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A General Theorem on Gravitational 
Metrics in Prolate Spheroidal Coordinates. 

R.P.Kerr 

Abstract: It is proved that all stationary and axially symmetric metrics that are rational in 
prolate-spheroidal coordinates have a simple canonical form. This follows directly from a 
theorem for 2 x 2 matrices with multinomial elements and has nothing to do with the field 
equations. 

Many physically meaningful stationary and axially symmetric metrics have 
been constructed in the last two decades including the Kerr metric[l] and the 
remarkable series of generalisations by Tomimatso and Sato[3,4]. For most of 
these the metric coefficients are rational in prolate spheroidal coordinates, x and 
y, and can therefore be written as 

ds2 = (D / K) ( dx 2 /V + dy2 /W) + ds~, (1) 

where 

(2) 

V = x 2 -1, W = 1- y2 • (3) 

The functions A, B, C and D are all polynomials, and K is rational and indeed 
often polynomial as well. It is a simple consequence of the gravitational field 
equations and the requirement that the metric be asymptotically flat that the 
determinant of ds~ be equal to - VW, 
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(4) 

This is the key equation for the study of such rational metrics! We will show that 
this implies that there is a canonical diagonalised representation of d8~. 

Theorem: The two dimensional metric d8~ can be written as 

d8~ = (I I D.)( 1rdt- pd¢J)2 - ( J I D.) ( udt- rd¢J)2 , (5) 

where 1r, p, u, r and D. are polynomials, I and J are rational functions, and 

D.= l1rr- pul, IJ = VW, D = D.Den(I)Den(J). (6a,b,c) 

Proof: Equation (4) can be formally written as 

AB = C2 - VW D2 = ( C + vtvW D) ( C - vtvW D) 

but v'V and v'W do not exist in the field of rationals over x andy. Fortunately, 
the algebraic curve z2 = 1 - x2 has a well-known rational parametrisation 
(corresponding to the use of t = tan((} 12) to evaluate certain integrals). Suppose 
that new coordinates 8 and t are defined by 

x = ( 82 + 1) I ( 82 - 1) , v'V = 28 I ( 82 - 1) , 
y = (1- t2) 1 (t2 + 1), v'W = 2tl (t2 + 1). 

Equation (2) is replaced by 

d8~ = { Adt2 + 26dtd</J + iJd¢J2} I i>, (7) 

where the new polynomials are all totally even (even in both s and t), and it can 
be arranged that the denominator and numerator have no common factor. From 
equation ( 4 ), 

.AiJ = 62 -482t2 (82 -1f2 (t2 + 1f2 fJ2 

and therefore D must be divisible by ( 8 2 - 1 )( t2 + 1 ), 

2i> = (82 -1) (t2 + 1) .E, 
.J.jj = 62 - 82t2 .E2 = ( 6 + 8tE) ( 6 - stE) . 

(8) 

(9) 
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The polynomial C + stE can be decomposed into its irreducible factors, 

C + stE = II (w) II (a+ st,B) II (s1 +to) II(~~;+ st.>.+ SfL +tv), (10) 

where we have not attempted to index the individual factors and have separated 
special cases of the last product into the first three. The Greek coefficients are 
totally even polynomials in s and t. 

Consider a factor of the type f(s, t) =~~;+st.>.+ SfL +tv. Both f(s, t) and 
f( -s, -t) are factors of C + stE, whilst f( -s, t) and f(s, -t) are factors of its 
conjugate, C- stE. If we compute the product of the first two factors, 

f (s, t) f ( -s, -t) = (~~;2 + s2t2 >.2 - s2 jt2 - t2v2) + 2st (~~;>.- fLV), 

then we see that the bracketed terms are all totally even and so the terms in the 
fourth product in equation (10) can be absorbed into the second product, 

C + stE =II w II (a+ st,B) II (s1 +to), (lla) 

C- stE =II w II (a- st,B) II (s1- to). (llb) 

Now consider a factor of the first type, w( s2 , t 2). Since it occurs in both of 
C ± stE it is a factor of C and E. From equation (9) w2 divides the product of 
A and iJ. If each had a factor w then both the numerator and the denominator 
in equation (7) would be divisible by w. This contradicts our assumption that all 
such factors have been cancelled out. 

Since both A and iJ are totally even we know that if a + st,B is a factor of 
A then so is a - st,B, and if s1 + to is then so is s1 - to. We can therefore 
divide the factors of equation (11) into those that are factors of A and those that 
are factors of iJ, 

C + stE = [II w II (a+ st,B) II (s1 +to)] 

x [II w II (a + stfi) II ( s'Y + t8)] , 

A =€ [II w II (a+ st,B) II (s1 +to)] 

x [II w II (a- st,B) II (s1- to)], 

iJ =€ [II w II (a+ stfi) II (s'Y + t8)] 

x [II w II (a- stfi) II (s'Y- t8)] , 
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where E = ± 1. If we multiply out the factors in each pair of square brackets we 
find that there are two distinct possibilities, depending on the parity of the number 
of factors of the type ( S"f ± t8) inside each square bracket, 

{ 
( i) 

IJ w II (a+ stf3) IJ (s'Y + tli) = (ii) 

II wIT (a+ stfi) TI ( s? + t8) = { ~ :;) 

eir - ster, 

cs-ir- tu, 
p + estf, 

sp + ttf, 

where -ir, p, ij, f are all totally even, and the signs (including factors of c) have 
been chosen so that the final results wiH be simple, 

(i) A= ro (i2 - s2t2u2), B = c (p2 - s2t 2f 2), C =.: (frp- s2t 2af), 

(ii) A=c(s2fr 2 -t2a2), B=t(s2p2 -t2f 2 ), C=e(s2-irp-t2iir). 
The signs are such that 

iJJ = -Trf- ;;a-, D = ( frf - pii) ( s2 - 1) ( t2 + 1) . 
Inserting these into equation (2.1 ), 

where 

If we transform back to ( x, y) coordinates, 

s 2 =(x+1)/(x-1), t2 =(1-y)/(l+y), 

then -ir, p, a, f become rational functions of x and y with denominators products 
of powers of (x- 1) and (1- y). Define ax (ay) as the maximum of the x (y) 
degrees of 1r and p, and similarly bx (b11 ) as the maximum of the x (y) degrees 
of a and r. If we define 

( 1r l p) = ( fr, p) (X - 1 tx (y + 1 t• l 
(a, r) =(a, f) (x -1/"' (y + l)b", 

/::;. = .& (X - 1 tx+bx (y + 1 t•+by = ( 1r p - IJ'T) l 

J = J(x -l)bx-ax (y + 1)by-ay 1 

J = j (x- Itx-bz (y + lty-by, 
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then 1r, p, (}, r and D. are polynomials and I J = VW. The metric ds~ takes the 
fonn of equation (5). Any common factors of 1r and p or of a and r should 
be cancelled out. This will change the factors I and J but will not change the 
over-all fo:rm. Finally, if we expand the quadratic terms in equation (5) to give 
the fonn in equation (2) we see that Dis given by equation (6c). This completes 
the proof of the theorem. 

In Kerr and Wilson[2] the canonical representations have been given for 
the first three Tomimatso-Sato solutions. As for most other asymptotically 
flat solutions, the denominator D is an irreducible polynomial and the rational 
functions I and J are simple factors of VW. When the T-S parameter 8 = 3 
the various functions are given by 

1r = ~lW4 + p2qV2 (6W2 + 8VW + 3V2) 

a = p3V 4 + pq2W 2 ( 6V2 + 8VW + 3W2) , 

p = V a+ 4pV3 (3V + 4) 
+ (2/p) (1 + px) [p2 (3V4 + 16V3 + 16V2) + 3q2W 4), 

r = W1r +4qVW2 (3V +6W -4) 

+ 8qW2 (1 + px) [3V2 + 3VW + 2V + 6W- 4]. 

and the diagonal components of the metric by J) = V). These polyno­
mials are far simpler than the original A, B, C, D. For instance, B has over 200 
terms for this T -S solution. 
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