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CLASSIFYING ACTIONS OF GROUPS ON VON NEUMANN ~~EBRAS 

Colin E. Sutherland 

The objective of this paper is to provide an overview of results 

obtained recently by the author and M. Takesaki on the classification, 

up to cocycle conjugacy, of actions of discrete amenable groups on 

injective factor von Neumann algebras of type III~, ~ ~ 1. Details 

will appear elsewhere, [14]. We also describe the conclusions of 

preceding work of Oceanu, [10] extending previous work of Connes [1], [2J 

and Jones [7], and of Sutherland and Takesaki, [13], on actions of 

discrete amenable groups and groupoids on injective semi finite von 

Neumann algebras. 

§O NOTATION 

Throughout, G will denote a locally compact second countable 

group, and M will denote a von Neumann algebra with separable predual 

M*; when required, we will regard M as being realized as a ~"eakly 

closed, unital, self-adjoint subalgebra of the bounded operators B(JI) 

on a separable Hilbert space JI. An action tt of G onM means a 

homomorphism tt: G ~ Aut(M) which is strongly continuous i.e. for which 

g E G ~ mItt (x» is continuous for each x E M and mE M*. For a 
g 

* unitary u E M, Adu will denote the inner automorphism, Adu(xl = uxu . 
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§1 COCYLE CONJUGACY 

Actions a and ~ of G on M are said to be cocycle conjugate 

if there exists 9 E Aut(M) and a unitary valued function g e G ~ u(g) 

E M such that 

-1 
9 () ~ () 9 = Ad u(g) () ~ for g E G; 

g g 
1) 

2) g ~ u(g) is continuous, and 

u(g)~ (u(h» 
g 

u(gh) for g,h E G. 

Functions g ~ u(g) satisfying 2) above are called 1-cocycles for 

~, and the space of all such l-cocycles is denoted 
1 
Z~(G,U(M». 

It is routine to check that cocycle conjugacy is an equivalence 

relation on actions of G on M. To see what is involved in this 

relation, we look at some examples. 

EXAMPLE a) M L=(X,~), where (X,~ is a standard measure space. 

Since M is abelian, cocycle conjugacy and conjugacy coincide, and the 

cocycle conjugacy classes of actions on M correspond bijectively which 

conjugacy classes of non-singular actions of G on (X,~l. Even for 

G Z, there is no sense in which there is any reasonable 

classification of such actions 

b) M B(~. If ~ G ~ Aut(B(?Dl is an action, then, since 

every automorphism of B (j{) is inner, we may choose a (Borell function 

g E G -> a (g) E U (!If) such that u Ad a(gl 
g 

for each g E G. Since 

Ug () u h ()!gh' we obtain 

a(g)a(hl ~a (g,h) a (ghl 

for some Borel function ~a G x G ~ T. It is routine to check that 

satisfies the functional equation 

~a(h,k) ~a(g,hk) ~a(g,h) ~a(gh,k) 

for g,h,k E G, and that if a(g) is replaced by bIg) 

with c(g) E T, then 

Ilb (g,hl 
-1 -1 

ll a (g,h)C(g) c(hl c(ghl. 

c (g) a (g) 
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In the language of cohomology theory, ~a defines a (Borel) 2-cocycle 

on G, whose class in the corresponding cohomology group H2 (G,T) 

depends only on the action a. More is true; if 
2 

~a [~a] E H (G,T), 

then flO( depends only on the cocycle conjugacy class of a, and actions 

a,~ are conjugate if and only if fla = fl~. 

These two examples suggest that, in general, the cocycle conjugacy 

classification problem will be controlled by a mixture of invariants 

coming from ergodic theory and cohomology. We will see that this is 

indeed the case. One more example is instructive. 

c) Let M be a factor and let a be an automorphism such that 

n 
a is inner (for some n EN), but 

k 
a is outer for 1 :;; k < n. 

a unitary a E M such that an Ad a, and observe that 

Ad ala) a 0 Ada 0 
-1 n 

a a Ad a 

so that a(a) ya for some YET. Note that 

a = Ada (a) 
n n 

a (a) y a, 

Choose 

so that 
n 

Y 1, and that y is a cocycle conjugacy invariant of the 

action n E Z -> all • 

The following result is one of the prototypes for results in this 

area. 

THEOREM [1,2] Let M be the hyperfinite factor R of type Ill' and 

let a,~ E Aut (M) 

actions 
n 

n -> 0: 

for automorphisms 

be such that na np and YaY fl ; 

and n -> f are cocycle conjugate. 

a for which 
n 

a is outer for all 

then the 

The same is true 

n " O. 

The hyperfinite factor R of type III of the theorem is 

ubiquitous; it may be constructed as the von Neumann algebra generated 

by the left regular representation of any discrete amenable infinite 

conjugacy class group. 
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§2 THE GROUP Aa(G,N,A) 

As example cJ above shows, classifying actions up to cocycle 

conjugacy requires a group more sensitive than an ordinary second 

cohomology group. Our purpose here is to introduce the groups which are 

relevant to the problem. 

Let G be a locally compact group, N a closed normal subgroup, 

and let A be an abelian Polish G-module as in [9], so A is a 

complete separable me"tric abelian group carrying a jointly continuous 

action (1. 

functions 

1) 

2) 

3) 

4) 

5) 

of G. We consider the group Z (G,N,A) 
a 

of pairs ()., (11) 

11. N x G -> A, 11 NxN->A such that 

11 Ii! Z2(N,Al 
a 

Le. 

C1.m (l1(n,p»I1(m,np) = 11 (m,nll1 (mn,p); 

-1 -1 -1 -1 
a (Il(g mg, 9 ng)l!L(m,n) = A. (m,g)OL p .. (n,g»1I. (mn,g) . 

9 m 
-1 

A (m,gh) = (l (1I.(g mg,hlI1l.(m,g) 
9 

11. (n,m) 
-1 -1 

11 (m, m nmll1 (m, nl 

ll. em,nl 1 and 11. (n,g) 1 if any of m,n or g is the 

iden'city. 

(Here m,n,p e Nand g,h E G) 

We also define BOL (G,N,A) as the subgroup of Z (G,N,A) 
C1. 

consisting of pairs (il 1O, d2C), where c : N ..... A is Borel, 

(il<c) (n,g) = (l_(c(g ) c (n) 
-1 

and 

«(j 

The quotient group 

-1 
(m,n) c(m)lJLm(c(n»c(mn) 

(G,N,Al/B (G,N,A) is denoted 
IlL 

and 

(G,N,A) . 

This group was introduced by Jones [7] and modified to the context of 

of 

measured groupo ids in [8] and [13]. Algebraically, it is an in"teresting 

cohomological object, since it parametrizes extensions of the form 

1 ~ A ~ H ~ N ~ 1 
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in the category of G modules, where the action on N is by 

conjugation, and the action on A is the given one. 

§3 ACTIONS ON SEMIFINITE ALGEBRAS 

Consider an action a of G on a semifinite factor M, with 

-1 
trace Tr. Put N(a) = a (Int M), where Int M denotes the inner 

automorphism group, and choose a Borel map n e N ~ a(n) e U(M) with 

an Ad a(n). Since Int(M) is normal in Aut(M), N(a) is normal in 

G; since a 0 a m n 
a, 

mn 
and a 0 a -1 

-1 
o a an' we find 

g g ng g 

a(m)a(n) Ila (m,n) a (mn) 

and 

-1 
a (a (g ng» = A (n, g) a (n) 

g a 

for m,n e N(a) and g e G. It is routine to check that (A a ,ll a ) e 

Za(G,N,T), and that the class Xa [(A a ,ll a )] of this element in 

Aa,(G,N,T) is a cocycle conjugacy invariant of a. 

We may also obtain another cocycle conjugacy invariant II e 
a 

HOrn(G,a:) by using essential uniqueness of the trace thus; for each 

g e G, then is a constant lI a (g) > 0 with 

Tr 0 a 
g 

lI a (g) Tr. 

Note that if M is finite (i.e. Tr(lM) < -), 8a is automatically 

trivial. 

THEOREM Let M = R or M = RO,l = R ® B(~ be a semifinite 

injective factor, and let a,~ be actions of a discrete amenable group 

G on M. Then the actions a,~ are cocycle conjugate if and only if 

i) N(a) N(~), and 

ii) Xa' = Xfl and II 
a 8~ • 
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with the obvious restrictions, all possible values of the invariants can 

occur. 

In the form stated, the theorem is due to Ocneanu [111, although 

it had previously been proven for G Z by Cannes [1], [2] and for G 

finite, by Jones, [7]. 

It is relatively easy to construct model actions realizing a given 

set of invariants. For simplicity, suppose G is infinite, and realize 

R as the infinite tensor product ®GM2(C) of 2 x 2 matrix algebras 

(with respect to the trace) indexed over G. We let G act on R via 

(left) translation of the indices, say ~, and consider the twisted 

crossed product R x N P. 
~,Il 

Thus P is generated by an isomorphic 

copy ~(R) of R and a (particular) family (pll(n) n E Nl of 

unitaries satisfying 

and 

pI! 1m) (n) J.! (m,n)pll <ron), 

pI! (m)n (x)pjJ.(m)-l n(1: (xl) 
m 

for ID,n E N and x E R. If (A,jJ.) E Z(G,N,T), there is an action ~ 

of G on P determined by 

and 

OL (n (x) ) 
g 

!it (pll (g -lng) l 
g 

11: (,; (x) l 
g 

'A, (n,g) (n) 

P is in fact isomorphic to R if N is amenable, and the action ~ 

described above has invariants [(A,!.!)] E A(G,N,T). 

Ocneanu's results may be generalized to actions of discrete 

amenable groups G on semi finite injective algebras M ® R or 

® RO,l where is abelian. This was done in [13], following a 

strategy devised by Jones and Takesaki in [8]. The extension is non-

trivial, since one must incorporate the action of G on the centre 

of M; the best way to formulate the problem is using groupoids. 
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In general, if a G -> Aut ( ® P) is an action, with P a 

factor, we may realize as L (X,~) for some standard measure space 

(X,~), and the action of G on a as being of the form 

(a .p) (x) = <I> (xg) 
g 

for <I> E L~(X,~), where (x,g) E X x G -> xg E X is some non-singular 

action of G on (X,~). If we view M as consisting of (classes of) 

bounded measurable functions from X to P, the action of G on M 

is of the form 

(a T) (x) = a ( ) (T (xg) ) 
g x,g 

for T e L-(X,~,M), where ~ : X x G -> Aut(P) is a measurable map. If 

we endow X x G with the partially defined "product" 

(x, g) (xg, h) (x, gh) , 

x x G becomes a groupoid, denoted X x G, and the map a becomes a 

"homomorphism" from X x G .to Aut(P) i.e. 

a a = a 
(x,g) (xg,h) (x,gh) 

a.e. (~) in x for each g,h E G. The results of Ramsay [12] ensure 

that we may assume the above identity holds for every x,g,h. 

One way now repeat Ocneanu's program for actions of (measured) 

groupo ids such as q = X x G on R or RO,l To describe the 

invariants, we let 

:}{ = {(x, g) E Ij xg xl, 

the "isotropy part" of (if and le<t 

~ = {(x,gl E :}{ : a(x,g) E Int (P) } 

The group A(q,~T) may be defined in the same way as in §2, and 

choice of implementing unitaries on ~ yields a cocycle conjugacy 

invariant Xa E A(Ij,~,T) for a, as above. Choosing a trace Tr 

on P yields a homomorphism 
x 

1\ Ij->!\ satisfying 

Tr 0 "(x,g) Ii (x,g)Tr; 
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The cohomology class 1\ IX [S] e HI ({j,R:l is readily seen to be a 

cocycle conjugacy invariant of tt. 

THEOREM ( [13] and [14]) Let IX, II be actions of G on ® P, where 

P = R or RO, l' and suppose that either 

al G is discrete amenable, or 

b) G = H x R where H is discrete amenable, that the actions (JI. 

13 of G admit traces with 
-s 

and 1: a' 1;~ 1: 0 
(It (h, s) = e 1: 't~ 0 a (It 

~ (h, sl 
-s 

c '1:13' and that the R-action on "C is ergodic. 

Then a,1I are cocycly conjugate if and only if ~ ~, "a "13 

and 13 s pmodulo an automorphism of (X,~l intertwining the 
ilt 

respective G-actions on 

possible values of ~, x , Ii 
(l 0< 

Further, with the obvious exceptions, all 

occur. 

In the case where G is discrete, there are three main ingredients 

for the proof. The first is that the groupoid g may be split as a 

semi-direct product lj !J{ Xs ~ where !J{ is as above, and 'C = 

!(xg,x) x E X, X E G} is the "'principal part", or equivalence 

relation since by [3], 'C is hyperfinite and hence singly generated. 

This allows us to split the classification problem in two parts; the 

part involving :J{ is handled using Ocneanu's results (since !J{ is a 

"bundle of amenable groups'"), and <the part involving 'C is handled 

using the third main ingredient, the "cohomology lemma" of [12]. 

Technically, this is by far the most intricate part of the whole 

argument. 

In the case where G H x R, only one new ingredient is 

necessary.One replaces the (continuous) groupoid g by its (discrete) 

restriction to a subset B ~ X which meets each R-orbit in a 

discrete set, and establishes a natural isomorphism of A (g,9\[;,T) with 
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A(gB,~,T); this requires care since B is a null set, and uses 

the "discrete reduction" techniques of [5). 

§4 ACTIONS ON TYPE III FACTORS 

We now turn to classification of actions on a type III injective 

factor M. The strategy for the classification is reasonably clear; one 

should use the duality theory of Takesaki, [15) to reduce the problem to 

one of actions on a II algebra, and to use the results described in 

§3. To achieve this, we need the following 

PROPOSITION [14) If a G ~ Aut(M) is an action of a locally compact 

separable group G on a type III factor M, then a is cocycle 

conjugate to an action ~ such that 

i) there is a dominant weight ~ on M which is invariant under 

IP g g E G} 

ii) if s E R ~ u(s) is a l-parameter unitary group in M with 

<I> ist 
<:i (uls» = e u(s), then ~ (u(s» = u(s) for all g E G, s E R. 

t g 

Here {a~: t E R) is the modular automorphism group of $. The 

effect of the proposition is that the map (g,s) E G x R ~ i3 g 0 Adu (s) 

provides an action of G x R on the centralizer M<jl 
. <I> 

Ix E M: <:it (x) x 

for all t E Rl; since M$ is semifinite, and injective if M is 

injective, and since cocycle conjugacy of the G x R actions implies 

cocycle conjugacy of the original actions, the problem has been reduced 

to the semifinite case. Further, the results of §3 are applicable since 

the G x R action satisfies the hypothesis of the second theorem of §3, 

provided M is not a 1111 factor. 

One impediment to applying §3 is the possibility that different 

invariant dominant weights may give rise to different centralizers, and 

in particular, to different R-actions on the centres of these 



326 

centralizers. This in fact does not happen, since this flow is 

intrinsic to the factor M - it is usually called the flow of weights 

!fIM) of M, [4] - and the homomorphism g E G -> Aut 1!f(M» 

{automorphisms commuting with the flow) is similarly intrinsic, and 

usually called the module, mod a, of the action a. 

The only remaining difficulty is to identify the invariants for the 

G x R actions on M4> intrinsically in terms of the original action 

To do this, let Cnt(M) denote the centrally trivial automorphisms of 

M - for our purposes, these are the automorphisms of the form 

ri. Adu 0 cr$ where u E M is unitary, 4> is a dominant weight on 
c 

M, C E (!f(M» is a unitary cocycle on the flow of weights, and 0-<1> 
c 

ri.. 

is the extended modular automorphism of [4]. If a G -> Aut(M) is an 

action, put 

-1 
Nlal a (CntIM), 

and for n E Nla), choose unitaries a(n) E M and cocycles 

c(n) E ZI(!f(M» such that 

a Ad a(n) 0 0-4>( ) n c n 

As in §3, the unitaries laIn) n E N) give rise to a A-invariant 

la' this time in A (G,N,U!fIM»; the projection 
a 

1t ZI'!f(M» -> 

HI (!TIM» gives rise to a homomorphism v 
a 

n E N -> 1t (c (n» E HI (!T(M) • 

Both and va are cocycle conjugacy invariants for a. 

THEOREH [1] Let a, ~ be actions of a discrete amenable group G on an 

injective factor H of type III~, A * 1. Then a and ~ are cocycle 

conjugate if and only if, N(a) N(~) and, up to an automorphism of 

!T(M), mod", mod~, l", x~, and v 

'" v". Further, if we fix a 

homomorphism "( G -> Aut (!T(M) ) and a normal subgroup N!;; ker "( ff 

then if (X,v) E A(G,N,UI!T(M» x HOm(N,HI(!f(M», there is an action 
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rJ. of G on M such that (mod a, ·XrJ.,,, rJ.) (y ,J( ,") if and only if 

(x ,v) E ker Ii, where S is a natural homomorphism from 

A(G,N,U(r(M» x HOm(N,H 1 (r(M») to Hl (R,B (G,N,U(r(M»». 
rJ. 

In conclusion, we note one structural consequence of the 

classification; if a discrete amenable group acts via rJ. on von Neumann 

algebra M which is injective and either semifinite, or a factor of 

type IlIA' A * 1, then rJ. is cocycle conjugate to an action ~ which 

admits an invariant Cartan subalgebra in the sense of [5]. A direct 

proof of this fact would be of considerable value, since it would allow 

one to use conceptually simpler ideas from ergodic theory to effect the 

classification. 
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