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ON GENERIC DIFFERENTKABIUIT OF LOC:.I\.LLY U:PSCH!TZ FUNCTIONS ON 
BANACH SPACE 

ABSTRACT 
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Giles 

Recently David Preiss proved a remarkable theorem about dense differentiability of 

locally Lipschitz functions on Banach spaces. Using his result and adopting a technique of 

Petru: Kenderov used to prove generic differentiability of convex ftLnctions we establish similar 

generic differentiability properties for locally Lipschitz functions. We apply our results to 

determine further differentiability properties of distance functions. 
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1. Intwoduction 

In the 1970s considerable attention was focussed on the problem of determining 

classes of Banach spaces where the continuous convex functions have differentiability 

properties similar to those on Euclidean spaces. An Asplund (weak Asplund) space is defined 

as a Banach space where every continuous convex function is Frechet (Gateaux) differentiable 

has been characterised in several ways which demonstrate its significance. 

Recently, David Preiss [12] has shown that any real locally Lipschitz function on an 

open subset of an Asplund space also has the prope1ty that it is Frechet differentiable on a 

dense subset of its domain. His proof is very technical but his result is very powerful and has 

many applications. However, the number of applications would be multiplied if conditions 

could be detennined under which the set of points of differentiability is a generic set. 

In this paper we use Preiss' work and modify techniques used by Petar Kenderov 

[9] associated with ilie earlier weak Asplund and Asplund investigations, to find classes of 

such spaces on which certain locally Lipschitz functions are generically Gateaux and Frechet 

differentiable on dense subsets of their domains. The results have immediate application in 

determining differentiability properties of distance functions on Banach spaces. 

2. Differentiability of locally Upschi:tz fam.dio:ns 

Given a real Banach space X, a real function $ on an open subset A of X is said to 

be a locally Lipschitz function on A if for each x E A there exists a K > 0 and a o > 0 such that 

I<IJ(y) -$(z) I :5; K II y-z II for all y,z e B{x; o). 

We defme the local Lipschitz constant for$ at x by 

where 

A-(x) = lim m(x; 15) 
o~o 

. _ { I <jl(y)-!jl(z) I . . } 
m(x, o) = sup II y-z II . y,z e B(x, o), y :;e z 
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Such a function <1> is said to be Gateaux differentiable at x e A if there exists a continuous linear 

functional <l>'(x) on X where, given£> 0 and II y II= 1 there exists a O(e,x,y) > 0 such that 

I ~(x+ty~- ~(x) ~· (x)(y)l < £ whenO<Itl< o . 

The function <1> is said to be Frechet differentiable at x if there exists 0(£, x) > 0 such that the 

inequality holds for all II y II = 1. 

Our work in this paper is dependent on the following theorem which is the main result of 

Prei~s· paper, [12, Theorem 2.4]. 

2.1 Preiss' Theorem 

Let X be a Banach space with an equivalent norm Gdteaux (Frechet) differentiable 

away from the the origin. Then every locally Lipschitz function t/J defined on an open subset A 

of X is Gdteaux (Frechet) differentiable on a dense subset D of A. 

More generally in the second case, when X is an Asplund space then every locally 

Lipschitz function t/J defined on an open subset A of X is Frechet differentiable on a dense 

subset D of A. 

In all these cases and for the appropriate derivative ,for every open ball Bin A and for 

every y,z e B 

inf{t/J'(x)(y-z): x e B nD} ~t/J(y)- t/J(z) ~sup{t/J'(x)(y-z): x e B nD}. 

This last inequality in Preiss' Theorem has the following interesting implication 

2.2 Corollary 

In such a space X, a locally Lipschitz function t/J on an open subset A has the 

property that for any x e A and e > 0 where B (x; e) !:: A, there exist y ,z e B (x; e) such that 

sup {II t/J '(u) II: u e B(x; e) nD} 

>lt/J(y)-t/J(z)l 1,) 
- II y-z II >~X - e 

where A(x) is the local Lipschitz constant of t/J at x. 
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A useful tool for discussing the differentiability of a locally Lipschitz function <1> on an 

open subset A of a normed linear space X is the Clarke generalised subdifferential of <1> at x 

·defined by 

aq,(x) = { f E X* : f(y) s lim sup <!>(z+ty)-<l>(z) for ally E X} 
z~x 

t~O+ 

If aq,(x) is singleton then <I> is Gateaux differentiable at X but the converse is not true in general. 

Wherever <I> has the property that aq,(x) iS Singleton We say that <I> is Strictly differentiable at X, 

[5, p.33]. The subdifferential mapping x ~ aq,(x) has the useful property that it is weak* 

upper semi-continuous. 

We are now ready to present our main result. 

2.3. Theorem 

On a Banach space X with rotund dual X* (and with norm Frechet differentiable 

away from the origin) a locally Lipschitz function tfJ on an open subset A, with the property that 

wherever tfJ is Giiteaux (Frechet) differentiable it is strictly differentiable, is Giiteaux 

differentiable on a dense G 0 subset of A and at each point x of this subset, II tfJ '(x) II = A.(x), the 

local Lipschitz constant of tfJ at x. 

Proof 

a. Consider the real function 'I' on A defmed by 

'Jf(X) = inf {II f II : f E aq,(x) }. 

(i) We show that 'Jf is lower semi-continuous on A. 

For x e A, consider a sequence { x0 } in A convergent to x. For each n choose 

fn E aq,(xn) such that 'Jf(Xn) > II fn II - 1/n. Since the subdifferential mapping X~ aq,(x) is 

weak* upper semi-continuous and aq,(x) is weak*compact, {fnl has a weak* cluster point 

f E aq,(x). From the weak* lower semi-continuity of the norm on X* we deduce that 

lim inf 'Jf(x0 ) ~ lim inf II f0 II ~ II f II ~ 'Jf(x). 

(ii) Since 'Jf is lower semi-continuous on an open subset A of a Banach space X, it follows 

that 'Jf is continuous on a dense Ga subset A 'I' of A. 
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b. Consider the real function A, on A where is the local Lipschitz constant of$ at x. We 

show that 1\, is upper semi-continuous on A. For x E A, consider a sequence { xn} in A 

convergent to x and sequences 

such that 

Then 

c. We show thai at every point x e Av, 

A,(x) = II f II = \jJ(x) 

where for each n, Yn· zn E B(xn ; Yn ;t Zn are 

for aU f E dQJ(X). 

From Preiss' Theorem, since X has norm Gateaux (Frechet) differentiable away from the 

origin, we have that 4J is Gateaux (Frechet) differentiable on a dense set D in A. From the 

Corollary to Preiss' Theorem, for each n we can choose Xn E D n B(x; 1/n) such that 

II$ II> l(x) _1_ 
n 

But then the sequence is convergent to x and 

But since (j) is strictly differentiable on D, 

However 

so 

A,(x) = lim II «jl 

'JI(x) ~ II f II ~ A(x) 

A(x) = II f II = 'Jf(x) 

II= lh'TI 

for all f E a<jl(x) 

for all f E d<jl(x). 

d. Since X has rotund dual X*, we have for every x E Aijf that Cl$(x) is singleton. 

Therefore,$ is Gateaux differentiable on A"o/ and II <P '(x) II = A(x) for all x E A"o/. II 

For this theorem to hold we require that the locally Lipschitz function satisfy the 

property that wherever it is Gateaax differentiable it is strictly differentiable. We note that this 

condition is satisfied if the Clarke and Michel-Penot generalised subdifferentials coincide for 

the function, [2, p.515]. 

We should notice that this theorem holds more generally in the second case when X 

is an Asplund space. 
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This result has a general version for the family of Br,llach spacPs isomorphic to 

those specified in the theorem. This corollary for locally Lipschitz functions is a generalisation 

of Kenderov's Theorem [9] for convex functions. 

2.4. Corollary 

On a Banach space X which can be equivalently renormed to have dual X* rotund, a 

Lipschitz function 1/J on an open subset A, with the property that wherever£/> is Gateaux 

differentiable it is strictly differentiable, is Gateaux differentiable on a dense G 0 subset of A. 

The Preiss Theorem enables us to extend the tx'leorem to produce a Frechet 

differentiable result Again this corollary for locally Lipschitz functions is a generalisation of 

the Namioka-Phelps Theorem [11] for convex functions. 

On a Banach space X which can be equivalently renonned to have a dual which is 

rotund and where the norm and weak* topologies coincide on the dual unit a locally 

Lipschitz function 1/J on a open subset A, with the property that wherever tP is Fnkhet 

differentiable it is strictly differentiable, is Frechet dif.lerentiahle on a dense G 0 subset of A. 

Proof 

Consider X so renonned. Then X has rotund dual X* and the norm of X is Frechet 

differentiable away from the origin. From the Theorem, <jl is Gateaux differentiable on a dense 

G0 subset A 'Iff of A and at each x e A 'Iff, II ¢1 

¢1'(x) is a Frechet derivative of <j>. 

From Preiss' Theorem, given e > 0 and II y II < E 

inf { $ '(u)(y) : u E B(x; e) n D} 

~ $(x+y)- <jl(x) 

II= A.(x). We show that at each x E A'!ff, 

~sup { cjl '(u)(y) : u e B(x; e) n D}. 

Then I q>(x+y)- <!>(x)- $ '(x)(y) I 
~ sup {I $ '(u)(y) - (j> '(x)(y) I : u E B(x; E) n D} 

~II y II sup { il <jl '(u)- $'(x) II : u e B(x; £) n D} ......... t 
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Since $ is also st.>ictly differentiable at x, as before it follows from the weak * upper 

semi-continuity of the subdifferential mapping x ~ d$(x) that for u E D converging to x, we 

have$ converges weak* to <!J '(x). But from the weak* lower serni-continuity of ilie dual 

norm 

lim inf II (jl '(u) II ;;:: II $ '(x) II = A,(x). 

But also from the defmition of a local Lipschitz constant we have 

Hm sup II $ '(u) II ~ A(x) 

and so II$ II converges to II ¢ '(x) II = 

from the properties of the renormed space we have$ '(u) is nom1 convergent to$ '(x). Then 

from inequality t we deduce that ljl is Frechet differentiable on Aw. II 

A normed linear space X is said to have uniformly rotund dual X* if for any 

sequence } in X* where il fn II = 1 = II f II and II f 11+f II ~ 2 we have II f 11-f II ~ 0. It is 

known that on such a space the nom1 and weak* topologies coincide on the dual unit sphere. 

Recently, Fabian [7] has shown that any weakly compactly generated Asplund space 

can be equivalently renormed to have locally uniformly rotund dual, so such spaces which 

in dude reflexive Banach spaces satisfy the requirements of this corollary. 

3. Applications to distance fundions 

We now explore the implications of these results for the differentiability of distance 

functions. 

Given a non-empty closed set Kin a normed linear space the distance function d 

generated by K is defined 

d(x) = d(x, K) 

If there exists a point p(x) e K such that d(x, K) = II x-p(x) II we say that p(x) is a point of best 

approximation to x inK. We apply our theory to d as a Lipschitz 1 function on X\ K. 

A normed linear space X is said to have uniformly Gateaux differentiable norm if given 

E > 0 and II x II = II y II = 1 there exists a continuous linear functional fx on X and a O(E,y) > 0 

such that 

Ill x+ty II- II x II I 
t - fx(Y) < e when 0 <It I d) and for all II x II= 1. 
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Such a space X has rotund dual X*, [6, p.148]. It is also known that on such a space X every 

distance function d on X \ K has the property that wherever it is Gateaux differentiable it is 

strictly differentiable, [2, p.525]. 

Theorem 2.3 has the following immediate application to distance functions. 

3.1. Theorem 

On a Banach space X with uniformly Gdteaux differentiable norm, the distance 

function d generated by a non-empty closed set K is Gdteaux differentiable on a dense G 8 

subset D of X\ K and II d'(x) II= 1 for all xED. 

This is an improvement on [8, Theorem 2], [2, p.526]. 

From Corollary 2.5 we can make the following deduction. 

3.2. Theorem 

On a reflexive Banach space X with uniformly Gdteaux differentiable norm, the 

distance function generated by a non-empty closed set K is Frechet differentiable on a dense G 8 

subset of X \ K. 

The advantage of having conditions holding generically is made even more apparent 

when we link our results to those of Lau [ 1 0] on points of best approximation. 

3.3. Corollary 

In a reflexive Banach space X with uniformly Gdteaux and Kadec norm, given a 

non-empty closed set K there exists a dense G 8 subset of X \ K each of whose points has 

points of best approximation in K and at whose points the distance function d generated by K is 

Frechet differentiable. 

Proof 

Lau has shown that in a reflexive Banach space X with Kadec nomi there exists a dense 

Go subset Pin X\ K where each point of P has a best approximating point in K. A reflexive 

Banach space can be equivalently renormed so that its dual is locally uniformly rotund. Now 

the property that wherever a locally Lipschitz function is Gateaux differentiable it is strictly 

differentiable is an isomorphic property. In the renormed space the distance function d remains 
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a locally Lipschitz function and by Corollary 2.5 it is Frechet differentiable on a dense G0 

subset A'V of X \ K. But then in the original space the distance function d is Frechet 

differentiable on the dense G0 subset AIJ! of X \ K.V./e conclude that d has the required 

properties on the dense G0 subset A 'I' n P of X\ K. II 

But again we can link this result to [1, Theorem 6.6] which generalizes that of 

Stechkin [13] for points of unique bestapprox:imation. 

3.4. Corollary 

In a Banach space with uniformly Gateaux diffeventiable nonn and with Frechet 

differentiable dual norm, given a rwn-empty closed set K there exists a dense G {)subset of 

X\ Keach has a unique point approxirnation inK and at whose points 

the distance function d generated K is Frechet differentiable. 

For distance functions on Hilbert space we have not gained any information which 

was not already known [3, p.379]. This is because in such a space the square of the distance 

function is the difference of two convex functions. However, using a special case of the 

smooth vru.iational principle due to Bonvein and Preiss [ 4, p.525] it is possible to deduce Lau's 

result for Hilbert space with a short proof which also shovis how points with best 

approximation and their best approximating points in the set are related to general points off the 

set. 

3.5. The Borwein-Preiss Theorem 

Consider a proper extended real lower semi-continuous function e bounded below 

on a Hilbert space H. Given e > 0 and xo E H such that 

fJ(xo) < inf e + e 

for any A > 0 there exists a v E H such that 

llxa-v II< A 

and a w E H such that 

II xa-w II< IL OJtd 

forallx<= H. 



48 

3.6. Theorem 

Consider a non-empty closed set K in a Hilbert space Hand Yo E H \ K and 8 > 0. 

For sujJiciently small 0 < e < d2(Yo) and xo E K n B(Yo ; d(yo) + E/4d(yo), given It> 0 there 

exists ayE B(Yo; 8) with best approximationp(y) E K nB(xo; such that for some 
2 

y0+(EIIt) w 
w E we have y = 2 

l+e!X 

Proof 

Consider the function 

2 
9(x) = II x-y0 II 

+oo 

whenx e K 1 
when x e H\Kj 

Since II x0-y0 II < d(y0) + e/4d(yo) and 0 < e < d2(yo) we have 

S(xo) = II x0-y0 112 < d2(y0) + e = inf e +e. 

Applying the Borwein-Preiss Theorem to e we see that there exists avE B(x0 ;A.) and a 

w E B(xo ; A) such that for an X E K 

so 

(l+e/11.2) II x 112-2(x,y0 + (e/11.2) w);::: (l+e/A-2) II v 112-

and 

2 
y +(E/A )w 

Since 8(v) < oo we have that v E K and so we deduce that v = p(y) where y = 0 
2 

1 +e/'A 

Nowlly0-yl1=-f- lly0-wll < -f- (d(y0)+A+E/4d(y0)) 

A. +E A. +t 

so by suitable choices of e and A we have II y-yo II < 3. II 
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