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SOME REMARKS ABOUT IDEAS AND RESULTS 
OF TOPOLOGICAL HOMOLOGY 

A. Ya. Helemskii 

The area which recently began to be referred to as "topological homology 11 by 

Michai Putinar, [40], and some other mathematicians, was initiated in 1962 by 

Kamowitz [1]. It was he who introduced the first important concept in the area by 

carrying into Banach algebra the purely algebraic notion of Hochschild cohomology 

groups, [0]. 

Let A be a Banach algebra, X a Banach A-bimodule. We call an n-linear 

continuous operator f: Ax ... x A-t X an n-cochain. These cochains form a Banach 

space denoted by Cn(A,X) , n > 0 ; we take C0(A,X) as X. Now let us consider 

the so-called standard cohomological complex 

(C(A,X)) 

where on is given by 

n n k 
(8 f)(al' ... ,an+l) = ai(a2, ... ,an+l) + k~l (-1) f(al, ... ,akak+l'"''an) 

+ ( -1)n+lf(al' ... ,a)an+l 

(it is indeed a complex since {jn+ 1/f = 0 ; n 2: 0) . 

DEFINITION (Kamowitz, [1] Guichardet, (2]). The n-th cohomology of C(A,X) is 

called the n-dimensional cohomology group of A with coefficients in X (and is 

denoted by 1tn(A,X). 

In the spirit of Hochschild, Kamowitz applied the groups 1t2(A,X) to the 

investigation of questions concerning the Wedderburn structure of some extensions of 

Banach algebras. Let us call an extension 
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(£) 

singular if 1) I2 = 0 (and, as a consequence, I becomes an A-bimodule), and 2) I 

has, as a subspace, a Banach complement in A. . In this case we have: 

THEOREM (Kamowitz) [1] . Every singular extension E with given A and I splits 

(in the strong sense; see [55]) if and only if 12(A,I) = 0 . 

It is worth noting in this connection that condition 2) in the definition of 

singular extensions is not too heavy. In some cases it is automatically satisfied. Here 

is an example. 

THEOREM (Karyaev, Yakovlev, [53], proved in 1988). Let E be annihilator (that is, 

AI= I.A. = 0) and A have a b.a.u. (=bounded approximate unit). Then £ is singular. 

Nevertheless, there exist examples of Banach algebras A with annihilator 

radical R (and commutative A. among them) such that R , as a subspace, has no 

Banach complement in A . Moreover, for every Banach space E and an 

uncomplemented subspace F there exists an example with R = F (Yakovlev, (54], 

proved in 1988). 

There are a lot of other applications and representations of the groups 

these include problems concerning derivations, automorphisms, 

perturbations, fixed point theorems, invariant means, topology of the spectrum, ... 

(Johnson, Kadison, Ringrose, Christensen, Taylor, Raeburn, ... ; see, for example, [L12] 

for the references). But applications are not, as a rule, a topic of these talks. 

The first result of a computation of 11 Banach 11 cohomology is also due to 

Kamowitz [1] and is as follows. A bimodule X over A is called symmetric if 

a· x = x ·a for all a E A , x E X . 

THEOREM. Let A be C(D) and let X be a symmetric Banach A-bimodule. Then 

1i'11 (A,X) = 0 for n = 1 and 2 . 
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It is still an open question whether this equality holds for all n :::: 3 or at least 

for some of them. Further, it is well known that one cannot brush aside the 

hypothesis of symmetry. Actually, there is the following theorem of rather general 

character [4], [16]. 

THEOREM. Let A be a commutative Banach algebra. 

1) If 11(A,X) = 0 for all Banach A-bimodules X , then A = e for some 

integer n :::: 0 . 

2) If 12(A,X) = 0 for all Banach A-bimodules X , then the spectrum (that is, 

maximal ideal space) of A is finite. 

COROLLLARY. Every infinite dimensional Banach function (that means 

commutative and semisimple) algebra has at least one non-splitting singular extension. 

The proof of part 2) of this theorem is rather complicated. The result itself is 

strongly connected with the existence of subspaces without Banach space complement 

and with other "pathological" properties of Banach space geometry. 

Now let us present one of numerous examples of connections between 

"homological" and 1!functional-analytic11 properties of well known Banach algebras. 

THEOREM (Selivanov, proved in 1988). Let P(E) be an algebra of nuclear operators 

in a Banach space E . Then 

1) 12(H(E) , H(E)) = 0 for arbitrary E, 

2) 'lf(H(E) , )/(E))= 0 if and only if E has the approximation prope1·ty. 

vVe shall now discuss a general approach to computing cohomology groups 

which saves us from being tied to the definition of these groups in terms of the 

standard complex. This approach is in essence one of 11 full 11 homology (homological 

algebra) of Cartan, Eilenberg, MacLane, which was carried over from pure algebra to 

Banach algebras by the present speaker ([4], 1970) and to locally convex algebras 
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by Taylor ([9], 1972). The main concepts are essentially the same. Let us introduce 

them for Banach algebras and modules. 

In what follows A-mod is the notation for the category of Banach left modules 

over a Banach algebra A . Let us recall that every (Banach) right A-module can be 

naturally identified with a left A op -module, and every A-bimodule with a left 

A env - module, where A op is the opposite algebra of A , and A env == A+ ®A ~P is 

the enveloping algebra of A (A+ denotes the unitization of A) . Therefore, when 

speaking about left modules, we actually cover all possible types of (bi)modules. 

As in the case of an arbitrary category, A-mod is equipped with two families 

of morphism functors; for every fixed X E A-mod we have a covariant functor 

Ah (X,?) : A-mod_, Ban, and for every fixed Y E A-mod we have a contravariant 

functor Ah (?,Y) : A-mod _, Ban (here, and later, Ban = 0-mod denotes the 

category of Banach spaces and continuous operators). Analogous functors for the 

category A-mod-A of Banach A-bimodules (and of their morphisms) are denoted by 

AhA (X,?) :A-mod-A_, Ban and AhA (?,Y): A-mod-A_, Ban. 

The initial notion of 11full 11 Banach homology is that of projectivity (and the 

dual notion of injectivity as well). But these notions, before being defined, need the 

preparatory 

DEFINITION. Let J' be a complex of left Banach modules. It is called admissible if 

it splits as a complex of Banach spaces (in other words, it has a contracting homotopy 

consisting of continuous linear operators). 

Thus, we see that admissibility is something more than exactness. 

DEFINITION. We call P E A-mod projective if the complex Ah(P,Y) is exact for 

every admissible complex Y in A-mod . 11 Dually 11 , we call J E A-mod injective if 

the complex A h(J',J) is exact for every admissible complex J in A-mod. 

The simplest example of a projective A-module is the 11 natural 11 left 
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A-module A+; its dual, A: with a·f(b) := f(ba) , is injective. If A has no unit, 

the factor module ( = A+/ A is not a projective A-module. 

For every Banach space E the left Banach A-module A+~ E with action 

a· (b ® x) := ab ® x is certainly projective. We call modules of this form free. The 

following fact gives an intrinsic definition of projectivity. 

THEOREM. P E A-mod is projective if and only if it is, up to a topological 

isomorphism, a direct module summand of some free module. 

A similar theorem is valid for right modules and for bimodules, but for the 

former free right modules have, by definition, the form E ~ A+ , and for the latter 

free bimodules have the form A+~ E ~A+ (with obvious actions of A). 

Now let us notice that for every X E A-mod there exists an epimorphism of 

some free left A-module on X , which is a retraction in Ban- that is, it has a right 

inverse which is a continuous operator. Actually, defining 1rx: A+~ X -t X by 

a® x H a·x ("outer product map"), the right inverse operator is given by x He® x. 

Let X be a given left A-module. Let us represent it as a factor module of 

some projective A-module, say P 0 , in such a way that the quotient map 

d _1 : P 0 -t X is a retraction in Ban. Then let us take the module K1 := Ker d _1 and 

apply to it the same procedure as to X ; then do the same with the kernel of the 

quotient map d0 : P 1 -1 K1 and so on. What follows is actually a compact form of 

describing this procedure (and a "dual" procedure as well). 

DEFINITION. Let X , Y be given A-modules, and let 

0f-Xf-P0 f-P 1 f- .. . 

0 -; Y-; 3o-; 31-; .. . 

(0 f- X f--1') 

(0-tY-tJ) 

be a complex over X , and a complex under Y , respectively. We call 0 t- X t-7' a 

projective resolution of X if all P k ; k 2: 0 , are projective, and we call 0 -1 Y -1 J an 
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injective resolution of Y if all Jk ; k ~ 0 , are injective. 

Every X E A-mod has a projective, as well as an injective, resolution. As an 

example, if we use the "canonical" morphisms 1rx, then 1rK and so on (see above), 
1 

we get the so called bar- resolution: 

B(X) 

Its particular case B(A) (that is, when X= A+) provides an obviously projective­

moreover, free- resolution of A+ not only in A-mod, but in A-mod-A as well. 

We call it the bimodule bar-resolution of A+. 

We come at last to a result which is at the core of all "Banach" homology. 

THEOREM. Let X, Y be given A-modules, let 0 .._X ._p be a projective resolution 

of X , and let 0 ...; Y ...; J be an injective resolution of Y . Then n-th co homologies of 

the complexes Ah(1',Y) and Ah(X,J) coincide for all n ~ 0 . In particular each of 

these cohomologies does not depend on the choice of projective (respectively, injective) 

resolution. 

Accordingly to "classical" tradition, we denote the n-th cohomology of each of 

the complexes Ah(1',Y) and Ah(X,J) by ExtA(X,Y) ; actually it is complete 

seminormed space. In the case X , Y E A-mod-A , the corresponding spaces will be 

denoted by Ext1-A (X,Y) ; n ~ 0 . 

It is not difficult to express the notions of projectivity and injectivity in the 

language of Ext. 

THEOREM. 1) X is projective if and only if Ext! (X,Y) = 0 for all Y E A-mod, 

if and only if Ext1 (X,Y) = 0 for all YEA-mod and for all n > 0. 

2) Y is injective if and only if Ext! (X,Y) = 0 for all X E A-mod, if and 

only if Ext1 (X,Y) = 0 for all X E A-mod and for all n > 0 . 
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Of course, this theorem has its obvious analogue for bimodules. Now it is time 

to connect this second part of the talk with the first one. The key result in this 

direction is the following. 

THEOREM. Let A be a Banach algebra, and let X be a Banach A-bimodule. 

Then, up to a topological isomorphism, 1ln(A,X) = Ext1_A(A+,X) for all n ::::: 0. 

(Here and afterwards A+ is considered as an A-bimodule with obvious actions.) 

OUTLINE OF PROOF. If we compute the abovementioned Ext with the help of the 

bimodule bar-resolution B(A +) , we come to considering the cohomology of the 

complex AhA (B(A) , X) . The latter is isomorphic to the standard complex 

C(A,X). 

In several important cases the groups 1n(A, ·) coincide with some one-sided 

(and not just with two--sided, as above) Ext spaces. For given Y , Z E A-mod let 

us consider the Banach space B(Y,Z) of continuous linear operators between Y and 

Z as an A-bimodule with actions [a·y](y) :=a· (rp(y)) and [r,o·a](y) := rp(a·y). 

THEOREM. Up to a topological isomorphism, 1ln(A,B(Y,Z)) =Ext A (Y,Z) . 

OUTLINE OF PROOF. If we compute the latter Ext with the help of the resolution 

B(Y) , we come the cohomology of a complex which is isomorphic to C(A,B(Y,Z)). 

Now we should like to show by an example how the last theorem can work. Let 

A be a Banach operator algebra in a Banach space E (with some norm 

!I·IIA ::::: II·IIB(E)' In this case E naturally becomes a left Banach A-module with the 

action y·x := y(x) , and B(E,E) E A-mod-A is just B(E) with exterior 

multiplications coinciding with interior ones. In virtue of the previous theorem we 

immediately get 7i11 (A,B(E)) = Ext1(E,E) , and these cohomology groups are zero for 

all n > 0 provided E is either projective or injective. But these things really can 

happen: 
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THEOREM (Kaliman, Selivanov). Suppose that A contains all finite rank 

operators. Then E is a projective A-module. As a corollary, 1t'n(A,B(E)) = 0 for all 

n > 0. 

OUTLINE OF' PROOF. The map A+ _, E : a H a(x0) , where x0 is a fixed element 

in E , is a retraction in A-mod . 

In particular, for A = B(E) and n = 1 we get the well known result of 

Kaplansky that all derivations of B(E) are inner. Considering the same A and 

n = 2,3 we obtain that the Banach algebra B(E) is stable under small perturbations. 

On the other hand, we have the following result, due to Golovin [46]. 

THEOREM. Let A be a nest algebra (see, e.g. [39]) in a Hilbert space H . Then H 

is an injective left A-module. As a corollary, 1n(A,B(H)) = 0 for all n > 0 . 

(The corollary was proved earlier by direct methods by Nielsen [33] and, 

independently, Lance [34].) 

Now we shall discuss the simplest and at the same time most severe condition 

of homological triviality of Banach algebras. 

DEFINITION. A Banach algebra A is called contractible if 11(A,X) = 0 for all 

X E A-mod-A (Actually, if A is contractible, then 1t'n(A,X) = 0 for all 

X E A-mod-A and for all n > 0.) 

Using the connection between 1t'n(A, ·) and Ext A-A ( ·, ·) and the criterion of 

projectivity in terms of Ext (see above) we obtain the following result. 

THEOREM. Let A be a Banach algebra. Then the following are equivalent: 

(i) A is contractible; 

(ii) A+ is a projective A-bimodules. 

(iii) A is unital, and A itself is a projective A-bimodule. 
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Since A+® A+ is a free A-bimodule, one can check the contractibility of a 

given Banach algebra with the help of the following assertion. 

THEOREM. A is contractible if and only if the product map 

1r: A ®A ...., A : a® b H ab is a retraction in A-mod-A. 
+ + + 

If A is unital, one can remove subscript 11 +11 in this theorem. 

The simplest example of a contractible algebra is the algebra ){ of (all) n x n 

matrixes. In this case a right inverse morphism to 1r is given by the rule 

n 
a H a :E ekl ® e1k , where ejk denotes the matrix with 1 in 11 jk-th11 place and with 0 

k=l 

in other places. This morphism is well known in pure algebra. It is not convenient, 

however, if we consider ){n with the norm of B(H). If dim H = n and we wish to 

n 
have a right inverse morphism p to 1r with IIPII = 1 , we take a H ~ • :E ek. ® e.1• 

n j,k=l J J"-

(see, e.g., [12]). 

Since the direct sum of two contractible algebras is obviously again a 

contractible algebra, the contractibility of ){n implies the contractibility of all 

finite-dimensional, semisimple Banach algebras. Do other contractible Banach 

algebras exist? This problem remains open. Actually it is a part of the following 

more detailed question. 

Let us first make an observation. It is not difficult to see that A+ ®A X ~ X in 

A-mod , and that, for any X E A-mod, P ®A X is projective in A-mod provided 

P is projective in A-mod-A. As an immediate corollary, we get the following result. 

THEOREM. If A is contractible then every left (and every right as well) Banach 

A-module is projective. 

So, we obtain the following hierarchy of possible properties of a Banach 

algebra A: 
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(1) A is semisimple and finite-dimensional 

:::::::} (2) A is contractible 

:::::::} (3) every left Banach A-module is projective 

:::::::} ( 4) every irreducible left Banach A-module is projective. 

QUESTION. Is it true that all these logical arrows, or at least some of them, can be 

reversed? 

REMARK. The answer to the pure algebraic prototype of this question is known. 

Namely, (1){::::}(2) and (3){::::}(4), but (2)# (3). As an example, the algebra {(t) of 

rational functions of one variable t has only projective modules because it is a field, 

but it is not contractible because it is infinite-dimensional. Certainly, it has no 

Banach algebra norm. 

Nevertheless in the Banach algebra context the answer to the given question is 

positive if we lay some rather mild conditions on the Banach space geometry of the 

algebras and modules considered. The most advanced result of this kind is, perhaps, 

as follows. 

THEOREM (Selivanov [28]). Suppose that either every irreducible Banach left 

A-module or A/RadA has, as a Banach space, the ( Grothendieck) approximation 

property. Then properties ( 1 )- ( 4) of A are equivalent. 

Let us recall that it is known that every irreducible left module over a 

c* -algebra is, as a Banach space, topologically isomorphic to some Hilbert space. 

COROLLARY. For every c*- algebra A, the properties ( 1 )- ( 4) are equivalent. 

Of course, Selivanov's theorem is also applicable to all commutative Banach 

algebras (because their irreducible modules are one-dimensional), and to all L 1( G) , 

where G is a locally compact group (because these algebras are semisimple and have 

the approximation property), but there exist much easier proofs of the corresponding 

results. 
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Coming to the end of the discussion of the contractibility property - our first 

property Df homological triviality - let us remark that outside the framework of 

Banach structures the situation turns out to be rather unexpected from the "classical" 

pure algebraic point of view. Considering similar kinds of properties of topological 

algebras, Taylor [9] discovered a phenomenon, which in our {equivalent) language is as 

follows. 

THEOREM (as to the proof, see, e.g., [42]). Let A be a commutative Arens-Michael 

algebra (in other terms, a complete, locally multiplicatively convex topological algebra). 

Then A is contractible if and only if A is, up to topological isomorphism, just !(M 

with the topology of pointwise convergence, for some set M. 

(Let us notice that it is easy to prove that {M is indeed contractible, because 

of {M ® f~1 ~ {MxM . We recmmnend the reader display a right inverse to 

7r: A® A -1 A for such an A). 

As to algebras which are not Arens-Michael algebras, Taylor has shown that 

for every compact Lie group G the algebra of distributions t'' (G) (with the 

convolution as multiplication) is also contractible, [11]. 

We now turn to a second, and perhaps the most important concept of 

homological triviality of algebras- that of amenability. We shall try to show that this 

concept, which was introduced by Johnson in his memoir of 1972, is actually one of the 

most important of avatars in functional analysis of the general concept of flatness. 

To begin with, let us recall the following well known fact. Suppose that A is a 

Banach algebra, and X is a left Banach A-module which is dual, as a Banach space, 

to some Banach space X*. Then two properties of X are equivalent: 1) for every 

a E A the operator X -1 X : x H a · x is continuous (not only relative to the norm in 

X , but also relative to the weak* topology in X ; 2) X* possesses the (necessarily 

uniquely determined) structure of a right Banach A-module such that 

< a · x , x > = < x , x · a> for all a E A , x E X , x E X . In both cases X is 
* * * * * 
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called a dual left A-module (dual to the right A-module X*, if one wants to be 

more precise), and X* is called its predual right A-module. By obvious analogy, one 

can define a dual right A-module (and its predual left A-module) and, combining 

both definitions, dual A-bimodule (and its predual A-bimodule). 

It is not difficult to show that if P is a projective left (right, bi-) module, then 

its dual p* is an injective module of corresponding type. The converse is false: for 

example, as we soon shall see, none of the cyclic left Banach modules over QO,1] are 

projective, but all their dual modules are injective. This observation justifies the 

following. 

DEFINITION. A {bi)moduleF (of arbitrary type) over A is caned flat if its dual 

is injective. 

There exists also an equivalent definition of flatness, which corresponds to the 

well known concept of flatness in pure algebra. Namely, an A-module F , say a left 

one, is flat if and only if for every admissible complex 1 of right Banach A-modules 

the complex of Banach spaces 1 ® A F is exact. However - and this feature differs in 

our functional-analytic context from the situation in algebra - both definitions of 

flatness are here equally important. 

In which cases are the most "widespread" classes of modules - ideals of A and 

its factor modules (=cyclic A-modules) necessarily flat? To clarify the situation, let 

us first ask the similar question about projectivity. It is rather easy to prove the 

following. 

THEOREM. Let I be a closed left ideal in A . 

(l) If I has a right unit, then I and A)1 are p1'Ojective left A-modules. 

(2) If A)1 is projective and, in addition, I, as a subspace of A (or, 

equivalently, in A), is complemented (that is, has a Banach complement), 

then I has a right unit. 
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Turning to the mDre complicated question, concerning flatness, we discover 

that the role of the unit is now being played a bounded approximate unit (we 

as usual, use the abbreviation b.a.u.). Let us recall that a EO of a Banach 

space E is called 

E* , is complemented. 

if (E/Eo)* , being considered as a subspace in 

Every complemented subspace is certainly weakly 

complemented, but the converse is false (e.g. the pair Co C cb ). 

THEOREM ([7], [15]). Let I be a closed ideal in A. 

(1) If I has a b. a. u., then I and A)1 are flat left A-modules. 

If A )1 is flat if in addition, I, as a subspace, A (or, 

equivalently A) is complemented, then I has a b.a.u .. 

The first papers where dual A-modules (more precisely, dual A-bimodules) 

appeared, were these of Kadison and Ringrose, [6] (1971), and Johnson, [9] (1972). 

These authors had observed that the computation of the cohomology groups 

as a much easier in the case of dual X. The main reason for this 

phenomenon is the compactness of the unit bull of X in the weak * -topology; it often 

facilitates the solution of an equation og = f in the standard complex by choosing the 

limit of some convergent subnet in a suitable bounded net of cochains. So, restricting 

himself to this "dual cohomology" (cohomology with dual coefficients), Johnson gave 

the following. 

DEFINITION. A Banach algebra A is called amenable (sometimes we shall say, for 

precision, amenable-alter-Johnson) if i(A,X) = 0 for every dual Banach 

A-bimodule X. (Again, similar to the case of the contractibility, one can prove that 

if A is amenable, then 1(n(A,X) = 0 for all dual X and for all n > 0.) 

The choice of the term "amenable" for these algebras by Johnson will be 

explained later. Novv we proceed to a new way of expressing of the cohomology groups 

in the language of Ext for the case of dual cohomology. 

THEOREM. Let A be a Banach algebra, X = (X*)* a dual Banach A-birnodule. 
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Then, up to a topological isomorphism, i\A,X) = Ext1-A (X*,A :) for all n ::::: 0 . 

This latter formula is the corollary of 7(n(A,X) = Ext1_A(A+,X) which was 

discussed earlier, and of the general formula for 

YEA-mod, Z E A0 P-mod, (see, e.g., [42]) where one must replace A by Aenv. 

Using the new formula and the criterion of injectivity in terms of Ext, one can 

obtain the following. 

THEOREM. A is amenable if and only if A+ is a flat A-bimodule, if and only if A 

has a b.a.u. and A itself is a flat A-bimodule. 

Recalling the criterion of contractibility in terms of 1r : A+ ® A+ --) A+' and 

noting that (A+® A)* is always an injective A-bimodule, one can easily obtain the 

following. 

THEOREM. A is amenable if and only if the morphism 1r*: A: -f (A+® A)* 

which is dual to the product map, is a coretraction in A-mod-A. 

(If A has a b.a.u., one can remove the subscript 11 +11 in this theorem). 

Let us notice that A+ is actually a factor-A-bimoduleof A+® A+ with 1r as 

natural projection. We denote Kenr by Ill ; it is left ideal in A env = A+® A ~P , 

the so-called diagonal ideal. Combining some of the preceding results, we get the 

following intrinsic description of amenability. 

THEOREM. The Banach algebra A is amenable if and only if the diagonal ideal Ill 

in Aen v has a right b. a. u .. 

As an example, we point out that Drury [3] has proved the existence of a b.a.u. 

in a wide class of ideals in Varopoulos algebras (that is, in C(n1) ® C(D2)) . In 

particular, ILl. c C(D)env = C(D) ® C(D) , where n is a compact set, certainly has a 

b.a.u.. We immediately obtain that C(D) is amenable. (This result is due to 

Johnson [9] and, independently, by Kadison and Ringrose [6]; it was proved by 
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other means). 

Recently an interesting parallel result was added to this last theorem. Bade, 

Curtis and Dales have introduced the class of so-called weakly amenable Banach 

algebras; one can define them as those A for which 1'1(A,A *) = 0, [48]. 

THEOREM ( Gr0nb;:ek [49]). A commutative Banach algebra A is weakly amenable if 

and only if IL\. coincides with its topological square (I")2 = sp{ xy : x,y E I"}- . 

One can prove (similar to the case of projectivity; see above) that the tensor 

product F ®. X , where F is a flat A-bimodule and X is an arbitrary left 
A 

A-module, is a flat left A-module. By putting F :=A+, we immediately get: 

THEOREM. If A is amenable then every left (and every right as well) Banach 

A-module is flat. 

This means exactly that for amenable A every admissible short complex of 

left Banach A-modules of the form 

o -) x* -) Y -) z -) o 

splits. Another proof of this result is obtained in the recent paper of Curtis and Loy 

(51]. 

Now let us discuss several concrete classes of Banach algebras and characterize 

some functional analytic properties which correspond to amenability. We shall begin 

with group algebras. The following well-known theorem of Johnson, [9] (1972), 

actually explains the choice of the term 11 amenable". Vl/e recall that a locally compact 

group G is called amenable (the name was coined by Day in the middle of the fifties) 

if there exists a left-invariant mean on L00(G)- or, equivalently, on one of some other 

standard function space on G, say Cb(G). 

THEOREM [9]. The Banach algebra L 1( G) is amenable if and only if G itself is 

amenable (as a locally compact group). 
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The rough idea of one of many possible approaches to the proof (it differs from 

original) can be expressed as follows. It is easy to observe, that for A = L 1( G) the 

morphism 1r* in one of the abovementioned criteria of amenability takes the form 

1r*: L1(G) .... L1(GxG) where 1r*f(s,t) = f(st), s,t E G . One can show that a left 

inverse p to 1r* can be given by the formula [p(u)](s) = M(v(s)) , where 

[v(s)](t) := u(st,C1) and M: L00(G) .... ( is our hypothesized invariant mean. 

Which algebras are amenable among uniform Banach algebras? Here is the 

answer: 

THEOREM. A uniform algebra A with a spectrum (that is, maximal ideal space) n 

is amenable if and only if it is just C( n) . 

The 11 {::11 part was already mentioned. The converse is a non-trivial result of 

Sheinberg, [21] (1977), which is at last well-known, and has been cited several times 

during different talks at this conference. 

And what does amenability mean for c* -algebras? As the first steps in this 

direction, the most important are due to Johnson, who has proved that every 

GCR-algebra (in other terms, postliminal c* -algebra or c* -algebra of type I) is 

amenable, [9] (1972), and to Kadison and Ringrose, who have proved that every 

AF-algebra (that is, approximatively finite-dimensional c* -algebra) has the same 

property, [6] (1971). However, the general problem of characterizing amenable 

c* -algebras in terms of functional analysis was completely solved only in 1982, by the 

combined efforts of several mathematicians. As it turned out, this problem was 

closely connected with another concept of "topological" cohomology groups which 

differs from that of Kamowitz and with another concept of amenability which differs 

from that of Johnson. Our next aim is to discuss these concepts. 

Hitherto A was an arbitrary Banach algebra. Now let us concentrate on the 

special case when A is an operator c* -algebra; that is, a uniformly closed 
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self-adjoint subalgebra of E(H) for some fixed Hilbert space H . We recall that, 

besides the uniform (=norm) topology there are other (at least seven) important 

topologies on B(H) and hence on its subalgebras. We need, however, only one of 

them: the so-called ultra-weak topology. By definition, it is the weak* -topology of 

E(H) which is considered, by virtue of the Schatten-von Neumann theorem, as dual to 

the space the N(H) of nuclear operators on H . Actually, the ultra-weak topology in 

E(H) (and in A as well) can be defined with the help of the family {ll·lls; S E Af(H)} 

of seminorms, where for T in B(H) (or in A), IITII 8 = I Trace ST I . 

Because of reasons of rather historical character, an operator from A to some 

dual Banach space E = (E*)'~ is called normal if it is continuous not only relative to 

the norm topologies in A and E but also relative to the ultra-weak topology in A 

and the weak* -topology in E. A multilinear operator from Ax ... xA to the same E 

is called normal if it is separately normal in each variable. 

Now let A be our operator c* -algebra, and X = (X*)* be a dual Banach 

A-bimodule. In this case the Banach space Cn(A,X) of all cochains has a closed 

subspace consisting of all normal cochains; we denote it by C~(A,X) . Generally 

speaking, these new spaces do not form a subcomplex in the standard cohomological 

complex C(A,X) : because there are exterior multiplications in the formula for on 
(see above), the property of a cochain to be normal can be lost after applying the 

coboundary operator. Therefore Kadison and Ringrose, [6] (1971), introduced the 

following special class of dual bimodules. 

DEFINITION. A dual bimodule X over an operator c* -algebra A is called 

normal, if for every x E X , the operators A -J X : a H a · x and a H x · a are 

normal. 

One can easily verify that if X is normal, then the spaces C~(A,X) indeed 

form a subcomplex in C(A,X) ; we denote it C (A,X) . Now the second variant of 
w 

cohomology groups for operator algebras can be defined as follows. 
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DEFINITION (Kadison and Ringrose, [6] 1971). The n-th cohomology of the 

complex is called the n-dimensional normal cohomology group of (the 

operator c* -algebra) A with coefficients in (the normal A-bimodule) X , and it is 

denoted by 1(~(A,X) . 

It appears that the groups 1t'~(A,X) were invented as a useful means to 

compute the "usual 1' (or, as we shall call them later, continuous) groups 1t'n(A,X) . 

As a matter of fact, in some situations it is easier to compute normal than continuous 

cohomology. At the same time the following deep theorem was proved. 

THEOREM (Johnson, Kadison, Ringrose, [13]1972). Let A~ B(H) be an operator 

c* -algebra, A its ultra-weak closure in B(H) (that is, the smallest von Neumann 

algebra which contains A), and X a normal A-bimodule. Then for all 

n 2: 0, 1(~(.A,X) = 1t'n(A,X) , where X is considered as a (necessarily normal) 

A-bimodule. 

Later we shall show that this theorem can be presented in a slightly stronger 

form and, in particular, that one can dispense with the assumption that X is a 

normal A-bimodule (and require only that it be a normal A-bimodule). 

Here is an important r€sult which was obtained by the same three authors with 

the help of the preceding theorem. We recall that a von Neumann algebra is called 

hyperfinite if it is the ultra-weak closure of some net of its finite-dimensional 

self-conjugate subalgebras, ordered by inclusion. 

THEOREM [13]. Let A be a hyperfinite von Neumann algebra, and let X be a 

normal A-bimodule. Then 1(~(A,X) = 1t'n(A,X) = 0 for all n > 0 . 

In 1976 the now famous article of Connes [22] on the classification of injective 

factor appeared. Among many other things, Cannes paid attention there to a class of 

von Neumann algebras which he called ''amenable as von Neumann algebras". We 

shall call them, and also some other operator c* -algebras, slightly otherwise. 
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DEFINITION. An operator c* -algebra A is called amenable- after- Cannes if 

1t'!(A,X) = 0 for every normal A-bimodule X. 

(Actually, if A is amenable-after-Connes, then 1t'~(A,X) = 0 for all normal 

X and for all n > 0 . But this fact is more difficult to prove than the corresponding 

facts concerning contractibility and amenability-after-Johnson). A little later, [29], 

Connes discovered a deep connection between the class of algebras which has just been 

defined, and the class of injective von Neumann algebras, which was so important in 

his paper [23], already cited. Let us recall that he called a von Neumann algebra 

A t:; B(H) injective (it is indeed an injective object in a suitable category) if there 

exists a projection B(H) ~A of norm 1 . Connes has shown that many apparently 

quite different ways lead to the same class, and in particular, a von Neumann algebra 

is injective if and only if it is hyperfinite. Using this result and the theorem of 

Johnson, Kadison and Ringrose cited above, he established in 1978 the following 

theorem. 

THEOREM [29]. A von Neumann algebra in amenable-after-Cannes if and only if it 

is injective (in his sense). 

(Actually Cannes proved his theorem with some extra conditions on the algebra 

in question, which were later removed by Elliott [31 ]). 

Thus it was shown that the normal cohomology groups (at least, with normal 

coefficients) are of significant independent interest. Moreover, in the same paper 

Connes has proved the 11 =? 11 part of the following result, which establish a connection 

between both types of amenability. 

THEOREM. A c* -algebra A is amenable-after-Johnson if and only if its enveloping 

von Neumann algebra A** is amenable- after- Connes. 

The 11 {::11 part of this theorem which appeared far less obvious, was proved in 
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1982 by Haagerup [36], as a byproduct of his eventual solution of the difficult problem 

of the description of amenable-after-Johnson c* -algebras as nuclear c* -algebras 

(these things will be discussed later). Effros [50], in a paper of 1988 has given a direct 

and more simple proof of the assertion. Now we proceed to some recent results, 

proved in 1988, which, in particular, will permit us to show that the 11 ¢:11 part of the 

previous theorem is an immediate corollary of a description of amenable - this time 

after-Connes- c* -algebras in appropriate terms of "full" homology. 

First of all we shall show that the normal cohomology groups, notwithstanding 

their definition with the help of a non-normed topology, can also be expressed in the 

language of the "Banach" Ext spaces which were introduced above. For this aim let 

us consider a rather important object, which is connected to a given operator 

c* -algebra A. It is the A-bimodule which is predual to the Banach A-bimodule A 

(that is, the ultra-weak closure of A); we denote it by A* . It is easy to see that A* 

is actually the closed sub-A-bimodule of A* consisting of all normal functionals. For 

example, if A= K(H) (the algebra of compact operators on H ), then A= B(H) and 

A*=A*=.N(H); if A=C[0,1HB(L2[0,1]), then A=L00[0,1], A*=M[0,1] and 

- 1[ A* = L 0,1] . In order to better present the following result, let us at first recall the 

formula ln(A,X) = Ext~-A (X*,A *) for all dual Banach A-bimodules X= (X*)* 

(see above). 

THEOREM [52]. Let A be an operator c* -algebra, X= (X*)* a normal 

A-bimodule. Then, up to a topological isomorphism, 

The idea of the proof is to compute the mentioned Ext with the help of a 

special injective resolution of the bimodule A* . To begin with, let us consider the 

injective A-bimodule (Ax ... xA)* consisting of all n-linear continuous functionals on 

A , with the actions (a· f)(a1'" .. ,an) := f(a1, .. ,an-l'aila) and (f · a)(a1'" .. ,an) := 

f(aa1,a2, ... ,an) . Further, for any subset a~ {l, ... ,n} let us consider the closed 
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sub-A-bimodule (Ax .. xA) consisting of those functionals which are normal relative 
0. 

to the variables with indices in a. By using some properties of the universal 

representation of our c* -algebra A, it is not difficult to prove that (Ax ... xA) is a 
0. 

retract of (Ax ... xA)* in A-mod-A ; hence it is also injective. In particular, the 

bimodule (Ax ... xA)* consisting of n-linear functionals which are normal relative to 

each variable (the case a= {l, ... ,n}) , and the bimodule (Ax ... xA) 1 consisting of 

functionals which are normal in the first variable (the case a = { 1}) , are injective 

A-bimodules. 

Now let us consider the complex 

where 71"* is given by 1r*g(a,b) := g(ab) and En_2 is given by (En_2f)(a1, ... ,an+l) := 

f(a1a2,a3, ... ,an+l)- f(a1,a2a3, ... ,an+l) + ... +(-l)nf(al'" .. ,an-l'anan+l) This is 

admissible and hence it is an injective resolution of the A-bimodule A* . Therefore 

Ext~_A(X*,A*) can be computed as nth cohomology of the complex AhA(X*,St*) . 

The last step of the proof is to establish, with the help of the conjugate associativity 

(we mean formulae like B(ExF,G) = B(E,B(F,G)) , that the latter complex is 

isomorphic to the "normal" standard complex Cn(A,X) . 
w 

Now let us return to the theorem of Johnson, Kadison and llingrose. In the 

framework of "full" homology, it can be included as a principal particular case in the 

following result. 

Theorem [52]. Let A be an operator c* -algebra, X= (X*)* a dual Banach 

A- bimodule, which is normal either from the left, or from the right (that means tl. (:/, 

either the operators A ..., X : a H a · x are normal for all x E X or the same is trut 

with a H x · a). Then Ext~-A (X*,A *)=Ext~-A (X*,A*) for all n :::: 0 . 
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Indeed, for any normal X , as we just have seen, the right Ext, is 1t~(A,X) , 

and for any dual X, as it was indicated earlier, the left Ext is 7tn(A,X) . Hence, for 

any normal X, 7t~(A,X) = 1tn(A,X). 

As to the proof of the theorem, it is based on computing the left Ext with the 

help of an injective resolution 

*"/!"* *(~ *f.' 
0--) A -> (AxA) __, ... ->(Ax ... xA) ~ ... (St*) 

and on computing the right Ext with the help of an injective resolution 

(The bimodules (Ax ... xA)* and (Ax ... xA)1 were defined above; t:n and tn act just 

as en in St* ; 71"1 acts just as 1r* and 7!"*) . 

As a result, we proceed to the cohomology of the complexes AhA(X*,St*) 

and AhA(X*,St1), and those, as it is easy to observe, actually coincide. 

11 ratio 11 

Now a natural question arises: what is hidden behind the question mark in the 

contractibility = 
projectivity of A 

amenability-a.-J. 

in jectivity of A* 

amenability-a.-C. 
? 

THEOREM. [52] An operator c! -algebra A is amenable-after-Cannes if and only 

if the A- bim.odule A* is injective. 

As a direct corollary, we obtain from here a short proof of the assertion that 

amenability-after-Cannes of A implies triviality of 7tn(A,X) - that is, 
w 

ExtAn A(X ,A ) -for all normal X and all n > 0. 
- * * 

The proof of this theorem is essentially more difficult than the description of 
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the corresponding "full homology background" of contractible and 

amenable-aJter-Johnson Banach algebras. The main obstacle is that the condition of 

amenability-after-Cannes does not permit one a priori to apply the criterion of the 

injectivity in terms of Ext: there are too few A-bimodules which are predual to 

normal bimodules. (Let us notice in this connection that, though every von Neumann 

algebra B such that A ~ B ~ B(H) is a normal A-bimodule, neither A* nor A** 

are normal. But the most inconvenient circumstance in this relation is that the 

A-bimodule ((AxA)*)* is also apparently not normal (cf. [50)). 

Nevertheless, it happens to be possible to represent A* as a retract of the 

(certainly injective, as we remember) A-bimodule (AxA)* with the help of some 

strong medicine of the deep lemma 2.3 of the paper of Effros [50). (And this lemma, in 

its turn, is founded on a non-trivial achievement of Haagerup - the so-called 

Grothendieck-Pisier-Haagerup inequality for bilinear functionals on c* -algebras.) 

The corresponding criterion for the amenability-after-Cannes in terms of a 

canonical morphism (recall that the latter was 1r for contractibility and 1r* for 

amenability -after-Johnson) is as follows. 

THEOREM. An operator d-algebra A is amenable-after-Gonnes if and only if the 

morphism 1r* : A*_, (AxA)* : g H f: f(a,b) := g(ab) (cf. above) is a coretraction in 

A-mod-A. 

We are able at last to give a short proof of the Haageruprs implication "A** i~ 

amenable-after-Cannes only if A is amenable-after-Johnson" (see above). Indeed, 

the previous theorem being applied to A** implies that 1r :A**) _,(A** xA **) 
* * * 

possesses a left inverse morphism of A** -bimodules, which is a morphism of 

A-bimodules into the bargain. But (A**)* is just A* and (A **xA **)* , by virtue 

of a theorem of Johnson, Kadison and Ringrose on the extension of normal multilinear 

operators, is just (AxA)* . We only have to observe that, by identifying these 

A**- , and hence A-, bimodules, we transform 1r* into the canonical morphism 

1r* : A* _, (AxA)* . 
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Now let us return to the problem of describing c* -algebras, which are 

amenable( -after-Johnson), in intrinsic terms of c* -algebras theory. If A and B 

are c* -algebras then generally speaking, there exist many c* -norms in A® B (by 

the way, these include a maximal and minimal among them). However, for a large 

class of c* -algebras A, there is only one C* -norm on A ® B for every c* -algebra 

B ; it was Lance [20] who has coined the name "nuclear" for these c* -algebras, taking 

a view obviously parallel to the definition of nuclear spaces by Grothendieck. One can 

come to the same nuclear c* -algebras by many apparently quite different ways. For 

us, in particular, it is important that Choi .and Effros [25] have established the 

following deep connection between nuclearity and injectivity in the sense of Connes: a 

c* -algebra A is nuclear if and only if its enveloping von Neumann algebra A** is 

injective. 

Now we have already discussed the following equivalences: 

amenability-after-Johnson of A nuclearity of A 

n n 
amenability-after-Cannes of A** injectivity of A** 

As a corollary, we have 

THEOREM (Connes, Haagerup). A cf-algebra A is amenable-after-Johnson if 

and only if it is nuclear. 

(Actually this theorem was proved earlier than when the short proof of the equivalence 

on the left became known. It was Connes who proved''*" , and gave a conjecture that 

the converse was also true (1978, [29]). However, sev-eral attempts to prove this 

converse had failed before Haagerup [36] managed to succeed in 1982). 

So, we have alr~ady discussed contractible algebras, amenable algebras and - in 
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the framework of operator algebras - amenable-after-Connes algebras. There is one 

more condition of homological triviality which is still to be discussed. 

To begin with, let us recall that if a Banach algebra A has a unit, then it is 

contractible if and only if it is projective as an A-bimodule. It is easy to observe that 

in the case of non-unital A the latter property gives rise to a wider class of algebras. 

DEFINITION. A Banach algebra A (unital or non-unital) is called biprojective if A 

it is a projective Banach A-bimodule. 

It is not difficult to establish an equivalent definition in terms of a 

corresponding canonical morphism: 

THEOREM. A is biprojective if and only if the product map 1r : A ® A --) A is a 

retraction in A-mod-A. 

It was the following property of biprojective algebras which was actually the 

initial stimulus to their selection and investigation. 

THEOREM. If a Banach algebra A is biprojective then 1fn(A,X) = 0 for all Banach 

A-bimodules X and for all n 2: 3 . 

This theorem was proved by the present speaker [16] for all biprojective 

algebras and by Johnson [14] (in equivalent terms) for all amenable biprojective 

algebras about the same time. Let us mention in this connection that a Banach 

algebra A is called biflat if the A-bimodule A is flat. By analogy with the proof of 

the previous theorem - for the detailed exposition see, e.g., [42] - one can prove the 

following: if A is biflat, then 1t'n(A,X) = 0 for all dual A-bimodules X and for all 

n 2: 3. 

Now let us turn to examples. The simplest non-contractible biprojective 

algebra is perhaps p . 
~1 . the canonical morphism 

obviously has a right inverse which sends 11 row 11 (~1 , .. ,~n, .. ) to 11 matrix" 
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As to some popular classes of Banach algebras, the situation is as follows: 

THEOREM ([18], see, e.g.,[42]). The algebra Co(11) of all continuous functions on a 

locally compact space n, which vanish at the infinity, is biprojective if and only if 11 

is discrete. 

THEOREM ([18], see, e.g., [42]). An algebra L l(G) where G is a locally compact 

group, is biprojective if and only if G is compact. 

THEOREM [12], [32] A d" -algebra A is biprojective if and only if its primitive 

spectrum is discrete, and all its irreducible representations are finite- dimensional (that 

is, our A is a co-sum of some family of algebras of the form B(H) for Hilbert spaces 

H of, generally speaking, different finite dimensions). 

Our last (but not least, as we shall now see) example is as follows. Let E be a 

Banach space, E* be its dual and let E ~ E*be considered as a Banach algebra with 

the multiplication which is defined by (x ® f)(y ® g) :=[g(x)](y ® f). We recall that in 

the case, when E has the approximation property, E ~ E* , up to a isometric 

isomorphism, is just the algebra .N'(E) of all nuclear operators in E with the nuclear 

norm. For A = E ~ E*, let us fix Xo E E , fo E E* with fo(xo) = 1 , and put 

p : A -+ A ~ A : x ® f H (xo ® f) ® (x ® fo). Since trp = 1 and p is a morphism in 

A-mod-A, we have established that E ~ E* is biprojective. 

REMARK. So for a Hilbert space H, .N'(H) is certainly biprojective; at the same 

time it is not amenable because it has no b.a.u .. On the other hand, K(H) is certainly 

not biprojective because it has no finite-dimensional irreducible representation (see 

the criterion above); at the same time it is amenable - actually it was one of the first 

examples of amenable algebras [6], [9]. Finally, B(H) , being injective-after-Connes, 
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is amenable-after-Connes; at the same time it is neither biprojective nor 

amenable-after-Johnson (the latter because, as Wassermann [24} has proved, it is not 

* a nuclear C -algebra). 

As to the algebra }j(E) for a II good II E, it happens to be something more than 

simply one of the examples. Selivanov [32] (and this is, perhaps, the deepest result in 

his thesis) has shown that these algebras are actually the blocks from which an 

arbitrary biprojective Banach algebra belonging to a rather wide class is built. With 

some degree of simplification, his theorem is as follows: every biprojective semisimple 

Banach algebra which has the approximation property, is a topological direct sum of 

so-called algebras of nuclear operators of some dual pairs of Banach spaces [19], [27]. 

(We get the "usual ll algebra »tE) in the case of the standard dual pair (E,E*)). 

The last topic of our talk concerns rather important numerical characteristics 

of Banach algebras and modules - that is, their so-called homological dimensions. 

Informally, the homological dimension of a (bi)module X over a Banach algebra A 

is a number (or 00) which shows to what degree this module is ~Ihomologically worse I! 

than the projective modules. In order to give a formal definition, we shall say that a 

given complex of the form 

has a length n ,if Xn i- 0 and Xk = 0 when k > n . 

DEFINITION. Let X be a Banach A-{bi)module. The minimal length of a 

projective resolution if X is called the homological dimension of X, and is denoted 

dhAX for X E A-mod and by dhA_AX for X E A-mad-A. 

(vVe put dh(.)X = 00 if it has no projective resolution of finite length). 

Since a projective P has a resolution of form 0 f- P f- P f- 0 , (bi)modules of 

homological dimension zero are just projective (bi)modules. 
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An alternative, and somewhat more instructive, definition can be given as 

follows. Let us recall that a projective resolution of X is a compact form of 

describing the process of representing first X , and then kernels of corresponding 

quotient maps as factor (bi)modules of projective (bi)modules (with additional 

assumptions about such representations, which were described earlier). In terms of 

this process, the homological dimension of X is just the first number n of the step 

when the kernel Kn of corresponding quotient map P n-1 -1 Kn_ 1 is itself a projective 

A-(bi)module. This number does not depend on our choice of projective (bi)modules 

and quotient maps participating in the process. 

The third equivalent definition, this time in terms of Ext, is as follows: 

dhAX := min{n: Extl(X,Y) = 0 for all YEA-mod and for all k > n}. (The same 

is true for A-bimodules as well). 

Now we shall indicate several results, which show the connection of homological 

dimension with some problems of topology and analysis. Let us begin with the 

discussion of the homological dimensions of (closed) ideals in C(f!) for a compact set 

n . The first fact to be established was as follows: 

THEOREM [5, 1970]. An ideal I in C(n) is a projective C(O)-module (that is, 

dhc(n)I = 0) if and only if the spectrum of I (in other words, the complement to the 

hull of I in n) is paracompact. 

So, if n is metrisable and compact, then all ideals in C(n) are projective 

C(f!)-modules. On the contrary, for n = QIN and for every t E QIN\IN, the maximal 

ideal It= {f E C(n) : f(t) = 0} is not projective (here C(f!) is, of course, just ~). 

(Applying some of these ideas to non-commutative c* -algebras, Lykova {43] has 

proved that every closed left ideal in a separable c* -algebra is projective; on the 

contrary an infinite-dimensional von Neumann algebra always contains a 

non-projective, closed left ideal.) 
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The previous theorem has shown the existence of compact sets n and ideals 

I c C(n) with positive homological dimension. But what can this dimension actually 

be? The next step was made by Moran [26] in 1977; he took as n the space of 

ordinals from 0 to ~w (limit of Nn , n E IN) and has shown that dhc(n)I = oo for 

I= {fEC(fl) : f(N ) = 0} . Finally, after some time, Krichevetz ([45], 1986), w 

constructed an example of a compact set n such that the homological dimension of 

its maximal ideals can be any integer from 0 to n . (Actually, his compact is the 

n-th Cartesian power of the one-point compactification of a sufficiently large discrete 

topological space). 

Our next example is connected with complex analysis, more exactly with the 

old circle of problems about the existence of so-called analytic structure in subsets of 

the spectrum n of a given commutative Banach algebra A . Let us recall that a 

subset /:;. of n is called an analytic n- disc in n if there exists a homeomorphism 

between /:;. and the unit n-disc IDn c {n such that the functions a(t) ; t En become 

analytic on /:;. after identifying the latter with IDn . 

If we take the poly disc algebra A(IDn) , then every point of the subset IDn of its 

spectrum IDn naturally has a neighbourhood which is an analytic n-disc. Now let us 

notice that at the same time the maximal ideal in A(ii'in) which corresponds to such a 

point, has homological dimension n-1 . The following theorem shows that this 

example reflects the general situation. The proof reiies heavily on results of 

T. T. Read [8]. 

THEOREM (Pugach [41]). Let A be a commutative Banach algebras with spectrum 

n , I a maximal ideal such that dhA I = n - 1 . 

(1) (linear) dim I/I2 , where I2 is the topological square of I, is not bigger 

than n [and actually it can be any integer among 0,1, .. ,n-A.H.) 

(2) [most essential part- A.H.) if dim I/I2 = n (''non-degenerate case"), 

then there exists a neighbourhood of I in n which is an analytic n-disc. 
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In particular, if I is a projective A-module with dim I/I2 = 1 , then I is an 

inner point of some analytic disc in n ; this fact was established previously by Pugach 

in [37]. But in [41] he also proved the following interesting counterpart to this result if 

I with dim I/12 = 1 is 11 onlyi1 flat : I belongs to some analytic disc D. in n, but, 

generally speaking, D. is not obliged to be a neighbourhood of I . 

The third example is the so-called augmentation ideal I{) in L 1( G) , where G 

is a locally compact group; it consists of all f E L1(G) with JGf(s)ds = 0 (we mean, 

as usual, integration with respect to the left-invariant Haar measure on G). It is easy 

to observe that compactness of G implies dh 1 10 = dh 1 L1(G)/I0 = 0 . Then it 
L (G) L (G) 

was proved in [17] that for the case of a locally compact, non-compact commutative 

group G , every maximal ideal I c L 1( G) satisfies, dh 1 I > 0 . But the most 
L (G) 

important is apparently the following result, which was obtained by Sheinberg in 1973 

[21]. 

THEOREM. Let G be an amenable, locally compact, non- compact group. Then 
1 dh 1 10 = dh 1 L (G) ji0 = oo • 

L (G) L (G) 

(In fact, as was noticed by Sheinberg himself, the theorem is valid for an 

arbitrary G which contains a non-compact, closed, amenable subgroup). 

Now let us proceed from the homological dimension of individual modules over 

a given algebra to the so-called homological dimensions of the algebra itself. There 

are several variants of the notion of homological dimension of an algebra A, which 

show how "homologically nice11 is this or that class of A-(bi)moduleso Here we shall 

restrict ourselves to two of them. Let A be a Banach algebra. 

DEFINITION. The number (or oo) sup{dhAX:XEA-mod} is called the left 

projective global homological dimension of A . 

DEFINITION. The number (or oo) dhA_AA+ is called the projective homological 
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bidimension of A. 

For brevity, we shall use the terms !'global dimension of An and f1bidimension 

of Ail , and denote them respectively by dg A and db A. It is obvious, that in 

terms of Ext, 

dg A =: min{n:Ext~(X,y) =: 0 for all X,Y E A-mod and for all k > n} , and 

db A =: min{n:1{ll(A,X) =: 0 for all X E A-mod-A and for all k > n} . 

These equivalent definitions imply immediately that dg A ~ db A for every A. It 

seems to be unknown as to whether strict inequality can actually happen for Banach 

algebras (in pure algebra corresponding examples do exist). 

Which values can in fact be attained by homological dimensions for different 

classes of Banach algebras - concrete or more or less general? 

We have observed that for Banach algebras with "good geometry" and, in 

particular, for commutative Banach algebras, the equality dg A =: db A=:O holds if 

and only if A is classically semisimple (that is, A =: en in the commutative case). 

As for other values, the following old result shows that for function algebras 1 is 

"forbidden" but 2 is "permitted". 

THEOREM ([12], [16], 1972). Let A be an infinite-dimensional Banach function 

algebra. Then dg A, db A > 1. If, in addition, A is biprojective, then dg A =: 

db A=:2 . 

(Parts of this result were cited above). 

So, for such algebras as Co or f1' both of their homological dimension are 

equal to 2; it is worth mentioning, that dhco cb =: dhf / b =: 2 [16], where cb is 

considered as a Co - (or f1) module with coordinatewise outer multiplication. As to 

non-commutative algebras, dgA=:dbA=:2 for such A as,say, Ll(G) and C*(G) 



234 

for compact G, and also A!tH) for a Hilbert space H. It is also known that for 

every infinite-dimensional CCR-algebra A, dg A , db A ?: 2 (Lykova [44]). 

Further, for every even n E IN there are function Banach algebras A with 

dg A ::: db A == n ; for example, it is the case with A == c ® .... ® c (n factors) , where 
~ 

c == (co)+ is the algebra of all convergent sequences, (Krichevetz [38]). But we do not 

know the answer to the following. 

QUESTION. Does there exist a function Banach algebra A with dgA == nand/or 

dbA == 11 for sorne odd positive integer n > I? In particuia,r, is it true for 11:::: 3? 

REMARK. For every n E IN, Banach algebras A with dgA == dbA == n do certainly 

exist, but they are, generally speaking, neither commutative nor semisimple. For 

example, dg A == db A = 1 for the algebra A consisting of 2><2 matrixes of the form 

[~ ~] ; a , b E (:. To speak precisely, this algebra provides a positive answer to a 

question, raised by Effros and Kishimoto [47]: do there exist non-amenable Banach 

algebras A with 1{2(A,X) = 0 for all dual A-bimodules X? We think, however, 

that the authors of [47J implicitly had in view some more concrete class of algebras. In 

any case, the answer is unknown to us, if one restricts to function algebras or to 

* C -algebras. 

Concluding our talks, we should like to put again one old question about two of 

lithe most popular" algebras, which has been explicitly stated on several occasions 

(see, e.g., [14], [30], [35], [42]). 

QUESTION. What are the homological dimensions (or at least some one of them) of 

C[O,l] ? K(H) ? 

(The apparent simplicity of these algebras must not deceive: in trying to answer the 

question, we have to work with their tensor powers, and these things are far more 

complicated. ) 

Let us notice that Johnson had also asked in [35] about db A for A = £1 (71.) 
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(that is, for the Wiener algebra). But the theorem of Sheinberg [21], which was cited 

above, provides immediately that dg £1 (?Z) = db £1 (?Z) 1) = oo • 

To conclude, the present speaker thanks his audience for their patience and 

humbly asks them to forgive his unbearable English (in fact, it is his first experience of 

this kind). 
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