COMPLEMENTATION PROBLEMS CONCERNING THE RADICAL OF A COMMUTATIVE AMENABLE BANACH ALGEBRA

P. C. Curtis, Jr.

In 1986 Bachelis and Saeki, [1], showed that if $\mathfrak A$ is a commutative Banach alegbra, with identity and non-zero radical R, which in addition satisfies the following condition

$$A: \operatorname{sp}\{x \in \mathfrak{A}^{-1}: \sup_{n \in \mathbb{Z}} \|x^n\| < \infty\}^- = \mathfrak{A},$$

then there does not exist a closed subalgebra $\mathfrak B$ complementary to the radical R (or complementary to any closed ideal I of $\mathfrak A$ contained in R).

In [2] R. J. Loy and the present author extended these results in the following way to commutative Banach algebras satisfying either of the following weaker generating conditions.

B:
$$sp\{x \in \mathfrak{A}^{-1} : ||x^n|| ||x^{-n}|| = o(n)\}^- = \mathfrak{A}$$

$$C : sp\{x \in \mathfrak{A} : ||e^{nx}|| ||e^{-nx}|| = o(n)\}^{-} = \mathfrak{A}$$

THEOREM 1. Let $\mathfrak A$ be a commutative Banach algebra with identity which satisfies either of the condition B or C. If φ and ψ are continuous homomorphisms of $\mathfrak A$ into the commutative Banach algebra $\mathfrak B$ such that

$$(\varphi - \psi)(\mathfrak{A}) \subset rad \mathfrak{B}$$
,

then $\varphi = \psi$.

It follows immediately that if $\mathfrak A$ is commutative satisfying B or C, and $\operatorname{rad} \mathfrak A \equiv \operatorname{R} \neq 0$, then $\mathfrak A$ cannot have the strong Wedderburn property, that is, there cannot exist a closed subalgebra $\mathfrak C$ of $\mathfrak A$ with $\mathfrak C \simeq \mathfrak A/\operatorname{R}$ and $\mathfrak A = \mathfrak C \oplus \operatorname{R}$. A similar result holds if I is any closed ideal of $\mathfrak A$ contained in R. On the other hand, if $\mathfrak B$ is a commutative Banach algebra which satisfies $\mathfrak B = \mathfrak C \oplus \operatorname{I}$, where $\mathfrak C$ is a closed subalgebra of $\mathfrak B$ continuously isomorphic to $\mathfrak A$, and I is a closed ideal of $\mathfrak B$

contained in rad B, then for the given ideal I this decomposition is unique.

As an application of their result, Bachelis and Saeki observed that if E is a compact set not of spectral synthesis in a non-discrete locally compact abelian group G , where A(G) is the Fourier algebra on G , and $I_0(E) = \{f \in A(G) : f = 0 \text{ in a neighbourhood of E}\}^-$, then A(G)/ $I_0(E)$ satisfies condition A . Thus such algebras fail to have a strong Wedderburn decomposition. In this case, Rad (A(G)/ $I_0(E)$) = $I(E)/I_0(E)$ where $I(E) = \{f \in A(G) : f(E) = \{0\}\}$. These considerations give rise to the following question. If G is a locally compact, non-compact abelian group, and E is a closed, but not compact, set of non-synthetis in G , does A(G)/ $I_0(E)$ fail to have a strong Wedderburn decomposition? More generally does Theorem 1 hold for A(G)/ $I_0(E)$?

If G has connected dual, the Beurling-Helson Theorem, [8, 4.7.3], shows that the only measures $\mu \in M(G)$ satisfying $\sup_{n \in \mathbb{Z}} \|\mu^n\| < \infty$ are unimodular point masses, hence condition A cannot hold for $A(G)^+$ where $A(G)^+$ is the algebra A(G) with unit adjoined. Thus for compact E in G, $A(G)/I_0(E)$ satisfies condition A, even though $A^+(G)$ may not. At least for the real line \mathbb{R} one can get around this problem because the appropriate analogue of condition C does indeed hold.

If the Banach algebra $\mathfrak A$ has no unit and $a \in \mathfrak A$, set $u(a) = \sum\limits_{k=1}^\infty \frac{a^k}{k!}$ and let $\mathfrak S = \{a \in \mathfrak A: (1+\|u(na)\|)(1+\|u(-na)\|) = o(n)\}.$

THEOREM 2. Let $\mathfrak A$ be a commutative Banach algebra, and φ , ψ be continuous homomorphisms of $\mathfrak A$ into the commutative Banach algebra $\mathfrak B$. If $a \in \mathfrak S$ and $\varphi(a) - \psi(a) \in \operatorname{rad} \mathfrak B$, then $\varphi(a) = \psi(a)$. Consequently, if $\operatorname{sp} \mathfrak S^- = \mathfrak A$, then $\varphi = \psi$.

Proof: The proof is basically the same as that of [2, Theorem 5.1]. Adjoin an identity e to $\mathfrak A$, and to $\mathfrak B$ if necessary, and assume ||e||=1. Define $\varphi(e)=\psi(e)=e\in \mathfrak B^+$. Then $r=\varphi(a)-\psi(a)\in \operatorname{Rad}\mathfrak B^+$ since $\operatorname{Rad}\mathfrak B=\operatorname{Rad}\mathfrak B^+$. Let $b=e+u(a)=\exp(a)$ and $z=\psi(b)-\varphi(b)$. Then

$$\begin{split} \|(\mathbf{e} + \varphi(\mathbf{b})^{-1}\mathbf{z})^{\mathbf{n}}\| &= \|\varphi(\mathbf{b}^{-\mathbf{n}})\psi(\mathbf{b}^{\mathbf{n}})\| \\ &\leq \|\varphi\| \ \|\psi\| \ \|\mathbf{e} + \mathbf{u}(-\mathbf{n}\mathbf{a})\| \ \|\mathbf{e} + \mathbf{u}(\mathbf{n}\mathbf{a})\| \\ &\leq \|\varphi\| \ \|\psi\| (1 + \|\mathbf{u}(-\mathbf{n}\mathbf{a})\|) (1 + \|\mathbf{u}(\mathbf{n}\mathbf{a})\| \\ &= o(\mathbf{n}) \ . \end{split}$$

As in [2, Theorem 5.1] an application of Hille's theorem, [5, 4.10.1], yields that z = 0, and $\varphi(b) = \psi(b)$. Since $\varphi(a) = \psi(a) + r$, $\exp \psi(a) = \psi(\exp a) = \varphi(\exp a) = \exp(\varphi(a))$ = $\exp \psi(a) \cdot \exp r$, and therefore $\exp r = e$ in \mathcal{B} . Consequently,

$$u(r) = r \sum_{k=0}^{\infty} \frac{r^k}{(k+1)} = 0$$
.

Since the second factor in u(r) is invertible, r=0, and the result follows.

To show that for the real line \mathbb{R} , $A(\mathbb{R}) = \operatorname{sp}\mathfrak{S}^-$ we need the following result.

PROPOSITION 3. Let $\mathfrak{T} = \{h : h \text{ is piecewise linear, real valued and continuous on } \mathbb{R}$ with compact support $\}$. Then $\operatorname{sp}\mathfrak{T}^- = A(\mathbb{R})$, and for $h \in \mathfrak{T}$, $\|\operatorname{u}(\operatorname{inh})\| = O(\log n)$.

Proof. Firstly, it is a theorem of Kahane, [7, p.75], that for h piecewise linear and real valued on the circle \mathbb{T} , then $\|e^{inh}\|_{A(\mathbb{T})} = \mathcal{I}(\log n)$. Secondly, the piecewise linear function on \mathbb{T} are norm dense in $A(\mathbb{T})$, [4, p. 74], and those with support in $[-\pi + \delta, \pi - \delta]$, where $0 < \delta < \pi$, are norm dense in the set of those functions from $A(\mathbb{T})$ with support in this interval. Lastly, if $h \in A(\mathbb{T})$ has its support in $[-\pi + \delta, \pi - \delta]$, then there exists positive constants C_1 , C_2 depending only on δ such that

$$C_1 \|h\|_{A(\mathbb{R})} \le \|h\|_{A(\mathbb{T})} \le C_2 \|h\|_{A(\mathbb{R})},$$

c.f. [8, Theorem 2.7.6]. Now if $h \in A(\mathbb{R})$ with compact support and if for some a > 0 we define g(at) = h(t), then g is piecewise linear if h is , and $\|g\|_{A(\mathbb{R})} = \|h\|_{A(\mathbb{R})}$. Therefore, for $h \in \mathcal{T}$, $\|u(inh)\| = O(\log n)$ and sp $\mathcal{T}^- = A(\mathbb{R})$ as required.

COROLLARY 4. If E is a closed set of non-synthesis on the real line \mathbb{R} , and $\mathfrak{A} = A(\mathbb{R})/I_0(E)$, then \mathfrak{A} does not have the strong Wedderburn property.

Since for Banach algebras $\mathfrak A$ satisfying condition B or C, the strong Wedderburn property never holds, one may ask under what conditions must the radical fail to have a closed complementary subspace. Conditions A, B or C are not sufficient to guarantee this, since there are examples of algebras generated by their idempotents where the radical is finite dimensional (c.f. [3]).

However, if $\mathfrak{A}=A(G)/I_0(E)$, where E is a closed set of non-synthesis, then for most, perhaps all, known examples $\left[I(E)/I_0(E)\right]^2 \neq I(E)/I_0(E)$, and in this case $I(E)/I_0(E)$ cannot have a closed complementary subspace in $\mathfrak A$. The critical property of $\mathfrak A$ that is being used is that A(G) and its factor algebras are all amenable. (See [2] for a discussion of commutative amenable Banach algebras.) The following is an illustration of this phenomenon.

THEOREM 5. Let $\mathfrak A$ be a commutative semi-simple Banach algebra with unit which is regular and amenable. Assume for some $a \in \mathfrak A$ and $\mu \in \mathfrak A^*$, $\mu \neq 0$,

$$\int_{-\infty}^{\infty} \lVert e^{\mathrm{i} t a} \mu \rVert_{\mathfrak{A}^*} |t| \, \mathrm{d} t \, < \, \infty \, \, .$$

Then for some $\lambda \in \mathbb{R}$, the closed ideals I_1 , I_2 , generated by λ + a and $(\lambda + a)^2$ respectively, are distinct. Furthermore, I_1/I_2 has no complementary subspace in \mathfrak{A}/I_2 .

Proof. The first statement in the well known theorem of Malliavin, c.f.[7, p.231]. Since $\mathfrak A$ is regular, I_1 and I_2 have the same hull and I_1/I_2 is the radical in $\mathfrak A/I_2$. If $\mathfrak A/I_2=\mathfrak M\oplus I_1/I_2$ for some closed subspace $\mathfrak M$, then since $\mathfrak A$, and hence $\mathfrak A/I_2$, are amenable, it follows that I_1/I_2 must have a bounded approximate identity (c.f. [2, theorem 3.7]). This is clearly impossible since $I_2=\overline{(I_1)^2}$.

An interesting question is whether the radical in an amenable Banach algebra ever can have a bounded approximate identity. No such example is known to the author.

REFERENCES

- [1] G. F. Bachelis and S. Saeki, Banach algebras with uncomplemented radical, *Proc. Amer. Math. Soc.* 100(1987), 271–274.
- [2] P. C. Curtis Jr. and R. J. Loy, The structure of amenable Banach algebras, J. London Math. Soc., to appear, 1989.
- [3] C. Feldman, The Wedderburn principal theorem in Banach algebras, *Proc. Amer. Math. Soc.* 2 (1951), 771–777.
- [4] C. C. Graham and O. C. McGehee, Essays in commutative harmonic analysis, Springer-Verlag, Berlin, 1979.
- [5] E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Coll. Publ. 31, Providence, R. I., 1957.
- [6] J. P. Kahane, Series de Fourier absolument convergentes, Springer-Verlag, Berlin, 1970.
- [7] V. Katznelson, An introduction to harmonic analysis, John Wiley and Sons, New York, 1968.
- [8] W. Rudin, Fourier analysis on groups, Interscience, New York, 1962.

Department of Mathematics University of California, Los Angeles Los Angeles, CA 90024-1555 U.S.A.