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COMPLEMENTATION PROBLEMS 

CONCERNING THE RADICAL OF A COMMUTATIVE 

AMENABLE BANACH ALGEBRA 

P. C. Curtis, Jr. 

In 1986 Bachelis and Saeki, [1], showed that if Ql is a commutative Banach 

alegbra, with identity and non-zero radical R , which in addition satisfies the 

following condition 

{ -1 n }-A : sp x E 2l : sup llx II < oo = 2l, 
nE71. 

then there does not exist a closed subalgebra 123 complementary to the radical R (or 

complementary to any closed ideal I of 2l contained in R) . 

In [2] R. J. Loy and the present author extended these results in the following 

way to commutative Banach algebras satisfying either of the following weaker 

generating conditions. 

B : sp{ x E Ql-l : llxnllllx -nil = o(n) r = 2l 

C : sp{ X E 2l : llenxlllle -nxll = o(n)}- = 2l 

THEOREM l. Let Q.l be a commutative Banach algebra with identity which satisfies 

either of the condition B or C . If cp and 1/J are continuous homomorphisms of Q.l 

into the commutative Banach algebra 93 such that 

( cp-1j;)(Q.l) c rad 93, 

then cp = 1/J, 

It follows immediately that if 2l is commutative satisfying B or C , and 

rad 2l = R =/= 0 , then 2l cannot have the strong Wedderburn property, that is, there 

cannot exist a closed subalgebra ([ of Q.l with ([ c::' 2l/R and 2l = ([Ell R . A similar 

result holds if I is any closed ideal of 2l contained in R . On the other hand, if 123 

is a commutative Banach algebra which satisfies 93 = l! Ell I , where l! is a closed 

subalgebra of 93 continuously isomorphic to 2l , and I is a closed ideal of 93 
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contained in rad ~ , then for the given ideal I this decomposition is unique. 

As an application of their result, Bachelis and Saeki observed that if E is a 

compact set not of spectral synthesis in a non-discrete locally compact abelian group 

G , where A(G) is the Fourier algebra on G , and I0(E) = {f E A(G) : f = 0 in a 

neighbourhood of E}-, then A(G)/I0(E) satisfies condition A. Thus such algebras 

fail to have a strong Wedderburn decomposition. In this case, Rad (A(G)/I0(E)) = 

I(E)/I0(E) where I(E) = {f E A( G) : f(E) = {0}} . These considerations give rise to 

the following question. If G is a locally compact, non-compact abelian group, and E 

is a closed, but not compact, set of non-synthetis in G , does A(G)/I0(E) fail to 

have a strong Wedderburn decomposition? More generally does Theorem 1 hold for 

If G has connected dual, the Beurling-Helson Theorem, [8, 4.7.3], shows that 

the only measures tt E M(G) satisfying sup llttnll < oo are unimodular point masses, 
nE71. 

hence condition A cannot hold for A(Gt where A(Gt is the algebra A( G) with 

unit adjoined. Thus for compact E in G, A(G)/I0(E) satisfies condition A, even 

though A +(G) may not. At least for the real line IR one can get around this problem 

because the appropriate analogue of condition C does indeed hold. 

oo ak 
If the Banach algebra 2l has no unit and a E 2l , set u(a) = l: kl and let 

k=l . 

6 ={a E 2l: (l+llu(na)ll)(l+llu(-na)ll) = o(n)}. 

THEOREM 20 Let 2l be a commutative Banach algebra, and cp , ¢ be continuous 

homomorphisms of 2l into the commutative Banach algebra ~ . If a E 6 and 

cp(a) - ¢(a) E rad 23", then cp(a) = ¢(a) . Consequently, if sp 6- = 2l, then cp = 1p. 

Proof: The proof is basically the same as that of [2, Theorem 5.1], Adjoin an identity 

e to 2l, and to ~ if necessary, and assume llell = 1 . Define cp(e) = ¢(e) = e E ~+. 

Then r = cp(a) - ¢(a) E Rad ~+ since Rad ~ = Rad ~+ . Let b = e + u(a) = exp(a) 

and z =¢(b)- cp(b). Then 
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ll(e+cp(br 1z)nll = llcp(b-n)¢(bn)ll 

:S II 'PI I II 7/111 lle+u( -na) II lle+u(na) II 

:S II'PII 117/'ll(l+!lu(-na)ll)(l+llu(na)ll 

= o(n) . 

As in [2, Theorem 5.1] an application of Hille1s theorem, [5, 4.10.1], yields that z = 0 , 

and cp(b) = 7/J(b) . Since cp(a) = ¢(a) + r , exp ¢(a) = 7/1( exp a) = cp( exp a) = exp( cp(a)) 

= exp¢(a)·expr, and therefore expr = e in B. Consequently, 

00 k 
u(r)=ri lkr 1)=0. 

k=O' + 

Since the second factor in u(r) is invertible, r = 0 , and the result follows. 

To show that for the real line IR , A(IR) = sp 6- we need the following result. 

PROPOSITION 3. Let 'I = {h : h is piecewise linear, real valued and continuous on 

IR with compact support}. Then sp':r- = A(IR) , and 

0 (log n) . 

h E 'I , llu(inh) II = 

Proof. Firstly, it is a theorem of Kahane, [7, p. 75], that for h piecewise linear and 

real valued on the circle 1r , then lleinhiiA(1l') = ~i(log n) . Secondly, the piecewise 

linear function on 1r are norm dense in A('lr) , [4., p. 74] , and those with support in 

[-n+b,Ir-8], where 0 < 8 < 1r, are norm dense in the set of those functions from A('lr) 

with support in this interval. Lastly, if hE A(1l') has its support in [-Ir+b,Ir-8] , then 

there exists positive constants cl , c2 depending only on 8 such that 

llhiiA(IR) , 

c.f. [8, Theorem 2. 7.6] . Now if h E A(IR) with compact support and if for some a > 0 

we define g(at) = h(t) , then g is piecewise linear if h is , and llgiiA(IR) = llhiiA(IR) . 

Therefore, for hE 'r, llu(inh)ll = 0 (log n) and sp 'I-= A(IR) as required. 

COROLLARY 4. If E is a closed set of non-synthesis on the real line IR , and 

2l = A(IR)/I0(E) , then 2l does not have the strong Wedderburn property. 
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Since for Banach algebras Ql. satisfying condition B or C , the strong 

VVedderburn property never holds, one may ask under what conditions must the 

radical fail to have a closed complementary subspace. Conditions A , B or C are 

not sufficient to guarantee this, since there are examples of algebras generated by their 

idempotents where the radical is finite dimensional ( c.f. [3]). 

However, if Ql. = A(G)/I0(E) , where E is a closed set of non-synthesis, then 

for most, perhaps all, known examples [r(E)/I0(E)J 2 :f- I(E)/I0(E) , and in this case 

I(E) /I0(E) cannot have a closed complementary subspace in QL • The critical 

property of QL that is being used is that A( G) and its factor algebras are all 

amenable. (See [2] for a discussion of commutative amenable Banach algebras.) The 

following is an illustration of this phenomenon. 

THEOREM 5. Let QL be a commutative semi-simple Banach algebra with unit which 

* is regular and amenable. Assume for some a E QL and Jt E Ql. , Jt :f- 0 , 

r ita _}e ~tll!?i* It I dt < oo • 

Then for some .A E IR , the closed ideals I1 , I2 , generated by .A + a and (.A + a)2 

respectively, are distinct. Furthermore, I1/I2 has no complementary subspace in 

fJl/I2 . 

Proof. The first statement in the well known theorem of Malliavin, c.£.[7, p.231]. 

Since fJl is regular, I1 and I2 have the same hull and I/I2 is the radical in lli/I2 . 

If fJl/I2 = mt Efl Irfi2 for some closed subspace mt, then since Ql. , and hence f»../I2 , 

are amenable, it follows that I1/I2 must have a bounded approximate identity ( c.f. 

[2, theorem 3.7]). This is clearly impossible since I2 = (I1)2 . 

An interesting question is whether the radical in an amenable Banach algebra 

ever can have a bounded approximate identity. No such example is known to the 

author. 
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