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PIECEWISE LINEAR FUNCfIONS AND SERIES EXPANSIONS 

IN TERMS OF DIRICHLET AND FE.T:ER KERNELS 

Rodney Nillsen 

If (x,,) is a sequence of vectors in a Banach space, there are various results which describe, 

in particular cases, when a subsequence (x".) of (x,,) has certain properties, such as being basic, 

which are not possessed by the original sequence. For example, take the sequence (e;nt)::o=_oo in 

C([0,2'/1")). This sequence is not basic, but any lacunary subsequence of it is basic. Results along 

similar lines, for different sequences, may be found in [1], [2] and [3]. 

In this note are announced some results for certain sequences of vectors in £P(R) and IP(Z), 

for 1 :::; p < 00, these vectors being linear on certain subintervals of R or Z. This enables a certain 

characterization to be given of those functions which can be expanded in terms of a lacunary 

sequence of Dirichlet and Fejer kernels in L2(_'/I", '/1"). 

Let 1 :::; p :::; 00. Let a(O) = 0 and let (a(n)) be a given strictly increasing sequence of 

positive real numbers. The sequence (a( n» is said to be lacunary if there is a 6 > 1 such that 

a(n + l)a(n)-l ~ 6 > 1, for all n € IN. A Banach subspace PL(p,a) of LP(1R) is defined as 

follows: f € PL(p,a) if and only if f € LP(R), f is even, f is zero on nit : It I ~ a(n)} and f is 

the restriction of a polynomial function of degree at most one upon each interval of the form 

[a(n-1), a(n)), for n € IN. Let PLC(p,a) denote those functions in PL(p,a) which are continuous 

and let PC(p, a) denote those functions in PL(p,a) which are constant upon each interval of the 

form [a(n - 1), a(n)) , for n € IN. If lim a(n) = 00, it is clear that P LC(p, a) n PC(p, a) = {O}. Let "_00 

(Un) be the sequence in PL(p,a) given by U2n_l(t) = 1 for It I :::; a(n), U2n-l(t) = 0 for It I > a(n), 

and U2,,(t) = maximum (0, a(n) -Itl). 

THEOREM 1. Let 1 :::; p < 00. Then the following conditions are equivalent. 

(i) (a(n» is lacunary, 

(ii) PL(p,a) is the direct sum of PLC(p,a) and PC(p,a), 
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(iii) (un) is a basis for PL(p,a), and 
00 

(iv) if'I:.d"un converges in PL(p,Oi), then d f IP. 
n=l 

When these conditions hold, (llun ll;lUn ) is equivalent to the standard basis for lP. 

If 1 :::; p < 00 and p-l + q-l == 1, it can be proved that there is a bounded linear projection 11" 

from £P(R) onto PL(p,Oi) such that 1I"*(PL(p,0i)*) =: PL(q,Oi). This result can be used to obtain 

the following dual form of Theorem L 

THEOREM 2. Let 1 < q:::; 00. For f £ Lg(JR.) and n £ lN, let 

j ,a(n) 

(A(f)hn-l:= a(n)~-l f(i)dt, and 
-O/(n) 

l ",(n) 

(A(f))2n =: a(n) i- 2 (a(n) - Itl)f(t)dt, 
-OI(n) 

Then (a( n)) is lacunary if and only if A is a bounded linear operator from Lq (JR.) onto Iq. In 

this case, the restriction A to the subspace PL(q,a) of Lq(lR) is a bounded invertible operator 

Oi) onto F. 

If (cd n)) satisfies the initial assumption and its terms are integers, let P Ld(p, a) be the discrete 

analogue of PL(p,a). That a sequence (d,,) is in PLd(p,rx) if and only if (dn) £ IP(Z), dn == d_ n 

for all n £ IN, and is niecewise linear in the sense that for each n £ ..IN" there is a scalar IJ" 

such that _. dj == en, for all j f - 1) + 1, ... ) - I}. The is then a 

discrete of Theorem 1. 

TfffiOREM 3. Let 1 :::; P < 00 and assume that (a( n)) is a strictly increasing sequence of positive 

integers such that - 1) ~ 2, all n f IN. Let the sequence in P Ld(p, rx) be 

=: 1 for IJI < UI ~ and maximum (0, -Ijl). 

Then the conditions areiOOUHJrdp 

is lor'IInorv 

is a basis for and 

if'I:.Cnwn converges in then c £ IP. 
n=1 

When these conditions is eauivalent to the standard basis in IP. 



225 

The Fourier transform of W2n-l is the Dirichlet kernel Da(n) given by 

Da(n) = sin(a(n) - t)t/sin~, The Fourier transform of a(n)-lW2n is Fejer's kernel FaCn) given by 

Fa(n) ::: a(n)-1(sin2 o:(n)t)/(sin2 ~), Plancherel's Theorem thus gives the following corollary of 

Theorem 3, 

COROLLARY, The condition that (""(n)) be lacunary is equivalent to the condition that 
00 

I)c"",,(n)-tDa(n) + dnU'(n)-tF",(n)) is convergent in L 2(-7r,1r) if and only if both c,d E F, In 
n;:;;l 

this case, the functions which are the sums of such series are precisely those whose Fourier 

transforms belong to PL d (2,0i). 
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