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AXISYMMETRIC ASYMPTOTICALLY FLAT 

RADIATIVE SPACE-TIMES WITH ANOTHER SYMMETRY: 

THE GENERAL DEFINITION AND COMMENTS 

Jir£ Bicak 

The title of my talk at the conference referred directly to the boost-rotation sym

metry. The title above is, in fact, a "synonym": 

THEOREM Suppose that an axially symmetric vacuum space-time is asymptotically 

Hat in the sense that it admits local smooth null infinity, i.e., suppose that the Bondi 

coordinates can be introduced and that tl1e metric is asymptotically of standard Bondi's 

form [1] for r/J E [0, 27r) and some open interval 8. Suppose that this space-time admits 

an additional Killing vector whicl1 forms a 2-dimensional Lie algebra with the axial 

Killing vector. Assume that this additional symmetry allows gravitational radiation 

(i.e. Bondi's news function is non-vanishing). Tb_en tb_e additional symmetry 11as to be 

tl1e boost symmetry and tl1e additional Killing vector is tl1e boost Killing vector. 

Roughly speaking, in axially symmetric asymptotically flat space-times, the only 

second allowable symmetry that does not exclude radiation is the boost symmetry. In 

the proof of the theorem (which we gave with B.C. Schmidt in [2] but which has a 

longer history~ see references in [2]), it was assumed that the rotational Killing vector 

is hypersurface orthogonaL Recently, together with R. Muschall [3], we generalized 

the theorem to the case of the rotational Killing field which need not be hypersurface 

orthogonal. Moreover, although no rigorous proof is available so far, it appears that 

all other radiative space-times with two symmetries are not asymptotically flat (see the 

discussion of the 2-dimensional group of null rotations and some further remarks in [2]). 

In this sense, the boost-rotation symmetric space-times would play a unique role among 

asymptotically flat-radiative space-times. An infinite number of various boost-rotation 

symmetric space-times can be constructed explicitly, which, very probably, will not be 

feasible in the (much more realistic) case of space-times with one symmetry only. 

The boost-rotation symmetric solutions represent the fields of "uniformly acceler

ated sources" in general relativity. At present only explicit vacuum solutions describing 

accelerated singularities (of the Curzon-Chazy-Scott type, and of all the other Weyl 
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types), or the solutions representing accelerated black holes (as, e.g., the C -metric) are 

known. One can gain a useful intuition in understanding these space-times by first 

looking at uniformly accelerated sources in special relativity. 

INTERMEZZO It was in Prague in 1911-1912 when Einstein started a systematic 

quest for a new theory of gravity based on the equivalence principle. In the second 

paper on gravitation from 1912 [4], he first dearly formulates what he understands 

about the transformation from an inertial frame to an accelerated frame in a relativistic 

theory. One can easily find out that, in the first approximation (for small times), his 

formulas given in [4] follow from the exact transformation relations between an inertial 

frame and an uniformly accelerated frame (which we often call the "Rindler frame" 

today) in special relativity. The reference points of such a frame move along hyperbolas 

z 2 - t 2 = const. (we assume the motion along the z-axis of an inertial frame with 

Lorentzian coordinates {t, x, y, z} ). The world-lines z 2 -t2 = B = const., x, y = const., 

are the orbits of the boost Killing vector '17 = z( 8/ at) + t( {)I {)z) in Minkowski space. 

Imagine that some sources (say charged particles) are axially symmetric about z = 0 

and move with a uniform acceleration along this axis. The fields produced by such 

sources will have the boost-rotation symmetry. 

THE DEFINITION OF THE ASYMPTOTICALLY FLAT 

BOOST-ROTATION SYMMETRIC SPACE-TIMES 

Although these space-times have a long history and their general properties were 

reviewed recently [5], until now they were not defined and treated geometrically from 

a unified point of view. Here we shall only sketch their definition and mention some 

new results on their global behaviour. We refer to our forthcoming paper with Bernd 

Schmidt [6] for a detailed systematic treatment. 

Locally the space-times we wish to define are characterized by the existence of 

two non-null, hypersurface orthogonal Killing vectors. (A more general case of the 

axial Killing vector which is not hypersurface orthogonal has not yet been treated sys

tematically.) In a small region in curved space-times it is not possible to distinguish 

between boost-rotation symmetry and cylindrical sym~netry. If, however, we demand 

that space-times become asymptotically fiat somewhere and that there the Killing vec

tor fields behave as the boost and the rotation Killing fields, we get geometrically an 

essentially different picture from the cylindrical case. 

As we indicated above, a good insight into how the boost-rotation symmetry oper-
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ates in a curved space-time can be gained by considering first Minkowski space. Denote 

the norms squared of the rotation Killing vector e = x( 8 I oy) - y( 8 I ox) and of the 

boost Killing vector TJ by (-A) and B: 

(1) 

The 2-dimensional group orbits are spacelike if B < 0, null if B = 0 and timelike if 

B > 0. We call the two null hyperplanes B = O(z = ±t) "the roof". Points with B < 0 

are "above the roof", points with B > 0 "below the roof". Points with A = 0 form the 

axis. 

Since we are primarily interested in the radiative properties and the existence of 

(at least local) asymptotically smooth null infinity, we shall concentrate on the region 

above the roof where the boost Killing vector is spacelike and where - as can be easily 

seen - "almost all" null geodesics come. Introducing here the coordinates {b, p, </>, x}, 

adapted to the boost-rotation symmetry, by relations 

(2) x = pcos</>, y = psin</>, z = bsinhx, t = ±bcoshx, 

b ~ 0, x E R, and null coordinates u, v by 

(3) u = b - p, v = b + p, 

we find the metric form 

(4) 

The axis is given by v = u, the roof by v = -u, the lines u = uo, X= xo, v changing, 

are null geodesics which go to I+ as v -+ +oo. 

Before generalizing ( 4) to the case of a curved space-time we shall state the following 

(see, e.g., [6] for the proof): 

PROPOSITION The metric of a curved space-time admitting two spacelike, hy

persurface orthogonal, commuting Killing vectors oloe and olory, and satisfying the 

vacuum Einstein equations can, in a region where W,,W'"' does not change the sign, W 

being the "volume element" of the group orbits, be transformed into one of the following 

forms: 

(5) 
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where A, w are functions ofU, V, and W > 0 is such that a) W = tCU + V) ifW,a is 

timelike, b) W = tCU- V) if"W;a is spacelike. The coordinates U and V, called the 

canonical coordinates, are determined uniquely up to translations. (In the cases with 

W,a null or W = const. the space-time can be shown to have more symmetries.) 

The almost unique canonical coordinates can be used to distinguish between cylin

drical and boost-rotation symmetry. The canonical coordinates are related to u and v 

in ( 4) as follows: V = tv2 everywhere above the roof; U = tu2 for u 2:: 0, i.e., inside 

the null cone of the origin, and U = -tu2 for u < 0, i.e., outside the null cone. Now 

we adopt the following definition of the boost-rotation symmetric curved space-time. 

DEFINITION 1 A space-time admitting two space-like, hypersurface orthogonal 

Killing vectors is called "boost-rotation symmetric" if in canonical coordinates tv2 , 

tu2 (resp.- tu2 if u < o) the metric has the form 

(6) 

</> E [0,27r), X E R, the functions .A(u,v), J-t(u,v) are defined for v E (0 < vo,+oo), 

u E (u0 ,u1 ),· u < v, u =f. -v, and 

((7)) lim .A(u,v) = .Ao(u), 
v-++CXJ 
u fixed 

lim J-t( u, v) = K- = const. 
v-->+oo 
u fixed 

Should we not just demand .A---+ 0, J-t---+ 0 at v---+ +oo so that (6) goes manifestly 

over into flat metric ( 4)? No, since the field equations would then imply that the metric 

is flat everywhere. However, the weaker asymptotic conditions (7) can be shown to 

be compatible with the asymptotic flatness and, indeed, one can show rigorously that 

Definition 1 implies that a boost-rotation symmetric space-time admits a local I+ . 

(See Ref. 6 for a proof and a discussion of the concept of local I and its relation to 

asymptotic flatness in the case of the boost-rotation symmetric space-times.) 

Now it is easy to see that the Einstein vacuum equations for the metric (6) imply the 

ordinary wave equation for function J-t in Minkowski space in coordinates { u, v, </>, x} and 

two first-order equations for .A. The linear equation for J-t is the integrability condition 

for the two equations for .A. Once J-t is given, .A can be determined by integration. 

By going back to the Minkowskian-type coordinates { t, x, y, z} by the same relations 

(2), (3) as in the flat space-time, we find that the function J-t(A, B) - where again 

A = x2 + y2 , B = z2 - t 2 , and J-t is denoted in the same manner as the original 

function J-t( u, v) - satisfies the ordinary wave equation, DJ-t = 0. If the function .A = 



>.(A, B), instead of >.(u, 

the following form: 

ds 2 =-
(8) 
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is introduced analogously, we can transform metric (6) into 

Of course, we have to bear in mind that the metric was obtained by the transformation of 

the original metric by which we geometrically defined the boost-rotation symrn.etric 

space-times above the roof only, i.e., for t 2 > z 2 • Naturally, we want to analyze the 

extension to all values of { t, x, y, z }. As it is clear from (8), the axis and the roof are 

critical in this respect. 

Since, however, the function p is fundamental, A being, again, determined by in

tegration, we have first to analyze the boost-rotation symmetric solutions of the wave 

equation in the flat space-time. The detailed discussion shows that (i) no asymptoti

cally regular (in the sense of Penrose's treatment of null infinity- see, e.g., [7]) vacuum 

solution exists except for p = 0, (ii) solutions given in terms of retarded and advanced 

potentials generated by flat-space sources which occur along boost-symmetric world

lines with 0 :::; A < A0 , 0 < B0 :::; B :::; B 1 < oo, are analytic everywhere, except for 

A, B where sources occur; in particular, they are analytic on the roof and everywhere 

on the axis outside the sources. And they are asymptotically regular everywhere on I±, 

except for two points of I+ and two points of I-, where the world-lines of the sources 

"start" and "end"; these points, given by t = ±z, z--> ±oo, are the fixed points of the 

boost-rotation symmetry. By using the field equations for A it is then not difficult to 

prove that given p, such a >.(A, B) exists which satisfies vacuum field equations and is 

analytic in all the regions in which p is analytic. 

Now we can already adopt the following: 

DEFINITION 2 The boost-rotation symmetric vacuum solutions have the metric (8) 

with (t, x, y, z) E R\ x 2 + y 2 > 0, z2 - t 2 =/= 0, and 

The function p is, up to an additive constant, an analytic, asymptotically regular so

lution of the flat-space wave equation, except for the regions where sources uniformly 

accelerated with respect to the Minkowskian background and defining p occur. The 

function A is, up to an additive constant, the solution of the field equations which 

determine .X in terms of quadratures; it is analytic in all regions where p is analytic. 
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Notice that the boost-rotation symmetric vacuum solutions are defined "geometri

cally" since coordinates { t, x, y, z} have an invariant geometrical meaning through their 

relation to the canonical coordinates introduced in Definition 1. Moreover, it can easily 

be seen that J-t and .A, described in Definition 2, in the canonical coordinates satisfy the 

boundary conditions required in Definition 1. 

Since both >. and J-t are determined uniquely up to additive constants, all boost

rotation symmetric solutions decompose into two-parameter classes determined by J-t + 
c1 and >. + c2 • A detailed analysis shows that by choosing the constants such that 

.A(O, 0) = J-t(O, 0) we make the roof (z 2 = t 2 ) regular. Then we still have a one-parameter 

freedom in adding the same constant to both >. and J-t· In this manner we influence 

the distribution of nodal {conical) singularities along the z-axis. Physically they are 

quite understandable: they cause the sources to move with an acceleration. There 

exist cases in which no nodal singularities occur. It can be shown that this requires an 

asymptotically regular J-t (of course, except for the points with z = ±t, t ~ oo) such 

that J-t(O, 0) = 0. An infinite number of the different solutions with such a property is 

available in explicit forms [8]. A detailed analysis of null infinity (see [6]) shows that 

in these space-times all I±, J±, and i 0 are smooth, except for four points at which 

the boost orbits "start" and "end". Therefore, we can choose arbitrarily strong boost

rotation symmetric data on a hyperboloidal hypersurface above the roof, which lead to a 

complete smooth null and timelike infinity in its future. With these specific space-times 

it is thus not necessary to assume weak-field data which are required in the deep work of 

Friedrich and others on the existence of general asymptotically flat radiative solutions. 

(I thank Piotr Chrusciel for this remark.) 

The main drawback of the asymptotically flat boost-rotation symmetric space-times 

is the vanishing of the ADM mass. This result is physically understandable - it has 

its counterpart in the electromagnetic case in flat space-time (see [5] for details). One 

thus cannot learn much about the structure of i 0 in realistic general space-times with 

positive ADM mass. On the other hand, the radiative properties of the boost-rotation 

symmetric space-times [9] (such as the peeling-off properties, the news function, the 

radiation patterns, etc.) make them to be the only non-trivial explicit exact examples 

of the gravitational radiation theory known at present. They are also available for 

testing various approximation methods and complicated codes in numerical relativity. 

Inspired by the null cone version of numerical relativity, Bi~ak, Reilly and Winicour [10] 

recently gave the explicit boost-rotation symmetric "initial null cone solution", which 
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solves the Bondi hypersurface and evolution equations. This solution is already being 

used to improve the accuracy of the numerical codes [11]. 

There exist "generalized" boost-rotation symmetric space-times which, though not 

asymptotically fiat, are of a physical interest. No conical singularities or negative masses 

are necessary to cause accelerations. A charged black hole accelerated by an electric field 

which is "uniform" at infinity [12] is a good example of the exact generalized boost

rotation symmetric solution which does not contain singularities or negative masses. 

Although in such space-times non-stationary regions occur and accelerated objects ra

diate in external fields, the radiation is difficult to analyze because the space-times are 

not asymptotically fiat. Only if the external field is weak, there exists a region in which 

the space-times are approximately fiat, and here their radiative properties might be 

investigated. We refer to the review [5] for more details and references. However, no 

systematic treatment of these space-times has been undertaken so far. 
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