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LIE GROUP IMBEDDINGS OF THE FOURIER TRANSFORM 

AND A NEW FAMILY OF UNCERTAINTY PRINCIPLES 

David Mustard 

1. INTRODUCTION 

The one-dimensional Fourier-Plancherel operator F: L 2 (R) --.L2 (R), 

defined formally by 

(1.1) (Ff) (y) fly) (2~)~1/2f e-iyxf(x)dx, 
R 

is a unitary operator; that is 

(1.2) <f,g> <f,g> and IIfll IIfll 

where 

(1.3) <f,g> -1/2f -(2~) Rf(X)g(X)dx and IIfll <f,f>1/2; 

also F4 I, the identity operator, so the integer powers of F form a 

cyclic group of order 4 [5]. It is natural to contemplate imbedding 

this finite discrete group of unitary operators in a continuous one. 

Condon derived a one-parameter group of integral operators {FO) (9 e T, 

where T R/2~Z) with the appropriate properties in 1937 [2] and 

Bargmann derived a corresponding one-parameter group for the d-

dimensional Fourier operator in 1961 [1]. I have shown [11] the 

construction of infinitely many distinct imbeddings of the d-dimensional 
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F into a compact Abelian Lie group of unitary operators that has the d-

dimensional torus Td as its manifold. A particular "natural" one of 

these has a subgroup that is the Condon-Bargmann one. 

Besides the intrinsic interest in a continuous imbedding there are 

several areas of application. The recent research [3,4,7,8,9,13,14,15] 

into inequality relations between a function f and its Fourier transform 

f (relatives of the Heisenberg-Pauli-Weyl uncertainty principle) has 

applications in quantum mechanics and communication theory. 

inequalities can all be put in the form 

(1.4) cr(f) ~ c, some constant, 

These 

where cr is some measure of overall spread (or "uncertainty") in f and f. 

For cr to measure some intrinsic property of the object represented by 

f, f or f it ought to be invariant under the continuous group of 

transforms IFel in which F is naturally imbedded; that is, for all 

f E L2 (R) cr should satisfy 

(1.5) \ie E T 0' (fJ a (Fef) • 

In this paper I outline a construction of the Condon-Bargma.nn group 

{Fel, show that Heisenberg's measure of overall uncertainty does !!.21:. 

satisfy (1.5), develop a family of measures that do satisfy (1.5) and 

show that the first one of this family leads to an uncertainty principle 

that is actually stronger than Heisenberg's. 

2 
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2. AN IMBEDDING {Fe} OF F 

One can construct a continuous imbedding {Fa l of F by using a 

diagonal representation of F. It is well known [5,16] that the Hermite 

functions h (x), where 
n· 

(2.1) h (x) 
n 

_x2 /2 
C e H (xl 

n n 
(n E 1<1'), 

where Hn is the nth Hermite polynomial and Cn is a normalization con-

stant, form a complete orthonormal set of eigenfunctions of F, 

satisfying 

(2.2) Fh 
n 

e -i:rm/2h . 
n 

Each f E L2 (R) has the Fourier-Hermite series 

(2.3) f :s <h ,f>h 
.. n n ne .. 

so its "fractional" Fourier transform paf(a E R) is naturally defined by 

(2.4) pa f L <h f>e-inna/2 
neN n' hn ; 

that is, writing Fe Fa where e 1Ca/2 (9 E T), 

3 
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(2.5) Fa f 1: <h f>e-inah 
n' n 

neN 

Provided a/K • Z the order of summation and integration in (2.5) can be 

reversed giving 

(2.6) (Faf) (x) <Ka (s,x), f (5) > 

where 

(2.7) Ke (s,x) 1: e in9 h (s)h (x). 
N n n ne 

The sum Ka in (2.7) can be evaluated in closed form [1,11] leading 

eventually to the theorem 

THEOREM 2.1 (Condon-Bargmann) A one-parameter Lie group of 

transforms {Fa} (9 e T) in which the Fourier transform on L2 (R) 

is imbedded, (i.e. satisfying FkK/2 Fk (k e Z» is given by 

(2. B) (Faf) (x) 

where Aa 
. -1/2 J if K )] (2K I slona I) ex'1 - 212 sgna-a 

for 0 < la I < K. 

4 



215 

3. Fe AND THE OPERATORS J:, J, J + AND J 

Using the operators D and X defined by (Df) (x) (d/dx)f(x) and 

(Xf) (x) xf(x) then define the operators st and J by 

(3.1) { 
J+ 

and J 

2-1 /2(D_X); - -1/2 
J = 2 (-D-X) 

+ -
J J 

-1 2 2 
2 (-D + X - I). 

The h n are well known to be the eigenfunctions of J [6,10,16] and 

(3.2) Jh 
n 

nh ; J+h 
n n 

-~n+1 h 1 and J h n+ n 
-~n hn _1 . 

Under the inner product (1.3) J is self-adjoint and J+ and J are ad-

joints of one another. One notices that J is just the Schrodinger 

operator for the simple harmonic oscillator (in appropriate units and 

with subtraction of the zero-point energy). 

(3.3) 

The operators obey the commutator relations 

+ -
{ [J, J ] 

[I,J+] 

= -I; [J,J+] = J+ [J,J] -J and 

[I,J] [I,J] 0 (the additive identity) 

so one can see they constitute a basis for an irreducible representation 

of a complex 4-dimensional Lie algebra. 

I have shown [11] that -iJ is the infinitesimal generator of the 

Lie group {Fe}; that is, Fe exp(-i9J). Setting 9 x/2 gives an 

5 
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interesting representation of the Fourier operator F, closely relating 

it to the quantum mechanical simple harmonic oscillator: 

(3.4) F 
11: 

exp(-i'2J ) J ,11: 2 2 ] eX"1 -~4(-D + X - I) . 

J, then, commutes with but J+ and J do not. The following proposi-

tions, however, state some invariance relations involving 2-norms and 

inner products of J±f that I use to construct Fe-invariant measures of 

overall spread. 

PROPOSITION 3.1 For all kEN 

II (J+)kfll and II (J-)kfll are Fe-invariant; 

that is, 

(3.5a) \19 E T 
+ k 

II (J ) Fafll 
+ k 

II (J ) fII 

and 

(3.5b) II (J ) fll 
- k 

II (J ) fll. 

PROPOSITION 3.2 For all kEN 

(3.6) \19 E T «J+) - k 
if (J ) Faf> 

i2ke I +,k f I -)kf e <,J I , ,J >. 

6 
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I have outlined the proofs of these tor k 1 in [12]. 

COROLLARY For all kEN 

(3.7) 1«J+)kt , (J-)kf>1 is Fe-invariant. 

4.. THE HEISENBERG MEASURE OF SPREAD, (IE: 

In units in which Planck's constant equals 2n Heisenberg's uncer-

tainty principle can be expressed as 

(4.1) "Hlf) " 1/4 

where the Heisenberg measure (lH(f) of overall spread is the product of 

the variances of Ifl2 and If12; that is, taking (without loss of 

generality) both centroids as zero: 

(4.2) (lH (fl 
2 A A 2 

(lIXfll/llfll) (IIXfll/li fll) . 

Using the unitarity of F and its basic property that iXF FD this can 

be rewritten as 

(4.3) (JH (f) 
-4 2 2 

IIfll IIXfli IIDfll 

7 
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+ -
In terms of the set of operators {I,J ,J ,Jj that is clearly the 

natural one in the context of the fractional Fourier transform Fe this 

can be rewritten again [12J as 

(4.4) I1H (f) -1 -4{ [ + 2 - 2] 2 [ + -] 2} 4 IIfll IIJ fll +IIJ fll - 4 9!e<J f,J f> . 

Using the results of propositions 3.1 and 3.2 (for k=l) one gets theorem 

4.1. 

THEOREM 4.1 The Heisenberg measure of overall spread of f 

and f, aR(f), is not invariant under the fractional Fourier 

transform Fa but depends on 8 according to the formula: 

(4.5) GR(Fef) -1 -4{ [ + 2 - 2] 2 [ -i29 + -] 2 } 411fll IIJfll+IIJfll -49!ee <Jf,Jf> . 

5. Fe-INVARIANT MEASURES AND UNCERTAINTY PRINCIPLES 

Looking at the Heisenberg measure 0H in the form (4.4) in the light 

of the results of theorem 4.1 and propositions 3.1, 3.2 and its corol-

lary leads one to construct a modified and generalized "k-measure", (lk. 

DEFINITION 5.1 The "k-measure'" of intrinsic spread of f and f is the 

function Gk1f) (k E N) where 

-1 -4{ [ + Ii: 2 - Ii: 2] 2 + k - k 2 } (5.1) (Jk(f)=4 IIfli li(J) fll +II(J) til -41«J I f,(J l f>1 . 

8 
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By (3.5) and (3.7) one can see immediately that O"k is Fe-invariant. 

THEOREM 5.1 For all f the k-measure of its intrinsic 

spread O"k(f) satisfies the uncertainty principle: 

(5.2) -1 -4{ + k 2 - k 2} 2 O"k(f) <: 4 IIfll II(J) fll - II(J) fll • 

Proof Use the Cauchy-Schwarz-Bunyakovski inequality on.the inner-

product term in (5.1). 

TO get a result that can be compared with Heisenberg's it is first 

convenient to make another definition. 

DEFINITION 5.2 The "twistiness" of the function f is the real number 

v (fl where 

(5.3) v (fl 
-2 

nfll <Xf,f D arg f>. 

(It is zero for functions of constant argument and one can show that 

'I} (fl -v (fl.) 

COROLLARY 5.1 Heisenberg's uncertainty principle can be both 

improved and strengthened to: 

(5.4) (11 (fl 
2 

CJH(f) -'I} (fl '" 1/4; 

9 
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that is, G 1 (f), the l-measure of overall spread of f and ff 

is superior not only in being Fe-invariant but also in being a 

tighter measure, in the sense that 

(5.5) aR!f) ~ a 1 if) ~ 1/4. 

(In (5.5) there is equality in both places if and only if 

2 
fix) a exp(-bx ) + 

(a E C, b E R ) .) 

Proof Put k 1 in definition 5.1 and use definition 5.2 and (4.3) 

2 
to get cr 1 0 H - v . On putting k 

the sta<tement <that 01 (f) " 1/4. 

1 in theorem 5.1 i<t simplifies to 

There are many questions here for further research. Looking at 

the higher values of k should lead to results comparable with 

Hirschman's extension of Heisenberg's principle <co higher order moments 

[7] and application of the idea of -invariance to the Landau-Slepian-

Pollak • .ark [8,13] would avoid the weaknesses of moment-type measures of 

spread. 

10 
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