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A Note on. Martingales with. respect 
to Complex Measures 

M. G, Cowling; G. I. Gaudry* and T. Qian** 

Let 'Y be a rectifiable Jordan curve passing through oo, and let denote its arclength 

parameterization. Assume that 'Y is a chord-arc curve: this means that there is a constant 

such that 

la-b\ < 
lz(a)- z(b)! - < oo, b. 

Let denote the ring of sets generated by the collection of dyadic intervals of length 

1!,; E 71., where l is the set of all integers, and define the "conditional expectation" 

operator 

t E I, 

where I is a dyadic interval of length 2-k. The operator Ek has a natural extension to 

. It may be thought in a natural. way, as a conditional expectation with respect 

to the finitely-additive complex measure In a recent paper, Coifman, Jones and 

Sermnes [CJS] pointed out that tl-ils conditional expectation operator has many of the 

same properties as the conditional measure. They 

outlined a of the corresponding Littlewood-Paley theorem which made use of a 

Carleson measure argument, and used the 

of the L2-boundedness of Cauchy integrals 

theorem to give a new proof 

chord-arc curves. 

In this note we establish a general theory of martingales with respect to complex 

measures. In our case, the complex measures are defined and a-additive on a .a-algebra 
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of sets F, and satisfy a natural condition with respect to the associated family of sub-o·

algebras J-j. This condition, which generalizes the chord-arc condition for curves, is enough 

to allow us to prove a number of classical theorems about martingales, but in the complex 

setting. In particular, we establish, as the main goal of this paper, a Littlewood-Paley 

theorem. Carleson measure techniques are not available in this context; in their place, we 

use adaptations of certain methods which can be found, for example, in Garsia's book [G]. 

To prove the weak type (1, 1) estimate we use a variation of Gundy's lemma. 

Thanks are due to Peter Dodds, Miloslav Jifina and Alan Mcintosh, who contributed 

to our understanding of a number of aspects of this topic. 

1. Conditional expectations with :respect to complex measures 

Throughout this note we shall work with a fixed complex measure space (fl,F,dv) and a 

sequence of cr-algebras 

:Fi c F2 c ... c :Fn c ... c F 

such that 

(i) u:,l :Fn generates 

(ii) VnEZ+={1,2, ... n ... }, VFE:F, thereexists{Uj}CFn suchthat 

As is well known, there exists a function '¢ E M(:F), the class of the F-measurable 

functions, a.t1d '!fn E M(:Fn) such that 

dz/ = '¢jdvl, 

where dvn = dvi:Fn, and Jdvl and ldvn I are the total variation measures associated to dr1 

and dvn, respectively. 
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By the Radon-Nikodym theorem, there is a function f.ln E M(Fn) such that \dvn\ = 

f.ln\dvJn. The function {!n is Fn-measurable and at most 1. We assume throughout the 

remainder of the paper that the following condition holds: there is a constant Co such 

that, if Pn = _!__, then 
f.ln 

1\Pn \\co :S Co < oo, \ln. (1) 

This condition underlies the definition of conditional expectation, and ensures the validity 

of the basic results in Lemma 2. Notice that we have the relationship \dv\n = Pn\dvn\, 

where Pn satisfies (1). 

The following lemma guarantees the existence of conditional expectations with respect 

to complex measures. 

Lemma 1. Assume that condition holds. Let f E L 1 (jdvj). Then for every n E 

there exists an essentially unique f1mction · which is :Fn-measurable, such that 

fdv 

for all sets A E 

Proof. Denote by E,.. the conditional expectation operator with respect to the mea

sure jdvln· Then 

Let 

f?/!\dvj = L En(f?/!)\dvj 

En(f¢)\dv\n = i PnEn(f?/!)\dv,j 

which is a function in M(:Fn)· It is routine to check that fn is essentially unique modulo 

the space of null, :Fn-measurable functions. 0 
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Definition 1. (Conditional Expectation) The function fn in Lemma 1 is called the 

conditional expectation of f relative to :Fn, and is denoted by Enf or E(fi:Fn)· 

Lemma 2o The conditional expectation operator E,. has the following basic properties: 

(ii) En is linear; 

(iii) \lA E Fn 

i IE,(f)l jdvj S CoL lfl ldvj 

where C0 is the constant appearing in condition (1); 

(iv) IIEnCf)IIP S Collfljp, 1 S P S oo; 

(v) if J E L 1 (jdvl), g E M(:Fn), and gf E L 1(jdvl), then En(gf) = gEn(f); 

(vi) En(1) = 1; 

(vii) m S n implies Em(Enf) = E,.j. 

Proof. (i) By the calculation in Lemma 1 we need only verify that 

In fact, for A E :Fn, 

j 7/Jjdvl = J dv = { dL'n = J } ldvnl 
A A .lA A 'f/n 

t 1 . j 1 = j ::;:--ldvln = ::;:--ldvj. 
A 'f/nPn A 'f/nPn 

Therefore 
- 1 
En(l/J) = -:;:-· 

'f/nPn 

(ii) This is a consequence of (i). 



(iii) For A E :Fn, 
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L IEn(f)jjdvj = L IPntPnEn(tfJJ)jjdvj 

:5 Co J XAIEn(~f)lldvj 
=Co J IEn(XAtfJJ)ildvj 

:5 CoL lfl jdvj, 

since the operators En are contractions on L 1 (jdvl). 

(iv) If 1 :::; p < oo, 

j IEn(f)IPjd~j = J IPntPnEn(tfJ)jPjdvj 

:5 CC j IEn(t/J)IPidvi 

:5 CC J IJIPjdvj, 

since the operators En are contractions on V(jdvi), 1 :5 p < oo. 

The case p = oo is also a consequence of (i) and the corresponding property of En· 

(v) If g E M(:Fn), then 

(vi) This is a consequence of (i). 

(vii) Let A E :Fm C :Fn· Then 

L Em(f)dv = L fdv = L En(f)dv = L Em(Enf)dv. 

From the uniqueness we conclude that Emf= Em(Enf). 0 
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Lemma. 3. The following conditions are equivalent. 

3° 3 Po E [1, oo] such that IIEnfllpo S CollfiiPo' Vf E £Po. 

Proof. The proof of Lemma 2 shows that 1° =? 2°, while it is obvious that 2° ::::} 3°. 

We proceed to prove that 3° =? 1°. If p 0 < +oo, assumption 3° means that 

In particular, iff= 1j}g, g E £Po n M(Fn), we have 

This implies that 

IIPnlloo S Co. 

If Po = oo, replace f by -:J}g, where g E Leon M(Fn), in the equality 

It follows that 

and so IIPnlloo S Co. D 

Lemma 4. Let 

E*(f) =sup IEn(f)j. 
n 

Then E* is of strong-type (p,p), 1 <p S oo, and ofweak-type (1,1). 

Proof. This is a consequence of the formula 
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and the corresponding result for standard martingales. D 

As in the standard case, if a sequence {gn}~=l has the properties gn E M(Fn) and 

Em(gn) = gm, m ~ n, then we call it a martingale. 

2. Littlewood-Paley theory 

Denote by L~ the space of functions in D'(ldvl) for which Eo(f) = 0. Iff E L5{1dvl), we 

define the square function of f to be 

00 

S(f) = L IEnf - En-dl2 • 

n=l 

Theorem. H 1 < p < oo, there is a constant Op such that 

for all f E L~(ldvl). There is a constant 01 such that 

for all f E LA(Idvl). 

01 
ldvl({x: Sf>>.})~ Tllflh 

Remarks on the proof. Among the obstacles to using standard methods to prove 

the theorem is the fact that En is no longer self-adjoint on L2 (ldvl); so we do not have 

orthogonality between the various (En- En-1 )'s. More precisely, the following is no longer 

true: 

In proving the theorem, we decompose the difference operator En- En-1 into two 

parts: the estimate on the first part reduces to the standard case; the other brings to mind 

the kind of integral that appears in Carleson measure arguments. We deal with it by using 

techniques similar to those in Garsia's book [G]. 
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Proof of the case 2 :::; p < oo 

For k E N, write 
k 

Sk(f) = L !Enf- En-tfJ 2 • 

n=l 

Substitute a= p/2, p = (Sk/Sk-1? in the following inequality: 

We have 

Let 

p')l- 1 S a(p -1)p"'-1 , a~ 1, p ~ 1. 

j S~(f) = t j S£(!) - S£_1 (f) 
k=l 

<!!. ~Jsp-2(s2- s2 ) - 2 L..J k k k-1 . 
k=l 

(} - sp-2 - sp-2 
k- k k-1" 

We then have that 

j S~(f) S ~ tt j B1(S~- S~-1) 
k=ll=l 

= ~ tt j B1(S~- SLl) 
1=1 k=l 

= ~ t j B1(t l~kil2 ), 
1=1 k=l 

where we have written ~kf = Ekf- Ek-tf· Using the decomposition 

we see that the right side of (3) is at most 

ct, j B1 t !l:.k(iff)!2 + ct, j B1 t !l:.k1f1l2 lEk-I(1f1!W 
1=1 k=l 1=1 k=l 

= CI1 + CI2 

(2) 

where we have used the fact that JEn(1f1)J-l = lPnl :::; Co a.e., and l:.kg denotes Ekg

Ek-lY· 
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The estimate of 11 is standard (see [G, pp. 28-30]): 

11 = t j 81E1(t l~k(~f)l 2 ) 
1==1 k=l 

n 

=I: 
1=1 (4) 

To estimate I 2 , set 

Then Tn is Fn-measurable and Tn;:::: 0. Therefore 

n ~" n k-1 

I2 :::; I: j thEz [I: l~k~wc 2.: Tj + a1-2)] 
1=1 k=l j=l-1 

n n 1\:-1 

= 2.:: e1E1(L 1Ak·l/JI 2 L ri) 
1=1 k=! j=!-1 

+ t j B1E{t. 1Ak~l 2 • G1-2) 
1=1 k=l 

= .J1 + Jz, 

where 

.J2 = t j BzG1-2.EI(t ~~~F:!) 
1=1 k=l 

= t I e!GI-2EI(lEn~- El-l ~1 2 ) 
1=1. (5) 

:::; 4 j (t O!)(E*( ~ !))2 

1=1 :::; 4(/ S~)(p-2)fp(jCE*(~J))P)2fp, 
and 
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n n-1 n 

J1 = L j 8zEz( L ri L i6k1/ll2 ) 

1=1 j=l-1 k=i+1 
n n-1 n 

= L j 81 L E1(ri L j6k1/ll2 ). 

1=1 j=l-1 k=j+1 

Since j + 1 2:: 1, we have 

J1 = t j 81 ~ E1(Ei+1(ri t j6k1/ll2 ) 

1=1 j=l-1 k=i+1 

= t j 81 -~ E1(riEi+1( t i6k1/ll2 ) 

1=1 J=l-1 k=j+1 
n n-1 

= L J 81 _L Ez(rjEi+1(1En1/1- Ej1/ll2 ) 

1=1 J=l-1 

n n-1 

= L J 81 L (rjiEntP- Ej1/ll2 ) 

1=1 i=l-1 (6) 

n n-1 

5: 4 L j 81 L ri 
1=1 j=l-1 

5: 4 t J 81 · Gn-1 
1=1 

5:4 j s~-2 (E*(1Pf)) 2 

5: 4( j s~)<~-2>tP( j E*(1PJ)P) 2'P· 

By combining ( 4), (5) and (6) with the fact that the maximal function operator E* 

is bounded on LP(jdvl), we conclude that 

for some constant Cp independent of f. This finishes the proof for the case 2 5: p < oo. 
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Proof for the case 1 < p ::; 2 

Since Sis a sub-linear operator, it will suffice to show that Sis of weak-type (1,1). Then 

we use the Marcinkiewicz interpolation theorem. We shall use a variant of Gundy's Lemma 

appropriate to the present context. 

Lemma 5. Let ..\ > 0, f E L1(ldvl). Then there exist g, H, h, k E L 1(ldvl) such that 

f = g + H, IHI = h + k and 

(i) ldvl( {x: supn lEng(x)l > 0}) S ~ llflh, llgll1 S CIIJII, 

(ii) :Z::::'=l IIEnh- En-1hi11 S Cllflh, in particular llhlh S CIIJII, 

(iii) llklloo s C..\, llklh s Cllflh· 

Temporarily accepting Lemma 5, let us prove the weak-type (1, 1) inequality for S. 

In the proof, we use the same letter C to denote constants that may alter from line to line. 

By using the sub-linearity of Sand the decomposition (3), we have 

S(f) s S(g) + S(H) 

00 00 

::; S(g) +Co ·~)lin(1/.>H)I2 + c~ L llin1/.>l2 IEn-1(1fJH)l 2 

n=l n=l 

Now 
00 

s2 ::; L llin1/.>l2 En-l(IHI)2 

n=l 

00 00 

S L lfin1/.>I2 1En-l(h)l2 + L lfin1/Jl2 1En-l(k)l2 

n=l n=l 

say. 
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where Co is the constant in condition (1). Since Co ;::: 1 

Now 

{x: S(f) > 4C~.A} c {x: S(g) > >.} u {x: 51 > >.}u 

U { x : T1 > .:\} U { x : Tz > .:\}. 

{x: S(g) > C {x: sup IEng(x)l > 0}. 
n 

So, by Lemma 5(i), 
c 

ldvl( {x: S(g) >.A}):::; ;:I Ifill· 

Since sl is a standard square function associated to the standard martingale En( 'lj;H), we 

have 

To handle Tz, refer to the estimate of I2 in the proof of the case 2 :::; p < oo. This shows 

that 

On the other hand 

so we get the appropriate weak-type (1, 1) estimate for T2 • 

Now look at T1 • Notice that 

n 

([ lS.~;¢.Ek-l(h)}':=l 
k=l 

is a martingale in the standard sense, and T1 is just the corresponding Littlewood-Paley 

S-function. Therefore, by the standard weak-type 1) inequality ([G, p. 58]) 

ldv!( {x: 21 > 
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C J n k-1 
= "I s~p I L fS.kV;. L fS.1hl 

k=1 1=1 

C J n-1 n 
="I s~p I L fS.1h L fS.kV;I 

1=1 k=l+1 
n-1 

= ~ j sup I L fS.1h(En1/J- E11/J )I 
n 1=1 

CJ n-1 

S "I s~p t; lfS.1hl 

cj~- -s "I L..IE1h- E1-1hl 
1=1 

c s -:x-IIJII1 
by Lemma 5(iii). Now we conclude that 

c 
ldvl({x: S(f) > 4Co.X}) S -:xllflh· 

Our last job is to prove the variant of Gundy's Lemma (Lemma 5). We shall use the 

following concept: 

Definition 2. Let r: n ---7z+ U {oo}. Then if {x: r(x) = n} E :Fn,Vn, we call r(x) 

a stopping time. By definition, :Foe =:F. 

Lemma 6. Hr(x) is a stopping time, then 

fo lfr(x)(x)lldvl S Co fo lf(x)lldvl 

where foo(x) = f(x). 

Proof. 

j lfr(x)(x)lldvl = ~ ix:r(x)=k} 1/k(Y)IIdvl + ix:r(x)=oo} IJ(y)lldvl 

S Co~ ix:r(x)=k} IJ(y)l + ix:r(x)=oo} IJ(y)l 

= Co j IJI ldvl, 

by using Lemma 2(iii). 0 
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Lemma 7. Ifr'(J.~) is a stopping time, tben 

bave J,~ = EnCfr(x))· 

= fnAr(x)(x) is a martingale; in fact we 

Vile omit the proof of Lemma 7 since there is no difference from the standard case. 

The only issue concerns measurability. (See, for example, [L]). 

Lemma 8. Iff E LP(Idvl), 1 S p < oo, then Enf-+ fin LP(Idvl). 

Proof. As in the standard case, Yc > 0, there exist n E z+, and gn such that 

gn E M(Fn) and !If- gnllp S E: (for details, see [EG, Chapter 5] for example). Then 

+ (Emgn- gn)- (f- Yn)· 

Since IIEm(f- gn)IIP S Collf- 9nll S C'oc, Ym, and if m > n, Emgn- 9n = 0, then 

lim sup I!Emf ~fliPS lim sup IIEm(f- gn)IIP +I If- gnllp S (a+ C'o)c. 
m-+oo m-+= 

This establishes the desired convergence. D 

Now we are in a position to prove Lemma 5. 

Proof of Lemma 5. Define r·(x) = inf{n: lfn(x)l >.\},with the convention that 

the infimum of the empty set is taken to be oo. It is a stopping time, since 

{x: r(x) = n} = {x: 1/I(x)l, .. ·, lfn-r(x)l S .A, lfn(x)l >A} E :Fn· 

Next write lfn(x)l = I:~=l <:fok(x), where </>k = lfkl-lfk-11, fo = 0. Set 

E:n(x) = <f>n(x)X{y:r(y)=n}(x). 

Obviously E:n 2:: 0. Define a new stopping time s by 

n 

s(x) = inf{n: "2: Ek(EkH)(x) > ..\}; 
k=O 

like r ( x), it too is a stopping time. 



24 

Now set t(x) = r(x) A s(x). We wish to prove that 

First of all 

and 

c 
jdvj({x: t(x) =f co})~ >;-1\f\h. 

{x: t(x) =f co} C {x: r(x) =f co} U {x: s(x) =f co}, 

{x: r(x) =f co}= {x: sup \fn(x)\ >.X} 
n 

c 
. . jdvj({x: r(x) =co})~ A 1\flb 

by the maximal martingale Lemma 4. On the other hand 

and 

which gives 

00 

{x: s(x) =f co} C {x: LEk(c:k+l)(x) >.A} 
k=O 

00 co 00 ,. 

LEk(t:k+I) = L Ck+l= J ifk+l\-\fk\ 
k=O {:z::r(x)=k+l} k=O k=O 

co 

~I: r !fk+ll = 
k=O J{x:r(x)=.Hl} 

\dvj({x: s(x) =J co})~ ~IIJ\h. 
From the relation ( 6) we get 

\dvj({x:t(x)=Jco})~ ~llflh· 

(6) 

(7) 

Let g(x) = f(x)- ft(x)(x), H(x) = f~(x)(x), so that Eng= - J! where f~ = fnAt(x)(x), 

Lemma 7, and 

:sup \Eng(x)j =f 0} C {x: t(x) =J co}. 
n 

From (7) it follows that property (i) of Lemma 5 holds. Notice that 

n 

\J~\ = \fnl\t(x)(x)j = Lhi + €j)X{y:s(y)2:j}' 
j=l 
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where "(j = ¢YiX{y:r(y)>j}· Set 

and 

n n 

hn(x) = L(fj- Ej-l(fj))X{y:s(y)?_j} = L 
j=l j=l 

n 

kn(x) = L)'Yj + Ej-l(fj))X{y:s(y)?:j}· 
j=l 

Obviously, hn + kn = lf!l· Since 

J f: IV}jl:::; 2::: f fj + '5"-: [ Ej-r(c:j) 
~ j }{y:s(y)?_j} j }{y:s(y)?_j} 

:s;2:Lj' Ej:S:2Ljffj 
j {y:s(y)?_j} j 

:::; 2 ~ ~x:r(x)=j} IJil:::; 2Collflll 

from Lemma 5, we conclude that there exists hE L1 such that llhlh:::; Cllf!lt and hn--+ h 

in L 1 ( jdvl). Now from Lemma 8 we also have that limn--+oo If~ I = limn-+= IEnft(x) i = !ft(x) I 
in L 1 (ldvl); hence there exists k E L1 (ld1/l) such that IIA:Ih:::; Cllfll1 and ->kin L1 . 

It remains to prove that llklloo S C>.. To do this, we shall treat the following two 

inequalities separately: 

As to (a), we have 

n n 

I L 'Yj(X)X{y:s(y)?,j}(x)j = j L ¢j(X)X{y:r(y)>j}X{y:s(y)?,j}(x)j 
j=l j=l 

\.

n/\r(x)-11\s(x) 
1 

= f; qlj(x)l:::;). 

from the definition of q\j and 



As to ({3), 

from the definition of s( x ). 
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n 

0::; L Ej-1 (c:j)·X{y:s(y)2:j} 
j=l 

a(x) 

::; L Ej-l(c:j) 
j=l 

s(x)-1 

L Ej(c:i+l)::; .A 
j=O 

This completes the proof of Lemma 5. The proof of the theorem is also complete. D 
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