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SUPERSYMMETRIC QUANTUM MECHANICS 
AND THE INDEX THEOREM 

P.D. Jarvis* 

The basic features of supersymmetric quantum mechanics are reviewed and 

illustrated by examples from physics and geometry (the hydrogen atom, and mass­

less fields in curved space). Using a discrete approximation to the path integral in 

the associated supersymmetric quantum mechanics, the Atiyah-Singer Index Theo­

rem is derived for the twi.sted Diraf operator. Specializa~i<;>ns of this in foll!. dimen-

sions include the Gauss-Bonnet theorem, and the Hirzebruch signature theorem. 

The relationship of the index theorem to anomalies, and their cancellation in the 

standard model and beyond, is briefly discussed. 

INTRODUCTION 

The Atiyah-Singer Index Theorem [1] is a classical result in differential geo­

metry of about twenty years' standing. However, its importance for field theory 

in various settings has become increasingly appreciated over the years. In particle 

physics, it is relevant for unified models (anomalies, instantons, monopoles), gravita-

tion and Kaluza-Klein theories (for example, massless modes in higher dimensions), 

and string theories (anomaly removal, and topological aspects of compactification). 

However, applications of the index theorem in other areas are legion: for exam­

ple crystal defects, fermion fractionization, Berry's phase, liquid helium, and con-

densed matter physics generally, wherever topological considerations are important. 

No review can give justice to all these many facets of the index theorem [2]. By 

way of illustration of just one application, the role of the index theorem in govern-
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ing anomalies in gauge theories (the "sta..n.dard model" and beyond) will briefly be 

described below (§2). 

The connection between supersymmetry and the index theorem is less than 

ten years old, dating from ideas of Witten (3] and more recently from attempts by 

physicists to provide proofs by path integral and other methods [4-7]. This review 

aims to give a pedagogical introduction to supersymmetric quantum mechanics and 

to establish its relevance to the index theorem (§1). Finally, and as an alternative 

to existing work [4-6], a discrete approximation is set up for the path integral 

representation of the supersymmetric quantum mechanics equivalent of the index, 

and used to provide a heuristic derivation [7] of the index theorem itself (§3). 

It should be pointed out that the whole story of supersymmetry and the index 

theorem is a precursor to the exciting recent developments in "topological quantum 

field theory" [8]. In particular Witten [9] following Atiyah [10] has formulated the 

"Donaldson invariants" of four-manifolds [11] as correlation functions of a certain 

supersymmetric quantum field theory. From this perspective this review should 

perhaps be subtitled "topological (supersymmetric) quantum mechanics". 

§1. SUPERSYMMETRIC QUANTUM MECHANICS 

SSQM and the Witten Index 

Consider a quantum mechanical system described by a hamiltonian operator 

H acting on a Hilbert space H. [12]. The system is called super-symmetric if there 

are operators Q, Qt such that 

{Q,Qt}=H 

{Q, Q} = 0 = {Qt, Qt}, 

(from which 

[Q, H] = 0 = [Qt, H]). 

(1) 

(2) 
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Furthermore, 1i is Z:rgraded, i.e" there is a decomposition 1i = 

then Q is assumed to be "odd": 

(3) 

In terms of the orthogonal decomposition of 1i we can express F, Qt and H in 

2 x 2 block form as follows: 

F= (~ ~) ' Qt= ( ~ At) 
0 J ' 

Q= (~ 0) H= 
f AtA. 0 -~ 

1 , l .o AAt J 
The above definitions are inherited from the relativistic regime [13] where there 

is a spinor multiplet { Q0 , 01 = 1,. o o, of supersymmetry charges. Their anticom-

mutators amongst other things, on the momentum 4-vector, (The whole struc-

ture is an example of a Lie superalgebra generalization of the space-time symmetry, 

e.g. the Poincare algebra.) If the three-momentum vanishes, then the remaining 

component is precisely the total energy as in (1). 

Moreover, nonrelativistically spin and orbital transformations are independent, 

so one may focus on a particular pair of components of the {Q 01 }, as in (1), (2), 

and neglect the rest. Finally, in the general case there is a natural candidate for 

( -l)F: namely exp(2?riJz), where Jz is the generator of rotations about the z axis. 

By the spin-statistics theorem, lz is half-odd-integral for fermions, but integral for 

bosons, so the states with F = 0, 1 do indeed deserve to be called "bosonic", and 

"fermionic", respectively. 

In the nonrelativistic case ( 1) can be generalized by an additional term on the 

right-hand side. This can be either an overall constant trivial redefinition of 

the zero of energy), or a constraint, which vanishes on physical states [14]. This 

generalization is not required in the present context. 

In what follows, we shall assume that the system is regularized in such a way 

that H has a discrete spectrum. For the applications in differential geometry, in-
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volving elliptic operators on compact manifolds, this is appropriate. It is still useful 

in general, if the quantities to be calculated are independent of the regularization. 

With these preliminaries, let us look at some of the properties of supersymmet­

ric systems [3, 12, 15, 16]. The following are easy consequences of the definitions 

(1) and (2): 

#1 The energy of the system is zero or positive. 

#2 The state(s) of zero energy are just those annihilated by Q and Qt. 

(For QIO) = 0 = QtiO) ¢? HjO) = 0 as above.) 

#3 If E > 0, states occur as degenerate boson-fermion pairs (related by Q and Qt, 

which commute with H.) 

(For if HIE) = EIE) then we can consider its projection IE, b) =/= 0 say, i.e. 

( -1)FIE, b) = +IE, b). IE, f) = (Q/vE)IE, b), necessarily nonzero by (#2), 

and such that QtiE,f) = vEIE,b), (-1)FIE,f) = -IE,f).) 

Thus the general appearance of the spectrum of the supersymmetric hamilto­

nian is as shown in fig. 1: states of energy E > 0 occur in doublet representations of 

the supersymmetry algebra (1), (2), while singlet representations necessarily have 

E=O. 

An important question in modelling physical systems is the possibility of spon­

taneous breaking of any (continuous) symmetries of the model. (In fact, supersym­

metric field theories with unbroken supersymmetry seem to be ruled out phenomeno­

logically, since they would require elementary particles to occur as boson-fermion 

pairs degenerate in mass and differing in spin by ! n (since the { Q"'} generators are 

spinors in the relativistic case).) It is a textbook result that a symmetry is unbroken 

if and only if the vacuum is annihilated by the appropriate generator, in this case 

QIO) = o = Qtlo). 

Witten [15] pointed out that, in turn, a sufficient condition for supersymmetry 
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Fig. 1. Spectrum of Supersymmetric Hamiltonian. 

to be unbroken is that the number of zero-energy bosonic minus fermionic states, 

I _ E=O E=O 
- nb - nf ' (5) 

be nonzero: for if this is so, then there are at least III states of zero energy, all 

annihilated by Q and Qt (by #2 above), whence supersymmetry is unbroken.1 

The property of I crucial for what follows is that it is invariant under smooth 

perturbations of the parameters of the supersymmetric system (for example, of 

the masses and couplings of the participating fields; and as mentioned, taking the 

volume in which the fields are defined smoothly to infinity). In the applications 

to differential geometry, H will become a functional of various external gauge and 

gravitational fields, (i.e. connections on appropriate manifolds), so that I is in fact 

a true topological invariant. 

1 The case I= 0 could arise either via (A) nf=O = n~=O :/= 0 (supersymmetry unbroken) 
E-O E-O O or (B) nb- = n 1 - = (supersymmetry broken). 
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The definition (5) becomes much more constructive when the implied trace of 

( -l)F on the zero energy subspace is extended to the whole of 1L As it stands 

such an alternating sum is undefined, but it becontes well-behaved when supplied 

with a convergence factor e-rH for r > 0. :From property #3 above, forE> 0 the 

contributions from the bosonic and fem:tionic states will precisely cancel in pairs. 

Finally note from the block diagonal form ( 4) of the operators, and with prop­

erty #2 above in mind, that the quantity nf=O is precisely the din"Iension of the 

subspace of states annihilated A, and similarly for nf=O and At. Thus we can 

write the index formally as 

I( A)= dim kerA- dim kerAt (6) 

vvhere the A has been appended to emphasize that this coincides precisely with the 

normaJ mathematical definition of the index of the operator A in this case. 

Putting this together with the above remarks, we have the form most useful 

for computations, 

I(A) = tr( -l)F e-rH, r > 0. (7) 

It is in this form2 that one can attempt a quantum mechanical derivation of the index 

(in particular by letting r -+ oo ), following [4-7]. However, to complete this 

section we quote some examples of supersymmetric quantum mechanical systems, 

from physics and from geometry. 

Example: the Hydrogen Atom 

It is of interest to see a supersymmetric formulation of such a well-known 

textbook case as the quantum-mechanical Kepler problem (other solvable potentials 

could be taken equally well [17]). Consider a system defined on the direct sum Hffi'H. 

2 The factor ( -1 )F could be absorbed by introducing the graded trace or "supertrace" rather 

than the ordinary trace. 
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of two copies of the usual Hilbert space of radial wavefunctions. In the notation of 

(4) we take 

J2;;:;At = Pr- i1i((R + 1)1 R- 11(£ + 1)a) 

and find 

H=(Ht+£
0
(£+1)2 0 ) 

H£+1 + £1(£ + 1)2 ' 

2mHt = P; + £(£ + 1)1i2 I R 2 - 2me2 I R 

is the usual radial hamiltonian for angular momentum R 

and£~ 13.6 eV is the Rydberg: 

The only acceptable ground-state wavefunction 

is that annihilated by At (not A~); this immediately gives the -ground-state energy 

as -EI(R + 1)2 • Moreover, since the n'th level of Ht is supersymmetrically paired 

with the (n- 1)'th level of H'-+1• the entire bound-state spectrum is thereby fixed 

(see fig. 2). 

Example: Massless Fields in Curved Space 

In field theory applications it is frequently important to have information on 

which particles moving in a curved space-time (i.e. with external gauge and gravi­

tational fields) will be massless. This could be for the direct reason that the degrees 

of freedom relevant to the presently known particle spectrum are truly massless, on 

the scale of some Planckian unification mass; or for technical reasons, that these 

modes require special treatment computationally. In any case, one requires the zero 
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2. Supersymmetry of the 

by fields with different types of tensor 

For exarnple? integer fields are described by scalar fields 

vector fi.elds symmetric tensor fields and so on~ The correct vvave 

equation for higher-spin fields is to son1e extent a matter of taste [18], but 

should be some generalization of the Laplacian d' Alembertiarr, if one rernembers 

the Minkowskian signature of the metric). In fact the precise choice is not crucial 

as far as topological invariants are concerned. A natural choice does exist for the 

case of totally antisymmetrical covariant tensors (rank 0 (scalar), rank 1 (vector), 

... , upton inn dimensions), and the Laplacian for the collection of such fields can 

be written in a supersymmetrical way (see below). 

For fields of half-integer sp1n ( fermions ), one must use spmors, the simplest 
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case being spin-~, Spinors are introduced via the Dirac 7-matrices satisfying the 

Clifford algebra 

where g 1w is the Riemannian metric, The massless spinors are the zero solutions of 

the Dirac equation 

= 0, 

when the Dirac operators is 

(8) 

with AI' the (Lie algebra-valued) gauge potential, and \7 11 the appropriate covariant 

derivative defined using the Riemannian connection. 

In even-dimensional spacetime, there is an additional quantity 

.. ·Ill" 

which satisfies 

and allows spinors to be separated into pieces of and negative "chirality", 

Clearly 

'1/J(x) = t(l + r)'!j;(x) + !(1- r)'!j;(x) = + '1/J_, 

r'I/J± = ±'1/J±. 

],2)± = !(1 ± I')J;I) map spinors of one chirality on to spinors of 

opposite chirality, Thus for the square of the Dirac operator, 

because 

T/J2 = T/J+T/J- + ],2)_]/)+ = {],2)+, :1;0_}, 

],!)~ = 0, 

llJ~ = t(I ± r)J;2)!(1 ± r):p = :i(l ± r)(l =F r)]/)2 = o, 

(9) 
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and the supersymmetric structure is evident (cf. (1), (2)). 

The physical language of classical fields used above can be transcribed suc­

cinctly into natural geometrical constructions (19]. This is useful to emphasize the 

supersymmetric structure more precisely, and for the formal statement of the in-

dex theorem to be given below. Given a smooth orientable compact manifold M 

without boundary, of dimension n. Consider the bundles of totally antisymmetric 

covariant tensors of rank p, AP(T* M), p = 1, ... , n. The exterior derivative d acts 

on QP, the corresponding space of smooth sections of AP(T* M) (p-forms), to give 

(p +I)-forms 

d : QP ---+ QP+l, 

with (19] 

Correspondingly there is the differential operator 8, 

{j : QP ---+ QP-1, 

with (19] 

Here '\11-' is the covariant derivative defined using the Riemannian connection. 8 is 

in fact the adjoint of d with respect to the inner product on p forms 

The Laplacian, ~, is simply the second-order operator 

~: QP---+ QP 

defined by 

~ = d8 + 8d. (10) 

Since both d and 8 are nilpotent, 
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a supersymmetric structure is evident, once the analogue of "fermion number" 1s 

refined" The natural grading is to the total bundle 

n 

A''= EB 
p=O 

into spaces of tensors of even and odd degree: 

then it is the operators + /5)± restricted to the corresponding smooth sections 

( 4), 

Q = ( (d: 
t:. = ( d_/5+ ; Ld+ 

(~ 
) , 

(d+8)_) 
0 ' 

F= (0 0) 
0 1) 

The index is the alternating sum of the number, Bp, of zero modes of the 

Laplacian ("harmonic forms"), which will be recognized as the Euler number of 111. 

\iVitten [3] went further and provided a quantum mechanical derivation of the Morse 

inequalities for the Bp themselves. 

In the spinor case, M must be chosen so as to admit a spin structure. Then 

one can construct the spin bundle with its decomposition 

into bundles of opposite chirality; furthermore if there is an internal gauge group 

then there are the associated twisted bundles S± ® V where V carries a represen-

tation of the gauge group. The Dirac operator ads on the smooth sections 

and since 

1/; t !(1 + r)iJPxdV 
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= { ((iJ,ll)t!(1+r)t1jl)txdV= { (iJ,ll!(1+r)1jl)txdV 
~ . ~ 

= JM(t(1- r)iW)txdV 

= (iJ,ll_1/l,x) 

the chiral projections are adjoints as required. Thus in terms of the notation of ( 4) 

we have 

(12) 

§2. THE INDEX THEOREM AND APPLICATIONS 

The Atiyah-Singer Index Theorem (1, 19, 20] formally relates to elliptic oper-

a tors on sequences of vector bundles over some manifold M. The most important 

case, and which contains many other results as special cases (for example the har­

monic p-forms for integer spin), is that of the Dirac operator. This is the case which 

we shall take up below (§3) and develop a path integral formulation for; in this sec-

tion we begin by giving a concise statement of the theorem, and evaluate some 

special cases. The remaining discussion is intended to bring out the importance of 

the result in field theory applications, in questions of anomaly cancellation, in the 

standard model and beyond. 

The Atiyah-Singer Index Theorem for the Twisted Dirac Operator 

Let M be a compact manifold without boundary as before, with Riemannian 

curvature 2-form 

-np - lRJ-1 d p A d ,. 
1\.- II - 2 llprT X 1\ X ' 

and consider an associated vector bundle V with curvature 2-form 
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taking values in the Lie algebra of the structure group G of the appropriate principal 

bundle. The index theorem for this case states 

(13) 

Here A(R) and ch(.F), the Dirac genus and Chern character respectively, are 

polynomials in the characteristic classes of M (nontrivial, closed p-forms) expressible 

in terms of the curvatures as 

A(R) = det-112 [si~~~~21r)] 

ch(F) = tr[exp(i.F/27r)], (14) 

where the matrix operations are with respect to the tensor labels of RJLv, and the 

fibre space V respectively. 

Computationally we should evaluate the right hand side of (13) by expanding 

(14) in power series and extracting the n-form part as the integrand, which gives 

a local function of some invariant combination of RJLvprr and Fpv to be integrated 

over M. The power of the index theorem (13) is displayed by the fact that it relates 

solutions of differential equations on M, that is local information, on the left-hand 

side, with global, topological invariants on the right-hand side. In particular, they 

depend only on the characteristic classes of the bundles involved. 

Specializations [7] 

If we take G to be the structure group SO(n) of the frame bundle of the 

Riemannian manifold, then the sections acted on by the Dirac operator will carry 

representations of the local Lorentz group, i.e. they will be spinor-vector, spinor-

tensor ... etc. higher-spin fields. Thus we take 

F - 1 R af3J 
JLV = Z JLV 01{3 

where ] 01 p are the antihermitian generators of SO(n), 
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in the Ecppropriate 1·epresentation. 

In four dimensions >< <md irreducible representations 

are labelled 

factors generated by 

(15) 

Denoting the associated bundles V for we have for example 

C' -
U'--

sections of b)= ,l'ju"( 1 -rz,D;ul a--z, 

Since 

=--A 4 -1 ( 2 
12 - A= 2a + 1 

within an irreducible representation of with spin a, we deduce for 

(15)) 

+ - 1) -- )] , 

where A= 2a + 1, B = 2b + 1, whence 

AB 
= 24 [(A2 + B 2 - l)P(M) + 

where 

"'M' 1 n J=-· . 8r.2 

and 

are the Euler and Pontrjagin numbers of M, respectively. The first few cases are 

!(0,0) = P/24 
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(the index of the 

below)); 

related to the spin-~ axial anomaly (see 

I(~, + 1(0, = P/3, 

1) EB (0, 0) EB 

the Hirzebruch signature theorem); 

0)- 1(0,!) =X 

G) EB 1) EB 0)) -4 ~)),the Gauss-

and 

I(!,!)- I(O,O) = 21P/24, 

index o:f an operator: C00(l,~)-+ C00 (~,1), related to the 

anomaly), 

axial 

Thus, assuming that the index of an elliptic operator is a topological invariant, 

just from the twisted Dirac case, index formulae for several different 

bundles (including, paradoxically, results such as the Gauss-Bonnet and Hirzebruch 

signature theorem for integer-spin fields), By contrast, Christensen and Duff [18] 

considered index formulae for various higher-spin fields, case 

methods, 

The Index Theorem and Chiral Anonmlies 

case heat kernel 

As emphasized in the introduction, the index theorem has implications for so 

many different topics in theoretical physics that it is necessary to make a selection 

for the purposes of review. The discovery and still developing understanding of 

anomalies in quantum field theory has had a profound effect in shaping the evolution 

of the modern gauge theory approach to the description of elementary particles 

and their interactions, and the following discussion is intended to bring out the 

connections with the index theorem, and to illustrate the vital issues of anomaly 

cancellation in some relevant cases. 
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In the earlier discussion of supersymmetric quantum mechanics, we considered 

solutions of wave equations for different types of field, describing massless particles 

of various spins moving in curved space. The same setup provides a vehicle for 

consideration of anomalies, but it is essential to consider the matter fields to be 

quantized in the presence of classical background gauge and gravitational fields. 

The simplest case is that of massless spin-! fermions, described by the action 

S = JM ( ?fiiT/ftP )dV, (16) 

where JP is the Dirac operator as in (8). 

Noether's theorem in classical field theory states that if an action functional is 

invariant with respect to some field transformation, then there is a corresponding 

conserved current. In the case of (16), in addition to local gauge and general coordi-

nate invariance, there is a symmetry with respect to "chiral" phase transformations3 

( () a real constant) 

(17) 

and classically conserved current, 

(18) 

In the quantized theory the current is ill-defined because of singularities in the 

products of field operators at the same space-time point. Set the external fields to 

zero and define 

for an appropriate (regulated) limiting process. Consider the vacuum expectation 

value 

=- lt tr(JIL{DHS(y- x)) 
y-+x 

3 In this section a Minkowski metric is used and the dimension of space-time is D = 2n. Thus 

in a suitable basis ?f; = '1/J t /O and lb+l = /D+l. lb+l = 1 is the analogue of the Euclidean r. 
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for the appropriate Green's function S(x,y) = ('1/J(x);j}(y)). Then 

(EJI .. Jp.(x)) =- 1t tr(I/JxiD+lS(y -x)) y-+x 

=- lt tr(iv+IfJyS(y- x)) y-+x 

= lt tr('YD+I6(y- x)). y-+x 

Undefined though this is, one further spatial integration will convert it into a 

trace of /D+l regarded as an operator on both spin and spatial degrees of freedom. 

Recalling that /D+l = ( -1)F from (12), it will then correspond precisely to an 

(unregulated) form of the Witten index [5]. A similar heuristic argument can be 

made if the external fields are nonvanishing. 

Careful field-theoretical computations (see [21] and original references therein) 

confirm that the axial current divergence indeed is proportional to the local density 

of the Atiyah-Singer index. Thus in flat space [21] 

()IL J = ]{ € tr(FIL11'2··· p1L2n-ll'2n +perms) 
IL n l'll'2···1'2n ' 

(19) 

as expected from (13), which also provides the correct gravitational curvature con­

tributions with the same relative normalization (for field-theoretical computations, 

see [22] and original references therein). 

(17), (18) and (19) have generalizations for nonabelian chiral transformations 

(20) 

leading to the classically conserved current 

(21) 

(where D~' is the appropriate covariant derivative, and 0 is now an element of the 

Lie algebra of the gauge group in the fermion representation). 
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The nonabelia.n anomaly the anomalous form of can be established 

by field-theoretical calculations analogous to those for the abelian anmnaly, (19). 

However it has been shown that starting formally fron'1 the abelian case in (D + 2)-

dimensions leads uniquely to a consistent form of the nonabelian anomaly in D 

dimensions [21]. The mathematical background for this state of affairs is the index 

theorem for parametrized families of Dirac operators [22, 23, 24]. 

The distinction between the abelian and nonabelian cases is best explained in 

terms of differential forms. For the abelian case one has 

(22) 

where CD is the D'th Chern class (and* maps a 0-form to the corresponding volume 

form). Since CD is exact it can be written locally as 

where w~_1 is the Chern-Simons form. For example, 

c1A 2& · 1\u +3""/\A/\ 

is the Chem-Simons Lagrangian arising in the topological quantum field theory of 

knots [8]. 

In the nonabelian case the anomalous form of (21) is 

c Je , e 
*VA OC awD 

where wb is the secondary Chern-Simons form related to Cv+2: 

c o _we. 
U(JWD-1 - D' 

(23) 

where 8e measures the infinitesimal response to a gauge transformation of A gener-

a ted by e' namely 

A---+ A+ (dB+ [A, 8]) + 0(82 ). 
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In four dimensions the secondary Chern-Simons form is 

wf = trO(A 1\ dA +~A 1\ A 1\ A) 

which should be distinguished carefully from w~ above. 

The significance of the anomalies (22), (23) is that the 0(1i1 ) terms in the 

quantized action no longer admit the symmetries of the classical ( 0(1i0 )) action. 

In the case of four-dimensional Yang-Mills theory, the abelian chiral anomaly leads 

to the phenomena of degenerate vacua, instanton tunnelling, and so on; the non­

abelian chiral anomaly implies a breakdown of gauge invariance which spoils the 

Green's function identities vital to implement renormalization. Put another way, 

it would be necessary to include counterterms for interactions not present in the 

original Lagrangian, which lead in turn to further nonrenormalizable infinities. In 

higher dimensions, and for gravitational anomalies (see below), the criterion ofnon­

renormalizability is not relevant, but the anomalies breaking gauge invariance are 

still thought to lead to inconsistencies in quantization and unitarity [22, 24]. 

In order to illustrate these points, we conclude with a discussion of anomaly 

cancellation in the standard electroweak model; of general gauge and gravitational 

anomalies in D dimensions; and a sketch of the Green-Schwarz mechanism for 

anomaly removal in 10-dimensional superstrings. 

Anomaly Cancellation in the Standard Electroweak Model 

The colour, weak isospin I and hypercharge Y (with electric charge, Q) as­

signments of a single quark and lepton generation of the standard SU(3)colour X 

SU(2)I xU(l)y electroweak model (the neutrino, electron, and up and down quarks, 

regarded as left-handed Dirac fields) are shown in fig. 3. 

From the discussion above and equation (23) of the nonabelian anomaly (e.g. 

the explicit form of w~ given above), the nonabelian anomaly is proportional to a 

group-theoretical factor 

tr(ABC +perms)= 3tr(A{BC}) 
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Q Particle Colour I y 

C\) { " ) singlet 1 -1 I I \e- 1 2 

' 
(_ii) (~) triplet 1 1 

2 3 

+1 e+ singlet 0 +2 

2 u antitriplet 0 -3 

+l J anti triplet 0 ..L1 
3 I 3 

Fig. 3. Quantum Numbers of One Lepton and Quark Generation. 

for any generators A, B, C of the gauge group. As far as the weak isospin is con-

cerned, the nonsinglet multiplets are isodoublets, respresented by the standard Pauli 

matrices o- 1 , o-2 and o-3 . Thus the contributions to tr(Y3 ), tr( o-iY2 ), tr(Y { o-i, ai}) 

and tr( ai{ai, o-k}) should all cancel. Amazingly the first trace is explicitly zero; for 

the second the tracelessness of o-i within each isomultiplet of constant Y ensures 

its vanishing. Also since {a', a.i} = 2oii, the tracelessness of (}i is also sufficient for 

the last trace, while for the third, by the same token, the tracelessness of Y for the 

nonisosinglet multiplets is sufficient. 

Similar considerations apply if colour generators are included (it is important 

to note that the anti-triplet generators are the negative transposes of the triplet 

generators, and there are an equal number of each), and so the standard set of 

particles in fig. 3 is adjudged to be anomaly-free. (Of course, the full story on 

anomalies necessitates the examination of various third-order Dynkin invariants 

for the relevant gauge groups [25], but this demonstration has the virtue of being 

concrete and simple). 

General Anomalies and the Green-Schwarz Mechanism 

In addition to gauge anomalies, higher-dimensional theories with matter fields 
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in appropriate complex representations also have gravitational anomalies ("Lorentz" 

or "Einstein") in certain dimensions [22]. In this case the symmetry with respect 

to local Lorentz transformations is violated by O(n) terms in the corresponding 

current divergence. Equivalently, translation invariance is violated, leading to the 

Einstein form of the anomaly [22]. 

The situation is summarized in fig. 4 where the spacetime dimensions D at 

which :F and R curvature terms are present (for chosen matter fields) are quoted 

for the different anomalies. The explicit forms of the anomalies are controlled by 

the relevant (D + 2)-form Chern classes, as indicated by the discussions in brackets 

(for the gravitational as well as the nonabelian cases (23)). In fact [22, 26] no 

combination of Dirac (spin-!), Rarita-Schwinger (spin-!) and D/2-form (spin-1) 

matter fields can ensure anomaly cancellation in greater than ten dimensions. 

Contribution Chiral Chiral Lorentz 
from Abelian Nonabelian (and Einstein) 

:F D = 2k D = 2k D = 4k+2 
(2k+2) (4k+4) 

R D =4k D =4k D = 4k+2 
(4k+2) (4k+4) 

Fig. 4. Dimensions D for which various gauge and gravitational 
anomalies occur and their controlling (D + 2)-forms 

On the other hand in the ten-dimensional superstring theory the matter content 

is specified by the effective low-energy point field theory ( N = 1 supergravity plus 

Yang-Mills theory). The total anomaly is specified by a 12-form 

!12 = tr(t\:F)6 + (· · ·)trR t\ R tr(t\:F)4 + ... + (· · ·)tr(t\R)6 (24) 

with known coefficients [27]. A putative factorization of ! 12 of the form 

!12 = (trR t\ R + ktr:F t\ :F) t\ X 8 
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(25) 

is imposed, where X 8 is some invariant 8-form and the C4 and the four-form Chern 

classes. This leads by the descent equations (cf. (22), (23)) to the ten-dimensional 

form of the anomaly, 

I1o = 12(w~(R) + kw~(F)) 1\ X 8 + 4(C4 (R) + kC4 (F))XJ, 
10 

where the secondary form XJ is related to Xs by descent in the same way as the 

Chern-Simons secondaries wi are related to the Chern classes C4 • But this means 

that there exists [27] a unique local counterterm which cancels the anomaly: 

Sc =! 4(wg(R) + kwg(F)) 1\ X~- 6BXs. 
10 

The B field (which the anomaly removal mechanism is designed to utilize) is 

the 2-form gauge potential of ten-dimensional N = 1 supergravity whose gauge 

transformation reads 

as is known (and essential) from other considerations. The detailed form of (24), 

(25) leads uniquely [27] to the only possible gauge groups S0(32) or E8 X E8 • For 

example, the tr(/\'Rl coefficient of (24), required to vanish for (25), is ex (dim G-

496), and the Lie algebras of S0(32) and E 8 X E8 are indeed 496-dimensional! 

§3. PATH INTEGRAL DERIVATION OF THE INDEX THEOREM 

As mentioned in the introduction, the realization [3] that the mathematical 

formalism of the index theorem allows the relevant elliptic operators to be regarded 

as the hamiltonian and supersymmetry generators of an associated quantum me-

chanical system, has led to proofs of the index theorem using quantum mechanical 

methods: steepest descent methods in [3, 6], and general path integral considera­

tions in [4]. Detailed derivations for the U(l) chiral anomaly have been given in [5] 

using supersymmetric heat-kernel methods. 
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operators 

In the 
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mc-::ha.."1ics for the hamiltonian 

= ihg~"v, 

derivations [4, 5] one interprets 

continuum rnodel (a type of 

is in terms of 

as the 

nonlinear a 

model in 0 + 1 dimensions). The evaluation then proceeds along standard lines, viz. 

isolation of zero modes this case, constant paths), and with the non-constant 

modes in Fourier contributing to certain infinite-

dimensional determinants. For rigorous definitions of path integral measures for 

fermions, and applications to a 

see Rogers [28]. 

of the Gauss-Bonnet form of the index theorem, 

As an alternative, the discussion to be given below [7] uses a more naive ap­

proach in that it works with an approximation to the path integral, in terms of a 

finite number 2DN of degrees of freedom, but, rather than going to the continuum 

limit, 2D(N -1) integrals are performed for the particular hamiltonian in question, 

giving the index correctly up to 0(1/ N), with the correct normalization. 

The derivation is heuristic but straightforward, and provides further insight 

into the supersymmetric structure of the index theorem. We commence with a 

discussion of path integrals via fermionic (and bosonic) coherent states [29]. 

Fermionic Path Integrals 

Consider the 2-state system {10), jl)} generated by a fermionic creation and 

annihilation operators 

11) = IO), ajO) = 0, {a, } = 1. 



73 

By analogy with the bosonic case, introduce the following coherent state basis 

= JO)- rpjl) = 

( -~ '0[ -a0 ,cp = \ e , = - (1 

+ [l)cp 

+0(11 

where cp and rp are Grassmann variables4 which anticommute with a and 

Then the following properties are easily verified: 

(<Pix)= = 1 + <Px = 

for the overlap and overcompleteness of the coherent states. Here Grassmann inte-

gration is defined the rules 

dcp = J dcp = 0 

J = J d<f'<f' = 1 = J 
In the coherent state basis, operators A may be regarded as acting on functions 

of the coherent state variables 

Acp(x) = (x[Ajcp} = drydi]d-ii'1(xiAI17)(iJjcp) 

j d17dife-ii'1 A(x, ry)cp(if). 

For an operator A = L:amn(a"t)man in normal-ordered form, the integral kernel 

A(x, ry) is simply related to the normal kernel a(xry) = L:amnxmr/'': 

Finally 

trA = (O[A[O) + (ljAjl) =- f drpdcpe~"'~'(rp[Ajcp), 
J 

tr( -l)FA =: (O[AjO)- (l[A[l} = + J drpdcpe-~"'~'(rp[Ajcp). 
4 Elements of a complex, infinite-dimensional Grassmann algebra. Thus rp2 

rprp = -rprp, and the exponential is a linear function of 0X! 
0, 
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All of these formulae generalize in the obvious way to multifermion spaces (29]. 

In the problem at hand we initially evaluate the matrix element (cple-rHic;o) 

and convert it into a supertrace as above. The matrix element itself is interpreted 

as the amplitude for evolution (in Euclidean time) of a system from a state lcp) at 

t = 0 to a final state (cpl at t = T. 

We break up the interval into N subintervals of f = T / N and introduce complete 

sets of states 

'Pk, c,Ok at timet= kf, k = 1, ... , N -1. 

Writing cp = cp N and cp = cp0 we have 

N-1 

(c,ONie-rHI'Po) = J 11 dcpkdcpk{(Nie-<HIN -l)e-<PN-l'PN-l 
k=1 

X (N -lle-<HIN- 2)( ... ll)e-<fi1 cp1 (lle-<HIO)} 

and assuming H is in normal form, 

(where the error comes by assuming the exponential is also in normal form, i.e. at 

N-1 

(c,ONie-rHI'Po) ~ j 11 dcpkdcpk 
1 

Finally the supertrace will provide an extra -cp N'Po in the exponential. Thus 

if we identify cp0 = cp N, cp0 = cp N then we have the uniform expression 

(26) 



75 

in the continuur.a limit. 

Almost identical fo1·mulae can be given for bosonic systems in a coherent-state 

basis corresponding to annihilation and creation operators 

a== -1- - iP) 

for each canonically position X and momentum P. m the 

we stick to the basis of plane wave n10mentmn states oc , and 

the derivation of the path integral is identical to the original Feymn.an discussion 

In fact for Hamiltonians of the general form 

ll = ~(P + f(X)? + 

the integration over rnomentmn variables can be performed, leading to 

N 

tre-rH ~ (21rc)-N/ 2 { n 
jPBC 1 

exp-Se 

N 

Se = ::[;[~(X~o- Xk-1) 2 /e + ~(Xk-
k=l 

--+ + (27) 

where = V ( x k), etc. Finally, we should note the general formulae for Gaussian 

integration: 

J /2 )1/2 
dX exp( -~xT Ax+ zT x) = det (; / exp( -zTA-1 z), 

J drpd)O exp( -)OArp + vArp + )Ou) = det±1 A exp vA - 1 u. (28) 

A Discrete Approximation to the Index (Flat Space) [7] 

For simplicity let us consider the index for the Dirac operator in flat space. 

Then we have 

HiJP) 2 = Ki'(i81' + iAI')i 

- 1 { ~" "1.("8 .A ' 1 "8 .A\ -41 ,[ 1 z l'+z !L)\.Z v+z v} 

(29) 
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1.e. 

~(iJP)2 ~ (Pp.- iAp.)2 - ~1"'1v Fp.v· 

Here the position dependence enters through A(X) and Fp.v(X) which provide the 

potential for the bosonic part, and the interaction with the degrees of freedom, 

respectively. At this point we make the further assumption that the potential can 

be expanded, at least locally, as [5] 

(30) 

where Fp.v is X-independent. This is analogous to the choice of Riemannian nor­

mal coordinates in the generally covariant case, and is justified by the topological 

invariance of the index. (The O(X2 ) terms give rise to 0(1/r) corrections which 

vanish in the limit; see below). 

With (30) in place it is clear that bosonic and fermionic degrees of freedom 

are decoupled, (and moreover the integrations are all Gaussian), and for the dis­

crete approximation to the path integral it only remains to identify the fermionic 

coherent state variables. For the internal degrees of freedom, we introduce [5, 7] 

a set of creation and annihilation operators e' et transforming in the appropriate 

representation of the Lie algebra of the gauge group. If { ta} are the ( antihermitian) 

matrix generators then the operators 

(31) 

will have the correct action on the internal Fock space. The latter is of course 

reducible, with the original representation as the one particle space. 

For the Dirac algebra, fermionic creation and annihilation operators are defined 

v1a 

12r-l=r(+(1()t, ir2r=1(-(1()t, r=1,2, ... ,D/2 

and the corresponding coherent state Grassmann variables ry, ij introduced (with 

indices suppressed). After normal ordering, the real Grassmann variables '¢"', 

'¢2r-1 = (TJr + rn;-..12, '¢2r = (TJT _ ijT)ji-../2, (32) 
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can be re-introduced. 

Finally from we have [7] 

I= (27TE)-ND/'2 / ndxiid'lj!ITaedee-sE 
J 

(33) 

\¥here Fa(,ktaek-h the normal kernel for the appropriate internal operator, 

and fl 01 !3, G~13 are certain non-covariant terms thrown up by normal ordering ( cf. 

[6]).5 

Both the x and 'ljJ parts of (:33), although share the property of being 

symmetric under cyclic label permutations. 

Thus before integration it is necessary to transform to relative and average 

coordinates Z), viz. 

+ ... + 

z1 = - x2)/J2, 

Z2 = (xl + X2- )j,/6, 

+ .. , + XN-1- (N -l)xN)/JN(N -1). 

If are the analogous coordinates for the fermions, then the integrand becomes 

N 

- ~ lxr(:F _]_ EF11x· -+- vr 6.w~ - Ew ~ l2 --1 ) 'A ,.... '*L...t 
k=l 

apart from the {~ "kinetic energy" terms. 

_j_ 
I • • • ~ 

5 The continuum limit of (33) is an N = ~ supersymmetric nonlinear f5 model in D + 1 
dimensions. The supersymmetry is 15x~" = ire'lj!i', = -Ex~'. The noncovariant pieces vanish 

in the continuum. 
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VIle assert [7] that the matrix elements of I', ,6, are bounded c/JV 

thus the terms induced the z,x will be 

of higher order than the term. Moreover 13' and are 

oc F,, so that their trace vanishes: 

+ 

where X is J3 or F. Explicit calculation shows det112 . Also the z 
cancel all but one factor of . Finally, since lldrydfj = 

from we are left with 

N 

sk = L; [k(ek- ek-I) + t[k( 'lj;* F¢*)ek-J/2N. 
k=l 

The e, [ integrals may be performed directly: 

(34) 

-+ .. , 

+ F)N ~o 

where we have used (28) repeatedly. 

A slight generalization obtains when one adds an additional term aNint to the 

supersymmetric hamiltonian. This gives 

00 

I(x) = str(e-rH+aH;n') = 2=>nin(x) 
n=O 

where x = e01 is a generating parameter for the nth symmetrized (or antisym-

metrized) product of the one particle representation of the gauge group (where e, et 
are bosons (fermions), respectively). Noting 
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then the only difference to the integral is that the eo in becomes multiplied 

x (and with it the entire (1 + coefficient). Thus applying PBC, ~1v = eo as 

the result is 

I(x) = d '"'~' ±1(, 1p uet .t - x exp 

where we have applied a 1·escaling 

If necessary [5-7], we can 1:eplace and the integral by the 2-form 

equivalent :F, and ordinary volume integration, to the index in standard form, 

with the correct normalization (cf. (13), (14)). 
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