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ON THE THERMODYNAMICS OF CURVES AND OTHER CURLICUES 

R. R. MoORE AND A. J. VANDER PooRTEN* 

This lecture was to be a description of the work of Mendes France and of various of his 

collaborators on how one may felicitously and instructively attach thermodynamic quantities 

to plane curves. However, our interest in that project cooled somewhat as we became 

interested in questions arising from the preparation of the pictures that were to illustrate 

the ideas to be presented. As a result we give only a summary introduction to the work 

on thermodynamics and divert our efforts to a description and reformulation of the work of 

Berry and Goldberg [1] on renormalisation of certain curves containing fantastic curls and 

twists. 

1. Thermodynamics of curves 

Our initial remarks arise from work of Michel Mendes France and his collaborators (and are 

detailed in [5]). 

1.1 LINEAR AND SUPERFICIAL CURVES; DIMENSION 

Plainly it would be congenial to be able to formalise the notion that the 'line-like' curve 

below really is 1-dimensional, whilst the ubiquitous curve tends towards 2-dimensionality. 

*Work partially supported by the Australian Research Council, grant #A68831542. 
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Dekking and Mendes France [2] propose the following strategy. One draws with broad strokes, 

fattening the given curve r by forming the set r( e) = {y : distance (y, X) < e; X E r}. Next 

consider the area f( <:, R) common to this 'epsilonised' curve and a disk of radius R (centred 

at the origin, say). Take the quotient 

dimf(e,R) = logf(e,R)IlogR 

considering its limit as R /' oo and <: "-,. 0. For an unbounded curve the limit dim r does 

not depend on the position of the curve or on the scale to which it is drawn and 

1:::; dimf:::; 2. 

For a more general definition let Diameter S be the supremum of the distances separating 

points of a set s in the plane and let eS := {EX : X E S}. Denote by r r the beginning part 

of r of length r. Then in the limit as r /' 00 and E "-,. 0' the quotient 

yields upper and lower dimensions satisfying 

1 :::; dim r :::; dim r :::; 2 . 

If dim r = dim r' then the common value dim r is the dimension of r' and coincides 

with various classical dimension functions appropriate to bounded and unbounded curves 

respectively. 

Abusing language, we say that r is superficial if dimf > 1. Not trivially, this coincides 

with limr--+oo r I Diameter r r = 00 if r is unbounded, and lim€ ..... 0 Area r( E) IE = 00 if r is 

bounded. The Archimedean spiral p = f) is superficial. In the alternative case the curve is 

said to be linear; the spiral p = exp fJ is linear. 

Archimedean spiral p = () Exponential spiral p = e9 

One says that an unbounded curve r is resolvable if, for some <: > 0 

lim Area fr(e)lr > 0. 
r->oo 

It turns out that the spiral p = fJ 01 is resolvable if a ~ 1, and not if a < 1. 
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1.2 PICTURESQUE SUMS 

Given a function Ut (which need be defined only at the nonnegative integers, so a given 

sequence will do) consider a particle starting at the origin at time t = 0. It moves with 

velocity constant in magnitude, but changing direction at t = 0, 1 1 2, ... ; the new directions 

are given by 21fUt mod 27r 1 taking values in [0, 27r ]. 

Plainly we may view the particle as moving in the complex plane IC rather than in ~2 ; in 

which case, up to a sensible normalisation, its path is a polygon r( u) with vertices at 

n-1 

Zn = ::>-: exp(27riuh) , n=0,1 1 2, .... 
h=O 

The core observation of [DlVIF] is tlnt a 0equence is 'equidistricbuted modulo one' if and 

only if the curve r( mu) is superficial for each positive integer m. 

It turns out that quite fascinating pictures of the initial n segments r n( u) of these curves 

can readily be drawn with aid of computer. (A number of the more attractive examples 

appear as decoration on the succeeding pages.) However the finiteness of time, and of the 

paper on which the curves are to be represented, frequently makes it difficult to actually see 

the superficiality of the complete curves, This is especially so in the unbounded case. Nor 

do there seem to be simple criteria whereby one can generally decide in advance whether a 

curve in fact is bounded. The principal portion of this note is dedicated to an analysis of 

the relatively tractable curves belonging to the class of fairly interesting sequences ( r h2 ), 

with T E ~\ Q, The secret lies in understanding the classical complete Gau£ sums, namely 

when r E Q. 
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1.3 ENTROPY 

In his address on receiving the Nobel Prize, Feynman [6] moots, on Wheeler's suggestion, 

the notion that all electrons and positrons have the same mass and (up to sign) the same 

charge because there is a unique directed curve in space-time whose intersections with IR3 

are (from time to time) the manifestations of all electrons and positrons. 

time 

e-~--0~ --e+ I e- • 
, 1 f e+ . . . 
\ : e+ : . . . ...... _ .. ,' \, ! . . . . . . . . .. . . 

The electron. 

. . . . . . . . . . . . .. .. 

With this thought in mind, and back in IR2 , we say that a time t is a straight line. Such a 

line is said to find a finite curve rr in state Nr(t) if it intersects the curve in Nr(t) points. 

Averaging over all times, we write 

Because Nr(t) is almost always well defined, plainly Nr is well defined. 

Let Kr be the convex hull of rr and denote by I8Krl the length of its boundary. By a 

theorem of Steinhaus (see [9] p.31) any 'natural' choice of the probability 

yields 

Having fixed a natural probability measure, let tk denote the measure of those times t which 

find r r in state k . Then the entropy of r r is defined as 
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and this is maximal may be seen by elementary computation) if we have selected the 

equilibrium measure yielding 

Then 

L = Nr = 2[fr[/[8Jq 
k 

entails 

[)) 

and we may attribute to r r the intrinsic 

Whilst the lead-up to this conclusion is somewhat woolly the definition itself makes sense for 

all rectifiable curves. In particular S ;::::: 0 for all f, and S = 0 if and 

line. If r is an algebraic curve of degree v then S(r) s v + 1; the 

the higher the degree. 

1.4 TEMPERATURE 

the entropy, 

The reciprocal of fJ is traditionally identified (up to a scaling constant) with the absolute 

temperature T. Then the curve has temperature 

Plainly Tr is always nonnegative and is zero if and only if 2[f r I = [BI<r I' when r r is a 

straight line. Thus only straight lines exist at T = 0, and then S = 0. 

Pursuing the somewhat questionable thermodynamic analogy might lead one to identify the 

length r = [f r [ with the volume 11,. of the curve. Then the pressure seems appropriately 

defined by = [BKr [-1 , so that the greater the pressure, the n10re confined the curve. We 

have 

so that at high temperature, indeed congenially, 2Pr Vr '"" Tr. 
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"?r curlicue" 
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1.5 lVIORE ENTROPY AND CHAOS 

log r = I) I 'I ~ 1 -log 18Kr I/ lfrl' 

as 'I ----> oo, as the entropy of the curve. 

For a resolvable unbounded curve there is the 

introduced earlier: 

relation to the notion of dimension 

ent r = 1- 1/ dimr' 

Generally, one has 

dimr::; 1/(1-entr) and dimr::; 1/(1-entr). 

Thus an infinite curve with zero a nonresolvable curve 

such as y = sin X has dimension 1 1. A fast-winding spiral, such as p = loge has 

1, to its chaotic behaviour. The p = ecx have entropy +a). 

Unbounded algebraic curves have entropy zero. A slow spiral such as p = ee which mimics 

an organised biological phenomenon, the growth of sea shells, has entropy zero. 

It appears that if an unbounded curve has greater than ~ it must be self-intersecting. 

the non-intersecting paperfolding curves that star in "FOLDS!" [3], and which 

seem both random organised, are to chaos, ·with entropy a half. 

2. Generalised GauB sums 

2.1 EXACT FORMULAE 

The 8-function B(T) = L;~= has, for T E IR, the interesting functional equation 

8(-1/T) = /Ffexp(-sgn(T)7ri/4)B(T). 

Also of course, for all T , 

The complete Gauss sums 
N-1 

I: exp(27rih2 / N) 
h=O 

sum to 



.. 320-curlicue" r,.oo (n21320) 

scale factor = 60 

.. 322-curlicue.. r,.oo(n21:!22) 

scale factor = 60 

N=3 (mod4) 

N=2(mod4) 

.. half-sum " r,. (n21:!20) 

scale factor= 120 

N=O (mod4) 

N=l(mod4) 
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.. 321-curlicue.. r,ooo (n21:!2!) 

scale factor = 60 

.. 323-curlicue.. r,ooo (n21:!23) 

scale factor = 60 

N=3(mod4) N=O(mod4) 

N=2(mod4) 

"complete Gauss Sum " r320 (n21320) 

scale factor = 60 

Modulo 4 variation of the complete GauB Sums-
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The different parts comprising this formula correspond to fairly obvious symmetries in the 

graphs alluded to at §1.2 above; for example because (N- h) 2 = h2 mod N, and according 

to the congruence class of N modulo 4 . 

The actual computation of such sums is facilitated by a convenient decomposition, whereby 

if a and b are relatively prime and N = ab, then 

N-1 a-1 b-1 

"Lexp(27rihkiN) = "Lexp(27rihkb'la) "Lexp(27rihka'lb), 
h=O h=O h=O 

where bb' = 1 mod a and aa' = 1 mod b. Moreover, there is a further reduction 

~ (2 ·hk I l) - { pk-1 Pli:-1 exp(27rihkqlpl-k) 
~ exp 1rz q p - h=D 
h=O pl-1 

Ultimately, one need only know the sums 

p-1 

L exp(27rihkqlp). 
h=O 

iU> k 

iU ~k. 

The graphs of rN(h2 IN) display a spiral structure reminiscent of the Cornu spiral of physical 

optics. That is no accident, for the latter is the graph of the function 

f(x) = [~ exp(21rit2) dt 

and, after a change of variables the complete Gau:B sums can be viewed as approximations 

to this integral. This fact is exploited by Lehmer [7] to obtain sharp estimates for the size 

of the spirals occurring in the graphs. 

To understand the spiral structure, or curlicues, that occur note that the angle at the 

(h + 1)-st Vertex of the graph fN(Th 2 ) is given by the phase difference ((h+ 1)2 - h2)2n = 

(2h + 1 )27rT between successive terms. Thus the average of the angles at the ends of the 

h-th segment is 4h7rT. 

Now take T = 11 N, so that we are dealing with complete Gau:B sums. We shall suppose that 

N is not small. For small values of h (or when h is roughly an integer multiple of N 12) the 

phase difference is quite small so the graph appears to be only gently curving. As h increases 

the phase difference initially increases, giving a spiralling effect. When the phase difference 

exceeds 1r 12 each segment tends to fold back onto the previous, resulting in a filling in of 

the spiral. Then, as h approaches N I 4 one gets sharp spikes as each successive edge almost 

reverses the previous one. Once h exceeds N I 4 the curlicue proceeds to unwind in much 

the way it was formed. Then, as h approaches N 12 the graph straightens out again prior 

to commencing the formation of a further spiral. 

Of course the significant contribution to the actual sum comes from those parts in which the 

phase is varying only a litle. It is this that constitutes the stationary phase approximation 

and accounts for the possibility of renormalising as briefly described below. 
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'' e-Clulicue '' R-Jt/4 T:1000 (n:z-r) -~- -0.112588 

renorm level= 1 scale factor= 25 x 1.33222 

" e-curlicue " R.:t14 r:w00 (n2.-) ·r-~0.133893 

renorm level = 3 scale factor= & x 4.22n3 

'' e-curlicue '' R_3r:14 f 4vo0 (n2 •) •- -0.118073 

renorm level= 5 scale factor= 1.5 x 15.8504 

Renormalisations of T e" 
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For general 7 it is evident that the shape of the initial segments of the graph will tend to 

be that yielded by graphs rN(ph 2 lq) corresponding to sharp rational approximations PI q of 

7. All good such approximations arise as truncations ( convergents) of the regular continued 

fraction expansion of 7 and very good approximations occur when the first partial quotient 

omitted is relatively large. 

The pictures decorating the present manuscript illustrate the points just made. Employing 

a convenient notation whereby we denote a continued fraction by listing its partial quotients 

we have, for example, 

7r = [3 ; 7' 15 ' 1 ' 292 ' 1 ' ...... ] ' 

enabling us to predict mini-spirals arising from the approximation [3 ; 7] = 2217 and a 

ferocious, initially dominating, spiral arising from the approximation [3 ; 7, 16] = 3551113. 

Similarly, if a is the real zero of the polynomial a 3 - a 2 - a - 1 then 

a = [1 ; 1 , 5 , 4 , 2 , 305 , ...... ] , 

and we can predict mini-curlicues spiralling according to a ::::: [1 ; 1 , 5 , 4 , 2]. On the other 

hand one has 

e - 1 = [1 ; 1 , 2 , 1 , 1 , 4 , 1 , 1 , 6 , 1 , 1 , 8 , ...... ] , 

which cannot yield exciting approximation:; and suggests virtually random behaviour of the 

corresponding graph. 

Our graphs bear out these predictions (which is unsurprising since the 'predictions' were 

made post facto). 

2.3 RENORMALISATION 

Denote the graph, as described at § 1.2, of the sum 

1 N-1 1 
SN(7) = 2 + L exp(27ri7h2) + 2, 

h=1 

by rN(7h2). Our splitting the first term, which translates the bulk of the graph by half a 

unit to the left, is a convenience to better use the functional equation for the B-function. 

We lose no generality in supposing that -t < 7 :::; t. Then 

The error in this approximate equality is of order J27 J-112 , independent of N. In other 

words, if we set 

7 1 = ((1127)) -1127 

where ((x)) denotes the nearest even integer to x, then, ·up to rescaling and a turn of 1r I 4, 

theN segments comprising the curve SN(7) are well approximated by the L2N7J segments 

of the curve SL2NTj ( 7 1). 
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"a-curlicue" R_'ll:14r4000 (n2 't) 't--0.444434 

renorm level= 1 scale factor= 25 X 1.76384 

"a-curlicue" R,,,..r4000 (n2 <) <--0.399967 

renorm level= 5 scale factor= 15 x 2.36661 

'"'"" "a-curlicue" R_,14 r4000 (n2 <) <- 0.000817279 

renorm level= 9 scaie factor= 5 x 5.29536 

Renormalisations of T = a, where a 3 - a 2 - a - 1 = 0. 
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2.4 WHY ONE MAY RENORMALISE 

Berry and Goldberg [1] obtain the renormalisation by using the Poisson summation formula 

to replace the sum by a series of integrals which are then approximated by the method of 

stationary phase. Our equivalent, and we hope insightful, procedure is in effect first to use 

the stationary phase approximation, and then the exact formula for the complete Gau:B sums. 

Let N1 , N2 , ..• be the monotonic increasing sequence of those integers for which the phase 

is closest to stationary: that is, the phase difference is as close as possible to being integral; 

thus 27 Nh :::::: h. Similarly denote by M 1 , M 2 , • . • a monotonic increasing sequence of 

integers so that 27 Mh :::::: h + ~; since the phase is rapidly changing in their neighbourhood, 

precise values for the Mh are not critical. We have 

Mo-l Mh-l 

SN(7) = L exp(27rin27) +2::: L exp(27rin272). 

n=O h>O n=Mh-1 

A typical term yields 

Mh-l Mh-Nh-l 

L exp(27rin27) = L exp(27ri(Nh + n) 27). 

Using the fact that the values of the Mh are not well defined, set 

1 
H :::::: 2(Nh- Nh-l) :::::: Mh - Nh- 1 :::::: Nh - Mh-l; 

then H:::::: (47)-1 . Noting that exp(27ri(2nNh)7):::::: 1 and recalling the value of the complete 

GauB sum, the typical term above is approximately equal to 

H 

exp(27riN~7) L exp(27rin27):::::: exp(27riN~7)(1 + i)/2-/T. 
n=-H 

The apparently wild estimations employed here are less drastic than may at first appear. 

For example, on writing 7 = (k + 71)-1 with k E 1. and J7'J <~'it is easy to see that the 

graphs of 
H H 

L exp(27rin27) and L exp(27rin2/k) 
n=-H n=-H 

are quite close. Indeed, the term by term deviation becomes significant only for m 2 large 

and this is exactly when the phase difference has become large; so the total deviation is quite 

small. Thus the complete Gau:B sum is a good estimate. Moreover, particularly for k not 

too small, the approximation ( y'T)- 1 :::::: Vk is not at all bad. 

Finally, set, as above, 7 1 = ((1/27)) -1/27. Then 7:::::: (((1/27)) + 71)/4((1/27)) 2 and Nh:::::: 

2h((1/27)). Hence 

This last observation, and summing over h, recovers the renormalisation transformation. 
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"x-curlicue" R,.14r 2500 (n2 <) <- 0.234372 
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Renormalisations of 1r, levels 0-5 . 
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"x-curlicue " R.,.14 r,000 (n2 <) <- -0.0113469 

renorm level= 7 scale factor= 0.4 X 221.387 
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Renormalisations of 1r, levels 6-11 . 
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Renormalisations of 1r, levels 12-17 . 
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2.5 REMARKS ON THE RENORMAL!SAT!ONS 

The vertices of the renormalised graph tend to lie at the centres of the curlicues in the 

graph of the original sum. 1 lrl terms of the original sum combine into a 

single term of the renormalised sum. The length of each renormalised term is approximately 

1 I J2Fl. The renormalised graph is rotated by -t 7r I 4, according to the sign of T. 

2.6 EVEN CONTINUED FRACTIONS 

It is easy to see that the sequence 

fraction expansion of the shape 

0+1_ 

, where T = To and Ti+l = r[, arises from a continued 

= [0 ; 2a1 , 2a2 , 2a3 , ...... ]. 

Then 2ah+l = (( ( -1 )"rh)). Given the usual regular continued fraction for T (as one is e.g. 

if T = e, for it is well known that e - 1 = [1 ; 1 , 2 , 1 , 1 , 4 , 1 , 1 , 6 , 1 , 1 , 8 , ...... ] -

and this is a fact easier to remember than it may be to find reference to an expansion for 

e correct to many decimal places), it becomes an interesting question to find techniques for 

. converting regular continued fractions to such 'even' continued fractions. Vve are exploring 

this problem as an independent matter, and shall be writing about it more expansively. 

One noticeable, and quite unsurprising feature of these expansions - in regular continued 

fraction expansions one knows that some 42% of the entries in the expansion of a random 

real number are 1 - is lengthy strings of entries equal to ±2. As is evident from our 

rernarks in those cases the normalisation is almost to no effect. Accordingly, Berry 

and Goldman consider collapsed renormalisations in which a sequence of such 'ineffectual' 

renormalisations is combined into one. Nevertheless (because we were not quite energetic 

enough to incorporate this refinement in our picture sequences), the accmnpanying figures 

which illustrating our remarks make no attempt to use this efficiency; our renormalisations 

have not been usefully collapsed. 

2.7 COMPUTATIONAL TECHNIQUES 

In compensation, we have taken care to ensure that our drawings are true: an interesting 

feature of son1e of the graphs which inspired our interest in the matters discussed above is 

that they are relatively unreliable for N at all large. 

We found it useful to realise that graphs fN(uh) could readily be drawn by our Apple 

LaservVriterPlus'IM using it both as a Postscript® computer and as printer*. Indeed, the 

Postscript language is admirably suited to drawing a sequence of lines of constant length 

but with varying directions; our graphs were often drawn faster than a page of usual JEX 

*vVe recommend this argument for use at bodies such as the ARC. 
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"The Loch Ness Ivfonster" [8]. ( uh = (log h )4 ). 
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text. They have been computed simultaneously with the text in the present presentation. In 

creating the graphs, our Macintosh '1M had little more use than as a text processor preparing 

the text file comprising the program. Our desire to maintain numerical accuracy involved 

some minor tricks. Ultimately, however, to prepare the numerical data to be placed in 

the program files we required no more than the 15 decimal digit accuracy provided by the 

spreadsheet Excel®. 

3. More curves 

We conclude with the undigested display of a variety of curves fN( u), our principal purpose 

being to entertain. Nonetheless, we should remark that the curves fN(h(log h )k) are readily 

explained by phase considerations of the genre discussed at §2.2 above, and indeed provide 

a rather vivid illustration of those principles. We should also mention that the final blobs 

ultimately spread to cover the entire plane in accordance with the theorem of Dekking and 

Mendes France mentioned at §1.2. The curve rN(h312 ) virtually shouts a theorem waiting 

to be proved (see Deshouillers [4]); talk of a picture being worth quite a few words. The 

Kummer sums rN(hk IN) surprise by their variety. Friends with birthdays in the latter part 

of the year (January and February are rather dull) can be honoured by being presented with 

a personalised graph r N( d h m I y) according to their birthdate d: m: y. Prime birth years y 

tend to be more attractive and to avoid unfortunate cancellation with d. 
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Logarithmic Powers. 
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scale factor= 50 
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"Spirographic" 
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"Arches" A theornm .. v waJtm<r t , o o i)e proved ( 3 · uh=ho). 
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Renormalised "Arches". 
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"Bull" (uh = h3 /1013) and "Bullring" ( uh = h3 /1002) . 
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Pretty Periodic Curves: (uh = h3 /1986) and (uh = h5 /1986). 
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"Bicentennial" ( uh = h 7 /1988) ; "Harbour Bridge" ( Uh = h3 /1005) . 
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"Alf" 
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"Ross" 




