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USING BANACH ALGEBRAS TO DO 
ANALYSIS WITH THE UMBRAL CALCULUS 

Sandy Grabiner 

1. INTRODUCTION 

The modem version of the umbral calculus, which was developed by G.C. Rota with 

a number of collaborators, particularly Steven Roman, has roots which go far back into the 

nineteenth century. According to them, [13, Section 1, pp.95-98], the umbral calculus was 

originally an attempt to exploit the fact that one could often substitute appropriate 

sequences of numbers or polynomials for the sequence {xn} of powers in certain 

identities. For instance, many polynomial sequences {p (x)} satisfy the binomial identity 
n 

(1.1) p (X+y) = I [n] pk(y) p -k(x) . 
n k=Ok n 

By the early twentieth century, it was clear that the umbral calculus was closely tied to the 

Heaviside operational calculus. Recall that when we let t be the differentiation operator 

dldx, then for the power series f(t) = :E~ an tn the operational calculus formula is 

(1.2) f(t) h(x) = I,a h(n)(x) , 
n 

so that, in particular, eat h(x) = h(x+a) . 

Throughout the nineteenth century, both the umbral calculus and the operational 

calculus were powerful heuristic devices for discovering useful formulae, but these 

formulae needed to then be rigorously demonstrated by other means. While there have 

been many successful rigorous versions of the operational calculus, for instance the elegant 

Mikusmski calculus, [9], the umbral calculus resisted being made rigorous until relatively 

recently. In 1970, in a path-breaking paper [10], Mullin and Rota developed a rigorous 
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theory for polynomials of binomial type, that is, polynomials which satisfy formula (1.1). 

The theory was extended and simplified by Rota and his collaborators [13], [14] and 

reached a polished form in Roman's book [12], whose terminology and notation we will 

normally follow. As is frequently the case when a powerful heuristic theory is made 

rigorous, [3], the scope of the theory must be narrowed. Thus the Roman-Rota umbra! 

calculus and operational calculus apply only to the space C[x] of complex polynomials in 

x. For some years I have been engaged in a program of extending these operational and 

umbral methods to spaces of entire functions. In my published papers [6], [7] and in my 

previous talks on this subject, I have emphasized describing the most general results which 

show the power of the umbra! calculus on spaces of entire functions. In the present paper I 

would like instead to emphasize the techniques, so that a reader with problems about entire 

functions can get an idea of how umbra! methods might apply. Thus I will not attempt to 

prove the sharpest results, as I do in [6], [7], and I will often carry proofs only to the stage 

where the umbra! calculus has reduced a problem about entire functions or special 

polynomial sequences to a "more familiar" problem in analysis. 

From the point of view of a functional analyst, the essence of Roman's formulation 

of the umbra! calculus [12] is the representation of the dual space of C[x] by the algebra 

C[[t]] of formal power series in such a way that important linear operators on C[x] have 

adjoints that relate well to the algebraic structure of C[[t]] . This is done, [12, pp.6-7], by 

making ({tn}, {xn/n!}) a biorthogonal sequence so that the duality is given by 

(1.3) 

It is easy to see, [12, Th. 2.2.5, p.13], that under this duality the operational calculus map 

on C[x] given by f(t) , according to formula (1.2), is adjoint to power series 

multiplication by f(t) in C[[t]] . Other important maps on C[x] in the umbra! calculus 

are adjoints of automorphisms and derivations of C[[t]] . 

In the Roman-Rota umbra! calculus, the sum in formula (1.3) is a finite sum, since 

~ bn xn/n! is a polynomial. To extend the umbral calculus, one just uses formula (1.3) 
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whenever the sum converges. Suppose that E is a Banach or Frechet space of entire 

functions of x whose series converge in the topology of E (that is, {xn/n!} is a 

* Schauder basis of E ). Then the dual space E contains precisely those series for which 

formula (1.3) converges for all :E b xn/n! in E . For us the most important spaces of 
n 

entire functions will be the weighted spaces c0(n!/w ) given by a sequence { w } of 
n n 

positive numbers. The space c0(n!/w n) consists of all functions h(x) = L~ an xn with 

lim I a n!/w I = 0, and norm llh(x)lf =sup I n!/w I . The more familiar spaces of n n n n n 

entire functions which we will consider are countable unions or intersections of such 

weighted c0-spaces, so we will largely be studying operators between various c0(n!lw n) . 

We do this by looking at the adjoints of the operators on the dual of c0(n!/wn) . Because 

of the biorthogonality of { tn} and {xn/n!} , we must have lltnll·llxnll = n! , so that the 

dual of c0(n!/w ) is the space l1(w ) of all series f(t) = L b tn with finite norm 
n n n 

llfll = :E I b I w . We will almost always assume that { w } is an algebra weight, that is, 
n n n 

w0 = 1 and w :::;; w w , so that l1(w ) is a Banach algebra. 
n+m n m n 

Because of the very different roles of x and t in the umbra! calculus, it is 

important to distinguish spaces of functions of x from spaces of functions or series in t . 

Thus, to be absolutely precise, we should wri.te 1\w ,t) for 11(w ) and should write 
n n 

E0(x) for the space E0 in the next section. Fortunately the context makes this unwieldy 

notation unnecessary. When a space contains only entire functions, then x is the intended 

variable; but when the space contains an analytic function or formal power series which is 

not entire, then t is implicitly understood as the variable. 

In the Roman-Rota umbral calculus, algebraic formulae for polynomials are 

obtained by studying algebraic properties of certain linear operators on C[x] . These 

algebraic properties are usually proved by considering the adjoint operators on C[[t]] . 

We wish to extend this procedure to analytic questions on spaces of entire functions. 

These are studied by determining the properties of bounded linear maps, including the 

crucial property of determining between which weighted c0-spaces the map is defined and 

continuous. This is done by considering their adjoints between the dual weighted 
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11-algebras (cf. [7, Lem. (2.6), p.137]). When we do this, two very different cases arise. 

When the entire functions are of exponential type the duals are algebras of analytic 

functions; but when the spaces of entire functions contain only functions of exponential 

order less than one, then the duals are algebras containing formal power series with zero 

radius of convergence. We illustrate some results for each of these two cases. 

2. THE OPERATIONAL CALCULUS 

The modem umbral calculus makes heavy use of the operational calculus of formula 

(1.2). The deepest results, both in the Roman-Rota umbral calculus and in its extension to 

entire functions, also involve these special polynomial sequences, called Sheffer sequences, 

to which umbral methods apply, but the operational calculus by itself, though much more 

elementary, has wider applicability. The operational calculus maps include all linear 

differential and linear difference operators and many other useful operators, [12, pp.l4-15], 

[10, pp.178-180]. In fact, the operational calculus operators on C[x] are precisely the 

translation-invariant operators, [12, Cor. 2.2.9, p.17]. In this section we study analytic 

extensions of the Roman-Rota form of the operational calculus, postponing the defmition 

and study of Sheffer sequences to the next section. 

For a power series f(t) =~a tn and a space of entire functions E we will look at 
n 

the following two questions: 

Question 1. For which g(x) in E is span{f(t)n g(x)}; dense in E? 

Question 2. When does the infmite-order differential equation 

f(t) y(x) =~a y(n)(x) = 0 have a non-trivial solution in E? 
n 

We will answer a special case of each of the above questions and discuss other cases 

with references to [6]. In order to avoid some delicate situations treated in [6], [7], we will 

concentrate on the spaces EP of entire functions of order no more than p , where 
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0 ~ p < 1 , and the spaces E of functions of exponential type no more than 't , where 
't 

0 ~ 't < oo • EP is the Frechet space of all h(x) = O(exp( I xI r)) for all r > p , with the 

topology given by the norms sup I h(x) e -I xI r I . Similarly, E is aU entire functions 
X 't 

finite in all the norms sup I h(x) e -a I x II for a > 't . We can now answer one case of 
X 

Question L 

THEOREM (2.1). Suppose that f(t) is analytic on a neighbourhood of the origin and has 

f' (0) :;.: 0 and that g(x) belongs to the space EP for some 0 :::;; p < 1 . If g is not a 

polynomial, then M = span{f(t)n g(x)}~ is dense in EP. 

Proof. Subtraction of the constant term of f(t) does not change the invariant subspace 

M , so we assume that f(O) = 0 . Standard estimates on the coefficients of entire 

functions, [8, Th. 4.12.1, p.74], show that 

(2.2) EP = () c0(n!o:) ; 
l<a.<l/p 

and it follows from the closed graph theorem that the topology of EP is also given by the 

norms of the (It is enough to observe that the coefficient functionals are 

continuous in all the nonns we consider.) Thus, by the Hahn-Banach theorem, it will be 

enough to show that M is dense in each of the c0(n!a.) . 

We fix 1 <a< (1/p) and let wn = 1/n!a-l , so that the dual of c0(n!a) is zl(wn). 

We thus need only show that M..L = {0} in l1(w ) . It is easy to see that l1(w ) is a 
n n 

Banach algebra of power series containing f , and in fact contains all series with positive 

radius of convergence. Thus f(t) is a bounded linear operator on c0(n!a) , [7, Th. (3.2), 

p.l40], so M..L is f(t)-invariant in l1(w n) since M is f(t)-invariant in c0(n!a.) . Since f 

has positive radius of convergence, so does its compositional inverse f(t) = I7 bn tn , and 

it is easy to see, [ 4, Th. (2.3), p.643], that t = :E b f(t) 11 , so that M..L is t-in variant, and 
n 

is therefore a closed ideal of /1(w ) . Since w 1/w decreases monotonically to 0, it is 
n n+ n 
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well known, [4, pp.644-645], that the only proper closed non-zero ideals of l1(w ) are the 
n 

ideals P~ , where 

(2.3) k 
Pk = span{l,x, ... ,x } , 

is the space of polynomials of degree no more than k . But if MJ. = P~ , then 

g E M !;;;; MJ.J. = P k , contradicting the assumption that g is not a polynomial. This 

completes the proof. 

For the analogous result for E , [6, Th. 3.2, p.421], we need to assume that f has 
't 

radius of convergence greater than 't and we need to assume not only that g is not a 

. a.x 
polynomial but also that it is not a finite linear combination of functions x1 e 1 with 

I a. I :::; 't. Answers to Question 1 for other spaces and other f(t) also appear in [6]. 
J 

We now consider Question 2. Following Bade, Dales, and Laursen [1, Def. 1.9, 

p.18], we say that the algebra weight { w } is regulated if there is a k for which 
n 

lim (w /w ) = 0 . For regulated weights we have the following equivalent reformulation 
n+k' n 

n-;oo 

of Question 2 in terms of ideals of t1(wn). Recall that the standard ideals of !1(wn) are 

{ 0} , the whole space, and the P~ , where P k is as in formula (2.3). 

THEOREM (2.4). Suppose that {wn} is a regulated algebra weight and that 

oo n 1 
f(t) = 2:1 ant belongs to l (wn). Then the infinite-order differential equation 

:E an y<n)(x) = 0 has a non-polynomial solution in c0(n!/w n) if and only if the closed ideal 

generated by f(t) is not standard in t1(wn). 

Proof. Let N be the solution space of :E a y(n)(x) = 0 in c0(n!lw ) ; that is, N is the 
n n 

null-space of the linear operator f(t) acting on c0(n!/w n) . Hence N.J. is the 

* * weak -elosure of the range of f(t) , that is, of multiplication by f(t) , in the dual space 

z1(w ) . In other words N.J. is the weak* -elosure of the principal ideal J = t1(w ) f(t). n n 

First suppose that the closure of J is standard so that it equals some P~ . Then 
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N = N..L..L = J..L = P~..L = P k and the differential equation has only polynomial solutions. 

Conversely suppose that the closure of J is not standard. Since the weight { w n} is 

regulated, it follows from [1, Th. 5.3, p.79] that the weak*-elosure N..L is not standard 

either. Thus N * P k for any k , and since N is a closed t-invariant subspace, this 

implies that N cannot be composed only of polynomials. This completes the proof. 

In the case of a0 :ft. 0, which is omitted from the above theorem, f(t) is an 

invertible element of !1(w ) ' since lim (w )l/n = 0 ' so that f(t) is an invertible linear 
n n 

IJ.-100 

operator on c0(n!/wn) and the solution space N = {0} . 

Examples of l\w ) with only standard ideals have been known for a long time. 
n 

One particularly simple condition, [4, Th. (2.10), p.645], is that there is some k for which 

{ w lw } decreases monotonically to zero. This shows non-polynomial solutions cannot 
n+k' n 

exist in c0(n!a) , and thus, by formula (2.2), in EP for p < 1 . On the other hand Marc 

Thomas has constructed l1(w ) with non-standard ideals, [16], and the { w } can be n n 

regulated, [17, Th. 3.3.1, p.144], so non-standard solutions of the differential equation 

occur in these c0(n!/w n) . 

For spaces of functions of exponential type, in addition to the polynomials, one has 

k tox 
"standard" solutions of the form x e of f(t) y(x) = 0 wherever f(t) has a zero of 

order greater than k (cf. [6, pp.140-141]). Since the solution space is a closed t-invariant 

subspace, there are no other solutions for the space E't, [6, Th. 3.2, p.421]. For other 

spaces the situation is more complicated. 

Suppose that f is a bounded analytic function on the disc and consider the solution 

space N of the differential equation f(t) y = 0 on the space z2(n!) , whose dual under 

formula (1.3) is the Hardy space H2 of square-summable power series. Let <1> be the 

inner factor of f under the Beurling factorization, [15, Th. 17.17, p.344]. Then N..L, the 

closure of f H2 , is just the space <1> H2 , [15, Th. 1723, p.350]. So N is just ($ H2)l.. 

Thus f(t) h(x) = 0 if and only if (<!>(t) tn lh(x)) = ($(t) ih(n\x)) = 0 for all n ~ 0, with 
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the duality defined by formula (1.3). When f is equal to its inner factor $ , then 

f H2 = $ H2 is closed, [15, Th. 17.21(a), p.348]. Since multiplication by f on 

H2 !:: C[[t]] must be one-to-one, we have that f is bounded below as an operator on H2 , 

so that f(t) maps z2(n!) onto itself. That is, the nonhomogeneous differential equation 

f(t) y(x) = <jl(t) y(x) = h(x) has a solution in z2(n!) whenever h belongs to z2(n!) . 

3. SHEFFER SEQUENCES AND UMBRAL METHODS 

The Sheffer sequences { s (x)} , which include many classical polynomial 
n 

sequences, [12, Chap. 4, pp.53-130], such as Abel, Bernoulli, factorial, Hermite, Laguerre, 

and Stirling polynomials, are essentially the polynomial sequences to which the Roman

Rota rigorization of the classical umbral calculus applies. In analysis, Sheffer sequences 

occur most naturally through generating functions :E (s (x}/n!) tn . To be more precise, let 
n 

A and B be analytic functions with A(O) =1= 0 and B(O) = 0 but B '(0) =1= 0 , so that A 

has an algebraic inverse and B has a compositional inverse which we denote by B . 

Then we can find analytic functions f and g with 

(a) A(t) = 1/g(f(t)) and B(t) = f(t) , or, equivalently, 

(3.1) 

(b) g(t) = 1/A(B(t)) and f(t) = B(t) . 

Following Roman, [12, p.19], we say that the sequence of polynomials { s (x)} is Sheffer 
n 

for (g(t), f(t)) if 

(3.2) 
oo s (x) -
2,~ tn = A(t) exB(t) = __ 1 _ exf(t) . 
0 n. g(f(t)) 

To avoid some of the more delicate arguments from [6], [7], which make heavy use of 

results about radical Banach algebras of power series from [5], we will only consider f(t) 

and g(t) with positive radius of convergence. The simplest non-trivial example of a 

Sheffer sequence is the (lower) factorial polynomials, [12, Ex. 4.1.2, pp.56--63], [7, Ex. :S.l, 

pp.152-154] (x)n = x(x-l) ... (x-n+l), whose generating formula is just the binomial 
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(3.3) 
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oo (x) 
L~ tn = (l+tl =ex log(l+t). 
0 n. 

Thus the factorial polynomials are Sheffer for (l,e1-1). 

While the generating formula· (3.2) is the most common way that Sheffer sequences 

arise in analysis, hi. the umbral calculus it is much more useful to have a definition, [12, 

p.17] exploiting the duality of formula (1.3) between C[x] and C[[t]] . The equivalence 

of the two definitions is essentially [12, Th. 2.3.4, p.18] which we now rephrase. 

THEOREM (~.4). The polynomial sequence {sn(x)}~ is Sheffer for (g(t), f(t)) if and 

only if ({g(t) f(t)n}, {s (x)/n!}) is a biorthogonal sequence for the dual spaces C[[t]J and 
n 

C[x]. 

The power series g(t) f(t)n has order n , so that s (x) has degree n , and 
n 

therefore {sn(x)/n!}~ and {g(t) f(t)}~ are dual Schauder bases for the natural topologies 

on C[x] and C[[t]]. (In fact {s (x)/n!} is a Hamel basis and {g(t) f(t)n} is a basis for n 

the Zariski topology.) We thus have the following expansions for polynomials h(x) and 

formal power series <!>(t) , [12, Ths. 2.3.2 and 2.3.3, p.18], 

(3.5) h(x) = I_(g(t) f(ttlh(x)} s (x) 
0 n. n 

oo (<!>(t) ts (x)) 
<!>(t) = L 1 n g(t) f(t)n 

0 n. 
(3.6) 

In the Rota-Roman umbral calculus h(x) is a polynomial so that the expansion of formula 

(3.5) is a finite sum. Similarly, the expansion in formula (3.6) is finite in each coordinate. 

For a Banach or Frechet space E of entire functions, the natural question suggested by 

formula (3.5) is: 

Question 3. For which h(x) in E does formula (3.5) give a convergent expression 

in the topology of E ? 
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Related questions about uniqueness of expansions, rapidity of convergence, and 

properties of h(x) in terms of the expansion are treated, along with many cases of 

Question 3, in [7]. Here we will concentrate on some simpler special cases of Question 3 

which are closely related to the classical expansion theorems in [2]. Analogous questions 

suggested by formula (3.6) are treated for functions of exponential type in [7, pp.l50-151] 

and for functions of order less than one in [7, pp.166-167]. Several examples of both types 

of expansion theorems are worked out in [7, Sect. 5, pp.152-157]. 

With the Sheffer sequence (s (x)} for (g(t), f(t)), Roman [12, p.42] associates the n 

Sheffer operator A. = A. f for s (x) or for (g(t), f(t)) defined as the linear operator on 
g, n 

C[x] for which 

In the Roman-Rota umbral calculus it is the Sheffer operator which precisely expresses 

what is meant by replacing xn by s (x) in appropriate formulae. In our extension of the 
n 

umbral calculus to entire functions, [7], the main question seems to be: 

Question 4. Between which Banach or Frechet spaces of entire functions does the 

Sheffer operator A.g,f extend to a continuous linear operator? 

Since, as we will see below, A.-1 is also a Sheffer operator, the next result (cf. [7, 

Th. (4.7), pp.148f.]) shows that answers to Question 4 give answers to Question 3 as well. 

LEMMA (3.7). Suppose that D, E, and F are Banach or Frechet spaces of entire 

functions and that {xn} is a Schauder basis of E . If the Scheffer operators A. =A. f and g, 

A.-1 extend to continuous linear operators A.:E ____. F and A.-1:D ____. E, then every h(x) 

in D has an expansion h(x) = :E~ .en sn(x) converging in the topology of F. Moreover 

one can take c = (g(t) f(t)n I h(x))/n! as in formula (3.5). 
n 
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Proof. Let A-1(h(x)) = <j>(x) = l::=O c11 x11 in E. Then h(x) = A(<j>(x)) = A(l: c11 xn) = 

I: c A.(xn) = 1:00

0 c s (x) in F. We postpone the proof of the formula for c until we 
n n n n 

develop some umbral methods. 

Just as answers to Question 4 give answers to Question 3, information about the 

properties of A gives additional information about the expansions. For instance, 

uniqueness and non-uniqueness results depend on whether A is one-to-one or not. The 

nicest case is of course when D = F , or, normalizing to f' (0) = 1 , when D = E = F so 

that A is a continuous isomorphism of E . This happens for functions of exponential 

order less than 1, [7, Th. (6.6), p.161], which gives unique expansions in E for all h(x) 

in E, [7, Th. (7.2), p.l65]. In these cases, A. being an isomorphism also shows that 

I: c s (x) and I: c xn have the same order (and type), provided the order is less than 1 . 
n n n 

For functions of exponential type, similar results hold only for Appell sequences, [7, Th. 

(4.8), p.150], which is the case f(t) = t, [12, pp.17-18]. 

To determine the- properties of A on C[x] we need to look at on C[[t]] . We 

first treat the important case where g(t) = 1 . If {p (x)} is Sheffer for (1, f(t)) , then 
n 

{pn(x)} is called the associated sequence for f(t) [12, p.l7]. We then write Af for the 

Sheffer operator Ag,f and call Af the umbra! operator for {p11(x)} or for f(t) , [12, 

pp37-38]. Associated sequences are precisely the polynomial sequences which satisfy the 

binomial identity of formula (1.1), [12, Th. 2.4.6, p.26], [10, Th. 1, p.182], while general 

Sheffer sequences only satisfy a related identity, [12, Th. 23.9, p.21]. 

We now obtain Roman's formulas for A* for umbral and Sheffer operators. If 

{p n (x)} is the associated sequence for f(t) and 1\.,f is the umbral operator, then the 

formulae Af(x11) = p (x) together with the biorthogonality of {f(t)n} and {p (x)/n!} 
n n 

yield, [12, form. (3.4.1), p.38], 

(3.8) 

In other words, A; is the automorphism of C[[t]] given by composition with f , the 

compositional inverse of f. Similarly, when {s (x)} is Sheffer for (g(t), f(t)), the 
n 
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biorthogonality conditions give 

One can factor this map in two ways, giving the following commutative diagram: 

n 1/g(t) 1 

g(t) f(t) * 

* 1 ~Af A g, 
f 

g(f ( t))tn tn 
1/g{f(t)) 

Taking adjoints yields, [12, forms. (3.5.1) and (3.5.2), p.42], 

(3.9) 

Either by taking inverses in formula (3.9) or by using formula (3.9) to calculate 

A* r<tn) = A(t) B(t)n, we find that, [12, form. (3.5.3), p.43], 
g, 

II. -l =A 
g,f A,B 

where A(t) and B(t) are as in formula (3.1) and generating formula (32). Many other 

formulae in the umbral calculus are easily obtained by using biorthogonality to determine 

the adjoints of the operators involved. For instance, from the formula f(t)(g(t) f(t)n-l) 

= g(t) f(t)n , one obtains, [12, Th. 2.3.7, p.20], f(t) s (x) = ns , (x) . 
n n-. 

We can now verify the formula for c 
n 

claimed in Lero_ma (3.7). 

cj>(x) = ll.-1(h(x)) = :E c xn as in the proof of the lemma, we obtain 
n 

as claimed in the lemma. 

With 

With fonnulae (3.8) and (3.9) for umbral and Sheffer operators, we can now answer 

a simple special case, [7, Th. (3.12)(A), p.145], of Question 3. Recall that Ecr is the 

Frechet space of all entire functions of exponential type no more tha.n cr • 
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g,f 
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be the Sheffer operator for (g(t), f(t)) . If both 

A(t) = 1/(g(f(t)) and B(t) = f(t) are analytic on a neighbourhood of the closed disc D(p) 

of radius p , and if the maximum value of I f(t) I or D(p) is less than or equal to cr, 

then A f extends to a continuous linear operator from E to E . 
& P a 

Proof. Standard estimates of the coefficients of entire functions of exponential type, [8, 

Th. 4.13.1, p.78], show that 

(3.11) 

and similarly for E . Thus we need only show that if s > cr , then there is an r > p 
a 

with A f:c0(n!/rn) -l c0(n!/sn) continuously. It is easy to see that it suffices, [7, Lemma 
g, 

'~* 1 n 1 n . (2.6), p.l37], to show that 1\, f maps the dual space l (s ) to l (r ) . To do th1s we 
g, 

choose r > p such that A(t) and B(t) are analytic on a neighbourhood of the closed disc 

D(r) and that the maximum value of I B(t) I = I f(t) I on this disc is less than s . We use 

* the factorization of A f given by formula (3.9), considering each of the factors separately. 
g, 

Since A(t) = 1/g(f(t)) is analytic on a neighbourhood of D(p) ::2 D(r), it belongs to 

z1(r11) • Since z1(r11) is a Banach algebra, multiplication by A(t) then maps l1(r11) into 

itself. Thus we must show that A; maps t1(s11) into l1(r11) • The maximal ideal space of 

z1(r11) is the closed disc D(r) , so that the spectral radius of f(t) in !1(r11) is, by 

assumption, less than s. Hence there is an M > 0 for which l!f(t)11 1!::; M s11 for all 

n :2: 0 ; where the norm is taken in the Banach algebra t1(r11) • Now suppose that 

<jl(t) = l: c t11 • Then from (3.8) we obtain 
n 

Thus A; is a bounded linear operator from !1(s11) to l1(l) , and the proof is complete. 

For specific Sheffer sequences, it is usually easy to apply Theorem (3.10), and the 

sharper answers to Question 4 given in [7], to obtain specific spaces which answer 
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Question 3 (see the examples in [7, Sect 5, pp.l52-157]). For instance the factorial 

polynomials (x) given in generating formula (3.3) are the associated polynomials for 
n 

f(t) = et-1 , so that f(t) = log(l+t) . It is easy to see that 

Max I f(t) I = -log(l-r) , for 0 < r < 1 
I t I~ r 

and 

Max I f(t) I = eq- 1 . 
I t I~ q 

Thus if r = eq- 1 and s = -log(l-t) = -log(2-eq) , then for 0 < q <log 2, it follows 

from Theorem (3.10) that \:Er ___, E3 and A;1 = A·rEq ___, Er Hence Lemma (3.7) 

implies that, if h(x) has exponential type no more than q < log 2 , then the expansion of 

h(x) according to formula (3.5) converges in the topology of E For further related 
s 

results about factorial polynomials see [7, ex. 5.1, pp.152-154]. 

Uniqueness and non-uniqueness results are obtained by determining when Sheffer 

operators are one-to--one. Some of these results can be delicate, but for the domain space 

EP, we have the following simple answer [7, Th. (3.12), p.l45]. 

Theorem (3.12). Under the hypothesis of Theorem (3.10) we have 

(a) A f:E ___, E is one-to-one if A(t) has no zeros on D(p) and if f(t) is univalent 
g, p cr 

on a neighbourhood of the disc D(p) . 

(b) If A(t) has a zero or if f(t) is not univalent on the closed disc D(p) , then A f 
g, 

is not one-to--one on E . p 

We will not give a full proof of the theorem here, but only of the key lemma which 

gives a sufficient condition for Af to be one-to-ane on EP . We actually show that Af is 

one-to-one on some c0(n!/rn);;) EP (cf. formula (3.11)). The proof, though short, is a nice 

blend of umbral methods with both functional and classical analysis. 
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LEMMA (3.13). If f(t) is analytic and univalent on a neighbourhood of the closed disc 

- n 
D(r) , then A.f is one-to-one on c0(n!/r ) . 

Proof. Choose some s greater than the maximum value of I f(t) I on the closed disc. As 

we showed in the proof of Theorem (3.10), \ is then a bounded linear operator from 

c0(n!/rn) to c0(n!/sn) . To show that A.f is one-to-one, it will be enough to show that the 

adjoint A.;}(sn) _, z\rn) has dense range. Since A.; is an algebra homomorphism, this 

is equivalent to showing that A.;(t) = f(t) is a Banach algebra generator of z1(rn) (cf. [7, 

Th. (3.5), pp.l4lf.]). 

Let U be an open disc containing D(r) on which f(t) is univalent and let 

- * -f(U) = V. Then A.rC<J>) = <1> o f is an isomorphism from the algebra H(V) of analytic 

* functions on V onto H(U) . Also \ is a homeomorphism with respect to the topologies 

of uniform convergence on compacta in H(U) and H(V). Since V is simply connected, 

it follows from Runge's theorem that the polynomials are dense in H(V). Hence 

- * f(t) = A/t) is a topological algebra generator of H(U) (cf. [11, p.467]). Since H(U) is 

continuously imbedded in z1(l) , it then follows that the closed algebra generated by f(t) 

in l1(rn) contains H(U) for all open discs U ;;£ D(r) . That is, the dosed algebra 

generated by f(t) in !1(rn) contains the dense subalgebra of functions analytic on a 

neighbourhood on D(r) . This completes the proof. 
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