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On· the Asymptotic Distribution of the 
Eigenvalues of Discretizations of a 

Compact Operator 

G.N. Newsam 

It is well known that bounds on the asymptotic decay rate of the eigenvalues of 

the symmetric integral operator with kernel k(s,t) may be obtained from the 

smoothness of k(s,t) [1,4,7,9,11]. Some recent numerical results suggested 

that these bounds also applied to the eigenvalues of matrices with entries 

K = k(s ,t ) that occur in various discretizations of the continuous operator. 
mn m n 

This note shows that, in certain common situations, this is indeed the case. 

1. Introduction 

The canonical ill-posed problem is the solution of the equation Kf = g , where JC is 

a compact linear operator. In the presence of data or model errors, the full solution f can 

be obtained from the equation as it stands (for a review of this see [2,8]). The maximum 

amount of obtainable information can be quantified in terms of the noise levels and the 

singular values of the matrix [8,13], but to do so requires some a knowledge of the 

distribution of the singular values. 

Such knowledge is often available for the exact operator. If lC is an integral 

operator, i.e. 

(Xf)(s) = J Q k(s,t) dt SEQ 

then the asymptotic distribution of the singular values of JC is related to the smoothness of 

the kernel k [9]. If X is also symmetric and positive definite, the results in [9] can be 

improved; e.g., if Q is a finite interval on the real line and k is p times differentiable 

in either variable then the eigenvalues 'A (!C) decay as o(n -(p+l)) [ 4,11]. In the special 
n 

case when X is also a convolution operator, i.e. when k(s,t) = k(s-t) , then the 
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distribution of its eigenvalues is governed by the asymptotic decay of the Fourier transform 

K(ro) of the kernel k(t) [1,7]. 

In many cases, however, the practical problem centres on an operator K that is a 

discretization of K , rather than on K itself, and what is required is a priori knowledge of 

the distribution of the singular values of K . For example, in geostatistics the smooth 

interpolation via kriging of N scattered data values at the points {sn}~=l in the region 

Q requires the inversion of matrices of the form: 

K = k(s s ) 
mn m' n 

(see [3,12] for details). Alternatively, if the data function g(s) in the model problem is 

only available in the form of point values g sampled at the points 
n 

operator of real interest is K : L 2(fl) --; IRN , where 

[Kf] = J k(s ,t) f(t) dt . n Q , n 

N 
{sn}n=l, then the 

(2) 

In either case, if the s are reasonably distributed then at least the larger singular 
n 

values of the discrete operator K should approximate those of the continuous operator JC • 

This note proposes the following much stronger result: if K is symmetric and L00 norms 

of the eigenfunctions of the continuous operator are uniformly bounded, the singular values 

of the discrete operator are essentially bounded above by those of the exact operator. 

Results of this nature are immediate for discretizations based on Galerkin's method. 

In such cases the discrete operators are essentially representations of the operator 1 u JCJY v , 

where U and V are finite dimensional subspaces of test functions and 1u and 1v are 

the associated orthogonal projection operators. The minimax characterization of singular 

values now establishes that 

Thus the singular values of the discrete operator must consistently underestimate those of 
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the continuous operator. This sort of behaviour is evident in Figure 1. The graph shows 

the eigenvalues of a discretization of the symmetric convolution operator with kernel 

1 k(s,t) = 2 
n:[l + (s-t) ] 

s.t e [-c,c] 

for the particular case c = 2 . This operator is associated with problems in analytic 

continuation. Theory [1,7] predicts that the eigenvalues of the exact operator are 

asymptotically distributed as: 

7" (X) _ e -2:rt(p/4c) . 
p 

This exponential decay is mirrored in the distribution of the larger eigenvalues of the 

discrete operator. However, beyond p - 40 the discretization is no longer an accurate 

approximation of the true operator, so the eigenvalues begin to fall away more rapidly. 

ln( eigenvalue) 

Figure 1: 
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Plot of ln(A, ) against p for a 56 point Gaussian discretization of the 
p 

analytic continuation kernel with c = 2. 

This accelerated decay is in contrast to the behaviour in Figure 2, which shows the 

eigenvalues for the case c = 1 . Here, at p - 35 , the eigenvalues reach the level of 
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machine precision, and the impact of random errors arising in numerical calculations now 

levels them off. 

ln( eigenvalue) 

Figm:e 2: 

0 10 20 30 40 50 60 
p 

Plot of ln(A, ) against p for a 56 point Gaussian discretization of the 
p 

analytic continuation kernel with c = 1. 

While the eigenvalues of a Galerldn approximation will show an accelerated fall-off 

once the accuracy of the approximation has been reached, one might expect that the 

eigenvalues of a discrete approximation, such as (1), would actually level off at these 

accuracy limits, corresponding to the levelling off that occurs at the level of machine 

precision. In practice, however, the singular values of discrete approximations show much 

the same accelerated fall-off as those of Galerkin approximations. The eigenvalues in 

Figure 1 are actually those of a discretization based on Gaussian quadrature. Moreover, 

Figure 3 shows the eigenvalues of several different realizations of (1) for the above kernel 

with c = 2 and with various choices of mesh { s } . In each case the asymptotic decay of 
n 

the eigenvalues is faster than that predicted for the eigenvalues of the continuous operator. 

The aim of the paper is to explain this accelerated decay by establishing the upper 

bound result described above. The explanation centres on construction of an imbedding of 

the domain and range of the continuous operator within larger Hilbert spaces that include 
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Figure 3: Plot of ln(A ) against p for five 56 point Gaussian discretization of the 
p 

analytic continuation kernel with c = 2. 

delta functions. The discrete operator can now be viewed as analogous to a Galerkin 

approximation to the continuous operator fonned by projecting into subspaces spanned by 

the appropriate delta functions, and its eigenvalues estimated accordingly. This 

explanation is not, however, the complete story; the construction rests on an assumption 

that, while it holds in many cases of interest, it is not valid for all operators. Nevertheless, 

the explanation gives a good insight into the observed behaviour. 

The structure of the paper is as follows. The next section establishes the necessary 

concepts and notation for the imbedding, and sets up a subspace of delta functions together 

with an associated operator S that plays much the same role as the Galerkin projection 

'Pu. Section 3 then uses such an imbedding to show that, for a symmetric positive definite 

operator JC, the discrete operator K of (1) may be expressed as the product S*KS, 

where the operator K is a slight modification of JC • This product is then used in Section 

4 to derive bounds both on the individual eigenvalues of K and on its determinant, 

through the inequality 

A (K) ::; min A 1 (X) A (S*S) . 
p p+ -q q 
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Finally the results of Section 4 are used in Section 5 to establish similar bounds for the 

singular values of the discrete operator K of (2). 

2. Subspaces of Delta Functions 

Let JC: L 2(Q)--; L2(Q) be a symmetric, positive definite, compact linear integral 

operator with continuous kernel k(s,t) . Then JC has an associated eigendecomposition 

with eigenvalues {A,P};=l and eigenfunctions {"\j/P(t)};=l, and by Mercer's Theorem [6] 

00 

k(s,t) = I, A "\If (s) "\If (t) . 
p=l p p p 

As the functions "\If fom1 an orthonom1al basis for L 2(Q) , they may be used to 
p 

identify L 2(Q) with the space f of square summable sequences through the usual 

isomorphism 

e 2 itself can be considered as the member h0 of the one-parameter family of sequence 

spaces h-e where 

The space h-£ may in tum be identified with the following fmmal function space 

H-£ = {f(t) : f(t) = I, f \jf (t) where 
p=l p p 

H-e is a Hilbert space under the inner product 

00 f g 
(f,g) .-e = I, PP 2~ 

H p=l 

and has an orthonormal basis in the functions 

{ 
\jf ( t)}oo 

ijf (t) : ijf (t) = ~ . 
p p p p==l 

{f (' E h-e} . 
p p==l 

(3) 
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The delta function 8 (t) = o(t-s) may now be placed within this framework by 
s 

identifying it with the sequence {'JIP(s)};=l. However placing 08 in one of the spaces 

requires some further assumptions about the function 'V· p 
In particular, the 

following assumption is now made and will be used throughout the rest of the paper. 

Assumption. The functions are uniformly bounded. That is, there exists some 

constant d such that I 'JI (s) I < d for all p and s . 
p II 

The assumption is by no means greatly restrictive; it is satisfied by many standard 

basis functions, such as the trigonometric functions on the Rademacher functions. It is not 

satisfied by all standard bases, however; for example, if P denotes the n-th Legendre 
n 

polynomial normalized so that 11Pn11 2 = 1, then IIPnlloo- frl as n i oo. The author has 

so far not been able to find any simple conditions on the kernel under which the 

assumption would be true. However, it seems likely that there are kernels for which this 

assumption does not hold, and consequently for which the asymptotic bounds here are not 

valid. 

In any case, the next lemma follows immediately from the assumption. 

Lemma o E H-E Ve > 2!-, and 118 11 2 "~ d2 ~(2£). 
s s H-.:, 

Here ~(2e) is the Riemann zeta function, i.e. 

co 1 
~(2£) = I, 2£. 

p=l p 

II 

Now let {sn}~=l be any collection of N points in Q, and let on(t) = 8(t-sn) be 

the delta function centred on s . Then it follows from the lemma that the subspace 
n 

is contained in tie . Moreover, if EN denotes Euclidean N-space (i.e. IRN with the 
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standard inner product norm), then there is a natural map S : EN --+ IrE relating UN and 

EN: 

00 

S(a) = 2:, a 8 (t) . 
n=l n n 

Clearly S is a compact linear operator, And if S : EN--+ EN is defined by S = S*S, 

N then S is a symmetric non-negative definite matrix with eigenvalues { p } Since 
n n=l · 

S = (e , S*Se ) N = (Se , Se ) " 
mn m n E m n H-<.. 

= rs o ) 
' m' n H,-£ 

oo "\Jf (s ) "\Jf (s ) 
I, P m P n < d2 r (2£) 

2£ - "" 
p=l p 

N N 7 
= I, pn = L snn s N d~ ~(2E) y(E) . 

n=l n=l 
(4) 

It follows immediately from this bound on the trace that 

N 
det(S) = rr Pn s [d2 ~(2E)]N. 

n=l 
(5) 

3. Reformulation of the Discrete Ope:rator 

The machinery set up in Section 2 can now be used to recast the matrix K of (1) as 

a product of operators. Consider the operator X; : IrE --+ H-E defined by 

- 002£- -
(Kf)(s) = I, p 1\ 'Jf (s) (f,'Jf ) 2 

p=l p p pH-

where the "\jfp are defined as in (3). As long as p2E 1\P l 0 as p f =, then X; is also 

symmetric, positive definite and compact. If the N x N matrix K is defined by 

K = 1~1 S*KS (6) 

then 

101 -
K = (e , Ke ) = ~ (e , S*JCSe ) 

mn m n EN N m n H-£ 
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lQL -"' N (Se , JCSe ) , 
m n H-._ 

ill1 -= N (o., K8.) , . 
l JH-.:.-

But 

- 002£- -
(Ko.)(s) = I, p 'A 'If (s) (o , 'If ) ,..-£ 

J p=l p p n PH 

oo 2E - \jf(sn) 
= I, p 'A 'If (s) --

p=l p p pf. 

~ (15., Ko.) E = [ i 'lf (s ) 'lf (s), i qf. 'A 'lf (s ) ~ (s)J f. 
1 J H- p=l p m p q=l q q n q H-

00 

= L A 'If (s ) 'II (s ) = k(s ,s ) . 
p=l p p m p n m n 

~ K = In I k(s ,s ) . 
mn T m n 

Note the introduction of a normalizing factor I Q liN; this simply rescales the discrete 

operator so that its norm is approximately the same as that of the continuous operator. 

Failure to rescale simply introduces a factor of N in all the bounds; this can be 

interpreted as being the improvement one would expect in the discrete operator simply due 

to sampling at a large number of points (see Section 5 for a further discussion of this 

point). 

4. Asymptotic Bounds on A (K) 
p 

The eigenvalues r ='A (K) 
p p 

can now be bounded in terms of the original 

eigenvalues 'A =A (K) and the eigenvalues p of S through (6). The bound is 
p p p 

constructed as follows. First note that, as K is symmetric and positive definite, it has a 

square root k112 and 

K = I ~ I (f:Y2 S)* (Kl/2 S) . 
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2 -1!2 th Therefore A = cr (K S) , where cr ( · ) denotes the p singular values of a compact 
p p p 

operator. Squaring both sides of the following inequality from [5] 

gives 

- 2£ where A = p A . p p 

1n1 -
r ::;; J.::::.L min A p 
p N l< < p+l-q q _q_p 

(7) 

It remains to show that (7) is a sufficiently tight bound to enforce that r ::;; A , 
p p 

where the bound is interpreted in some asymptotic sense 

that p::;; N as r is not defined for p > N .) JIJlmving the 
p 

the constraints that p :?: 0 and that tr(S) be bounded as in 
q 

above by the solution of the following optimization problem 

subject to 

i) 

ii) 

p :?: 0 
q 

IO I . --r ::;; y max mm A 1 p 
p p l ::;; q::;p p+ -q q 

to be made precise. (Note 

p to be arbitrary, save for 
q 

gives that is bounded 

This problem can be recast as a simple linear program where optimum can easily be found 

to be achieved at 

giving the bound 

r ::;; 
p 

y(e) 

p -
2: 1/A 

q 
q=l 

where y(e) = ! n l!ct2 ~(2€) . cs) gives the immediate 

(8) 
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- 2£ 
r ~ y(e) A ~ y(e) p A . 
p p p 

Since 2£ can be made arbitrarily close to 1 , r decays more slowly than A by at most 
p p 

a factor that grows essentially linearly in p . It is easy to see, however, that the worst case 

can only be achieved when A , and therefore r , is in fact decaying very rapidly. For 
p p 

"~ d . all -o: . '~ -o: Th 'i' 2£-o: suppose that ~~,P ecays asymptotlc y as p , 1.e. ~~..P - p en '~p - p and 

11 l 0:-2£ 1 0:+1-2£ 
-::-- p - O:+l-2£ p 

q=l 'A q=l 
p 

- '~~(£) (o:+l) A 
I . p 

since 2£-1 can be made arbitrruily smalL Then r decays asymototically at least as fast 
p 

as A 
p 

The bounds on r are reinforced by the following bounds on the determinant of K . 
p 

It is straightforward to show that 

N N 
det(K) ~ [I~ I J n~ 1 xn det(S) 

and so by (5) that 

N 2EN 
- [y(e)]N I1 A [~] N-N 

n= 1 n e 

Thus the asymptotic decay rates of I1 r and I1 A can be made arbitrarily close. 
n n 

5. Extensions and Conclusions 

The results of the previous section show that, for symmetric operators satisfying the 
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assumption, no significant improvement can be expected in the conditioning of any discrete 

operator. Indeed the reverse is most likely. As expected, these results extend to the 

unsymmetric case. 

Let X: L2(Q) _, L2(A) now be an arbitrary compact integral operator with kernel 

k(s,t), let {sn}~=l be an arbitrary set of points in A and let K: L2(Q) _,EN be the 

operator defined by (2), i.e. 

[Kf] =I k(s ,t) f(t) dt . 
n Q n 

The problem is to now bound the singular values a (K) of K by the singular values of 
p 

0" (X) of X . To do so, first note that 0" 2(X) = A (X X*) , and that X X* is a symmetric, 
p p p 

positive definite, integral operator with kernel 

~(s,u) =I Q k(s,t) k(u.t) dt . 

Likewise a 2(K) = A (K K*) , and as 
p p 

N 
(K* a)(t) = I. a k(s ,t) 

n=l n n 

KK* is a matrix with entries 

[KK*] = I k(s ,t) k(s ,t) dt = k2(s ,s ) . mn Q m n mn 

The results of Section 4 now give that (modulo a constant) 

A (KK*) ~ N A (X X*) 
n n 

n= l, ... ,N 

=} a (K) ~ {N a (X) . 
n n 

(9) 

(9) has important implications for data gathering. It essentially says that clever 

placement of data points will not result in a discrete problem with substantially better 

conditioning than that of the underlying continuous problem. The best that can be hoped 

for by increasing the number of points is the usual O({N) improvement in accuracy that 
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would be expected anyway on statistical grounds. 

This is not to say, however, that point placement is not important. Poor placement 

may substantially worsen the conditioning of the discrete problem. And in some cases, e.g. 

when X: is a totally positive operator, theory suggests that an optimal set of data locations 

{sn}~=l may exist for which crN(K)- ,fN crN(;\,'), i.e. the points achieve the upper bound 

on crN(K) (see [10] for details). 
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