination of exponentials. It is hard 

to keep track of the coefficients, but the exponents are much easier to calculate. They 

have the form {3.14} where each subdomain can produce several exponents. 0 

By Lemma 3.4, A(A)lk)s is a linear combination of Ik1,· .. ,kN)s and I.e)s 

with the "bad exponents" l' E L(k,...\). As our next step, we calculate the coefficient of 

the good exponent Ik) . 
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3.5 PROPOSITION Let Ik>s be defined and let ,\ f kl'"oo,kN . Then 

(3.17) A().)lk)S::: r L en (k -Ar1 
00. (k. -Afl] Ik)S 

_ 1<' < <' < N i1 In 
-11 ... In-

+ L a(f) I e) s . 
fEL(k,A) 

Proof We use notation introduced in the proof of Lemma 3.4. Calculating the 

integral (3.16) over a subdomain corresponding to il S; jl < ... < in S; jn we obtain 

the exponent k only if il = jl' ... ,in ::: jn' The integral in question is 

(3.18) exp[I: k]exp[.\(k x. + ... +k. x. )] 
I 11 11 In In 

JXh 

x. dill e 
11+1 

X. 

-A)1/1 ". J In d17
n 

e 

xin+1 

where E lex. is the sum over i of 
I I 

. Although the integral (3.18) is a linear 

combination of 2n exponentials, only one of them has exponent k, the one which is 

obtained by taking the upper limits in {3.18}. Thus 

1 1 k1x1+···+kNxN 
(3.18) ::: (k. -,\f... -Af e + I'bad exponentials" 

11 

which proves the Proposition. 

COROLLARY Let'\ and '* ... f kN , A of ki , be such that A( Iwk)s is 

defined for any w. Set L::: U L(wk,A) Then 
w 

(3.19) I kl'".,kN\ ::: [i~ 1 [1 + k~-)\ ]] I kl'0oo,kN> C + &L a(e) I f) s ° 

Proof Follows immediately from Lemma 3.4, Proposition 3.5 and the identity 

n (k N [ c .]= L C it n 1+k.=X l<i< ... <i:S;N i= 1 I - 1 n 

_,\r1 . 

3.6 THEOREM F01' any A and any k1:f ... it kN , such that .x '* kl"",kN and 

A(/\) Ik1, ... ,kN) c is defined, we have 
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(3.20) A('\) Ikl'" .. ,kN> c =: [i~l (l+C/(ki-I\))] Ikl' ... ,kN> c . 

Proof We need to show that in (3.19), a(f) = 0 for all f E L. Since I kl'" .. ,kN\ 

satisfies (2.10) and, by Lemma 3.2, A(A) I kp- .. ,kN> c satisfies (2.10), the function 

(3.21 ) g = r a(f) I£)s 
eEL 

from the RHS of (3.19) satisfies the boundary condition (2.10). We will show that 

= 0 for f E L, using Corollary from Lemma 3.3 and a double induction. Recall 

that the set L of bad exponents is parametrized by pairs w = (ip ... ,iN ) and 

1 ::; p. < ql < ... < p < q ::; N , n > 0 . 
n "n 

Set 11 = 1, Pl :::: p, ql = q. The corresponding exponents £ have A as p-th 

coordinate and k. + k. -,\ as q-th coordinate. The remaining coordinates are equal 
1 J 

to kl' ... ,kN . Let q = p+ I. Set i = p in Corollary 3.3 and consider the set M of 

(N-l)-·tuples obtained by adding £ and fl' The exponent £ goes into 
p p+ 

(3.22) m =: (k , ... ,k + k., ... ,k. ) 
J.l I. J IN 

and for £"* f/ we have m f 111'. Hence by Corollary either :::: 0 or 

(3.23) 2A - k - Ie = c 0 

I J 

We can vary k and ,\ and, construction, ale) are rational functions of k and 

..\. Let us fix c. A rational function vanishing on the complement of the hyperplane 

(3.23) is identically zero. Hence, a(i) = 0 for the exponents tEL with n = 1 and 

ql - PI = 1 . 

We fix n = 1 and go by induction on d = ql - PI = q - p. The next step is 

d =: 2. The coordinates of an exponent £ on places p, p + 1, P + 2 are A, kt' 

k + k. - '\. The reduction of Corollary 3.3 sends this triple into the pair, ,\ + kt ' 
1 J 

k + k. - A. The only other exponent £1 with the same reduction must have kt , '\, 
I J 

k + k. - A. Hence, d =: 1 for f', and we have already shown that aU') =: 0 . 
I J 
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Hence, either ,\ - kt = c or a(l) = O. Same argument as before shows that a(l) = 0 

and concludes the second step of induction on d. Leaving n = 1 and increasing d, 

we show by induction on d that a( e) = 0 for all l with n = 1 . 

Let now n = 2 and set d = min(ql-Pl,q2-P2)' For d = 1 the exponent l 

contains a pair '\, k. + k. - '\, which under the reduction of Corollary 3.3 becomes 
1 J 

k. + k .. The only other possible exponents with the same reduction must have k., k. 
1 J 1 J 

or k., k. instead of '\, k. + k. - '\. These exponents have n = 1, and they are out 
J 1 1 J 

by the previous steps of induction. By now, the reader should see the pattern of the 

double induction on n and d. This induction proves the theorem. 

3.7 THEOREM Under the assumptions of Theorem 3.6 

(3.24) 
N 

At (,\) I kl' ... ,kN) c = [i~ 1 (l+C/(,\-ki))] I kl' ... ,kN) c . 

Proof Follows from Theorem 3.6 using that A t(-X) is the formal adjoint of A('\) . 

4. OPERATORS B('\) AND THE BAE's. 

We use the same conventions about the spectral parameter ,\ and the quantum 

numbers kl' ... ,kN as in §3. The following proposition is proved in [8]. 

4.1 PROPOSITION The action of B('\), Bt(,\) on N-particle states is given by 

(4.1) B('\) If)(x > >x ) _ Nt ~ n '\(x. + ... +x. ) 
1 ... N-1 - Lee 11 in 

1<· . _11<", <iN::; N-1 

00 x. x J J In-1 J i ,\( d'fJ1 '" d'fJ n d91 - 'fJ1+ .. ·+'fJn+1) 
X ~n+le 

q X -00 
in 

f[ 'fJ1'''','fJn+l'xl'''''Xi1'''''Xin, ... ,xN-l] . 
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t 1. >.(x. + ... +x. ) 
(4.2) B ('\)If)(x > ... >x ) = (N+lf2 L cn e 11 In+1 

1 N+l 1<" <N 

JXit 
d1]l '" 

X. 
12 

-ll< ... <IN+l- +1 

x. J In >'( d'fl e- 'l]1+"'+'f/) 
X. 'In n 

In+1 

f[ 'f/l, ... ,'I]n,Xl' ... ,Xil, ... ,Xin+l, ... ,XN+l] . 

It is clear from eqs. (4.1), (4.2) that B(>') is never defined on Ik1, ... ,kN>s 

while B t (,~), on the contrary, is defined on all sYnL11letric plane waves. Our goal is 

to calculate Bt(>')fkl" .. ,kN>C. 

4.2 LEMMA Operators B t (>') preserve the boundary conditions (2.10). 

The proof is analogous to the proof of Lemma 3.2, and we leave it to the reader. 

Fix A and k = (k1, ... ,kN) . With any multi-index 1::S i l < jl < ... 

< i < j < i +1 :5 N+l we associate the (N+l)-tuple 
n n n 

(4.3) f = [k1, .. ·,k. l''\'k. , ... ,k. 1+k . -A,k. 1, .. ·,A, ... ,k. 1+k . ->., ... ,A, ... ,kN] . 
11- 11 J1- J1 J1+ J2- J2 

In eq. (4.3) we have >. on the places i1,.",in+1 . On the places jl' ... ,jn we have 

k. 1 + k. - >', ... ,k. 1 + k. - >.. For n = 0, we obtain, by (4.3), the N + 1 
Jr Jl lie In 

exponents Ik" ... ,k.,'\,k. 1, ... ,kN), i = O,l, ... ,N. We denote by L(k,A) the set of 
., I 1+ 

exponents (4.3) with n > 0 . 

4.3 LEMMA For any ,\ and k = (kl" .. ,kN) with kl f: ... cf kN' and ,\ j k1, ... ,kN ' 

we have 

(4.4) Bt('\)lk) =(N+lrt I [l+nJ .. · [l+n][l+~] 
S n=O 1 n n+l 

[1 - ~J I k1, .. ·,k ,A,k -'-l,· .. ,kN)s + 1: b(f)l f>s . 
/1- KN 11 n, lEL(k,A) 

Proof The argument is similar to that used in the proof of Proposition 3.5. Using eq. 

(4.2) we set 
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(4.5) BtP,)lk) = (N+lrt L en g. i 
S l:::;il<o>.~in+l~N+l 11'" n+1 

The function g.. (xl > ... >xN 1) is given by an integral over the domain 
It···ln+! + 

x. > "'1 > x. , ... ,x. > r; > x. , see eq. (4.2). The domain of integration is 
11 12 In n In.! 

partitioned into subdomains, like in the proof of Lemma 3.4, where the integrand in 

each subdomain is an exponential function. For most subdomains, the integral is a 

linear combination of exponentials with exponents (4.3) with n > O. We look at the 

subdomains which produce exponents (4.3) with n = 0 more in detaiL For every 

1 :::; m :::: n, we consider the subdomain 

(4.6) xi! > 111 > > !7m- 1 > Xim_i+l ; 

Xim<-t-1 > "'rn > xim+l,···,xin+l-1 > fin > x iJ1H1 

The integrand in the domain (4.6) is the exponential 

(4.7) exp[(k. -1\)111 + ... + (k. -/\)'1/ + (k -)..)'f} + ... + (k. -A}Tl] 
11 Im-l m-l 1m+l m In+i n 

Integrating (4.7) over the subdomain {4.6}, we obtain, by choosing the upper or lower 

limit of integration in each interval in (4.6), a linear combination of 2n exponentials. 

The only good exponent is obtained by taking the upper limit for 17!'" .. ,17m - 1 and the 

lower limit for lIm,···,'fJn · The result is the exponential with exponent 

(k1,··o,k. l').'k. , ... ,kN) and the coefficient 
lrn- 1m 

(4.8) en [k _ /\] -1 ... [k. 
11 Im-l 

-1[ ]-1 '\-k 
imtl-1 

Collecting the terms {4.8}, we obtain the Lemma. 

[ ]
-1 

/\-k. 
lKltl- 1 

4.4 THEOREM For any RAE Ik1,··.,kN) c and ). ~ k1, ... ,kN , we have 

(4.9) B"f(A)lkl' ... ,kN>C = IA,k1j"··,kN>c· 

Proof We can rewrite eq. (3.3) as 

(4.10) Ikl' ... ,kN>c = (N!rt I: b(wk)lwk)s 
w 
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where 

(4.11) b(k) = IT (C+k.-k.)(k.-kT l . 
i<j I J I J 

These formulas and eq. (4.4) imply, by simple combinatorics 

(4.12) Btp.)lk1,···,kN\ = 1'\,k1,· .. ,kN>c + &1 a(f)lC)s 

where L = U L(wk,).). By Lemma 4.2, the function g 
w 

{4.13} g = &1 aU) 1 f) s 

satisfies the boundary condition (2.10). Arguing, like in the proof of Theorem 3.6, we 

prove, by a double induction, that a(C) = 0 for all exponents e in (4.13). 0 

5. PROPERTIES OF OPERATORS A('\), B(A) 

We return to the notation of §2 and consider the repulsive case, c > 0, only. 

Recall that for real distinct wave numbers kl' ... ,kN , the BAE's Ik1, ... ,kN\ form a 

complete family of generalized N-particle eigenstates of the QNLS Hamiltonian (1.3). 

We restate the main results of §3, §4 in a more convenient form. 

5.1 THEOREM 1. For any complex ,\ with Im'\ > 0, A(A) I kl' ... ,kN> c is well 

defined and 

(5.1) A().)lkl'"",kN>c = [i~l (l + iC/(,\-k))] ik1,···,kN)c· 

Analogously, if 1m A < 0 

(5.2) Ikl'" .. ,kN>C= [i~l (1 - iC/(A-ki ))] Ik1,···,kN>C· 

2. For any real ,\ suchthat A=l:k1, ... ,kN, Bt().)lk1, ... ,kN>c is well defined and 

(5.3) 
.L 

B I (,\) Ik1,· .. ,kN> c = 1 A,kl'" .. ,kN> c . 
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Proof The BAE's are bounded functions. For ). satisfying the assumptions, integral 

operators A()'), A t(.X) are well defined on bounded functions. Now eqs. (5.1) and 

(5.2) foHow from theorems 3.6, 3.7, by a simple change of notation. Eq. (5.3) follows 

from theorem 4.4. 0 

COROLLARY For any kl if: ... if: kN 

(5.4) Ikl' ... ,kN>c = Bt(k1) ... Bt(kN)IO) . 

In view of eq. (5.4), Bt(k) are called "creation operators for the BAE's" in 

the physics literature. The name should be taken with a grain of salt, since the 

integral operations B t (k) define neither operators nor operator densities on Fock 

space [8]. On the other hand, A()'), A t(tt) define reasonable operators on the Fock 

space [8] satisfying simple commutation relations. 

5.2 THEOREM For Im..\ > 0, 1m fJ > 0, the integral operations A( , At (fJ) 

define bounded operators on 1(N for every N. These operators are uniformly 

bounded on every hal/plane 1m). > t > 0, 1m p, < - ( < O. For )., )., and j.t, /1/ 

as above, they satisfy the commutation relations 

(5.5) [A(JI),A()")] == [At(tt),At(p'l] == [A().),At(ttl] == 0 

Proof Rewrite eq. {5.l} as 

(5.6) A(A)! 'c Ik) " , c 

By (5.1) 

(5.7) la(A,k)l::s (1 + lei IImA,-l)N. 

Since the bound (5.7) does not depend on k and since the BAE's are complete in 1(N ' 
.l 

A I (A) uniquely extend to bounded operators on 1(N' The rest is obvious. 0 

Eqso (5.1), and (503) yield certain relations between A(>') , At(A) on one 

hand and B(j.t) , B t (tt) on the other hand. For instance, let A satisfy Im'\ > 0 , 
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and let tt be real. By (5.1) and (5.3), for any BAE I kl' ... ,kN\ such that 

It f. kl"" ,kN 

(5.8) A(A)Bt(ltllk!'" .. ,kN>C = [1 + LCtt] [i~l [1 + ic/(A-ki l]] Ift,k1,···,kN>c· 

(5.9) B t (J.I)A(A) I kl'" .. ,kN> c = [i~ 1 [1 + ic/(>--kjl]] I J.I,k1,···,kN> c . 

By (5.8), (5.9) 

(5.10 ) [A(A)BtCu) - [1 + L~tt]Bt(ft)A(A)] Ikl' ... ,kN\ = O. 

In the physics literature (see, e.g. [4,10]) eq. (5.10) is rewritten as 

(5.11) A(A)Bt(J.I) = [1 + LCti] Bt(p)A(A) 

and called a relation between operators A(A) and B t eu). The problem with eq. 

(5.11) is that both sides of it are not operators on Fock space. They are integral 

operations defined, in particular, on the BAE's. By (5.10), they are equal on BAE's, 

hence on the space EN spanned by BAE's. Thus, (5.11) should be understood as 

equality of operators on EN' Since EN intersects trivially with 'IN' eq. (5.11) can 

not be considered a relation between operators on Fock space. In fact, it looks like a 

relation of operator densities, but neither A( >') nor B t (ti) are operator densities [8]. 

We refer the reader to [8J fora further discussion of relations between A(/\) , A tp,/) , 

B(p) , Bt(ti') . 
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