A Note on Martingales with respect to Complex Measures

M. G. Cowling, G. I. Gaudry* and T. Gian**

Introduction

Let γ be a rectifiable Jordan curve passing through ∞ , and let z(x) denote its arclength parameterization. Assume that γ is a chord-arc curve: this means that there is a constant such that

$$1 \leq rac{|a-b|}{|\int_a^b z'(x)dx|} = rac{|a-b|}{|z(a)-z(b)|} \leq C_0 < \infty, \ \ orall a, \ b.$$

Let \mathcal{D}_k denote the ring of sets generated by the collection of dyadic intervals of length $2^{-k}, k \in \mathbb{Z}$, where \mathbb{Z} is the set of all integers, and define the "conditional expectation" operator E_k by

$$E_k f(t) = \int_I f(x) z'(x) dx / \int_I z'(x) dx, \ t \in I,$$

where I is a dyadic interval of length 2^{-k} . The operator E_k has a natural extension to \mathcal{D}_k . It may be thought of, in a natural way, as a conditional expectation with respect to the finitely-additive complex measure z'(x)dx. In a recent paper, Coifman, Jones and Semmes [CJS] pointed out that this conditional expectation operator has many of the same properties as the conditional expectation with respect to a positive measure. They outlined a proof of the corresponding Littlewood-Paley theorem which made use of a Carleson measure argument, and used the Littlewood-Paley theorem to give a new proof of the L^2 -boundedness of Cauchy integrals along chord-arc curves.

In this note we establish a general theory of martingales with respect to complex measures. In our case, the complex measures are defined and σ -additive on a σ -algebra

¹⁹⁸⁰ Mathematics Subject Classification (1985 revision). Primary 42B25, 60G42; secondary 42B20, 60G46.

^{*} Research supported by the Australian Research Council

^{**} Research carried out as a National Research Fellow

of sets \mathcal{F} , and satisfy a natural condition with respect to the associated family of sub- σ algebras \mathcal{F}_j . This condition, which generalizes the chord-arc condition for curves, is enough to allow us to prove a number of classical theorems about martingales, but in the complex setting. In particular, we establish, as the main goal of this paper, a Littlewood-Paley theorem. Carleson measure techniques are not available in this context; in their place, we use adaptations of certain methods which can be found, for example, in Garsia's book [G]. To prove the weak type (1, 1) estimate we use a variation of Gundy's lemma.

Thanks are due to Peter Dodds, Miloslav Jiřina and Alan McIntosh, who contributed to our understanding of a number of aspects of this topic.

1. Conditional expectations with respect to complex measures

Throughout this note we shall work with a fixed complex measure space $(\Omega, \mathcal{F}, d\nu)$ and a sequence of σ -algebras

$$\mathcal{F}_1 \subset \mathcal{F}_2 \subset \ldots \subset \mathcal{F}_n \subset \ldots \subset \mathcal{F}$$

such that

- (i) $\bigcup_{n=1}^{\infty} \mathcal{F}_n$ generates \mathcal{F} ;
- (ii) $\forall n \in \mathbb{Z}^+ = \{1, 2, \dots n \dots\}, \quad \forall F \in \mathcal{F}, \text{ there exists}\{Uj\} \subset \mathcal{F}_n \text{ such that}$

$$F \subset | U_i$$
.

As is well known, there exists a function $\psi \in \mathcal{M}(\mathcal{F})$, the class of the \mathcal{F} -measurable functions, and $\psi_n \in \mathcal{M}(\mathcal{F}_n)$ such that

$$\begin{split} |\psi| &= |\psi_n| = 1, \\ d\nu &= \psi |d\nu|, \qquad |d\nu_n| = \psi_n d\nu_n \end{split}$$

where $d\nu_n = d\nu_{|\mathcal{F}_n}$, and $|d\nu|$ and $|d\nu_n|$ are the total variation measures associated to $d\nu$ and $d\nu_n$, respectively.

By the Radon-Nikodym theorem, there is a function $\mu_n \in \mathcal{M}(\mathcal{F}_n)$ such that $|d\nu_n| = \mu_n |d\nu|_n$. The function μ_n is \mathcal{F}_n -measurable and at most 1. We assume throughout the remainder of the paper that the following condition holds: there is a constant C_0 such that, if $\rho_n = \frac{1}{\mu_n}$, then

$$\|\rho_n\|_{\infty} \le C_0 < \infty, \quad \forall n.$$
(1)

This condition underlies the definition of conditional expectation, and ensures the validity of the basic results in Lemma 2. Notice that we have the relationship $|d\nu|_n = \rho_n |d\nu_n|$, where ρ_n satisfies (1).

The following lemma guarantees the existence of conditional expectations with respect to complex measures.

Lemma 1. Assume that condition (1) holds. Let $f \in L^1(|d\nu|)$. Then for every $n \in \mathbb{Z}^+$, there exists an essentially unique function f_n , which is \mathcal{F}_n -measurable, such that

$$\int_A f_n d\nu = \int_A f d\nu$$

for all sets $A \in \mathcal{F}_n$.

Proof. Denote by \tilde{E}_n the conditional expectation operator with respect to the measure $|d\nu|_n$. Then

$$\begin{split} \int_{A} f d\nu &= \int_{A} f \psi |d\nu| = \int_{A} \tilde{E}_{n}(f\psi) |d\nu| \\ &= \int_{A} \tilde{E}_{n}(f\psi) |d\nu|_{n} = \int_{A} \rho_{n} \tilde{E}_{n}(f\psi) |d\nu_{n}| \\ &= \int_{A} \psi_{n} \rho_{n} \tilde{E}_{n}(f\psi) d\nu_{n} = \int_{A} \psi_{n} \rho_{n} \tilde{E}_{n}(f\psi) d\nu. \end{split}$$

Let

$$f_n = \psi_n \rho_n E_n(\psi f),$$

which is a function in $\mathcal{M}(\mathcal{F}_n)$. It is routine to check that f_n is essentially unique modulo the space of null, \mathcal{F}_n -measurable functions. \Box

Definition 1. (Conditional Expectation) The function f_n in Lemma 1 is called the conditional expectation of f relative to \mathcal{F}_n , and is denoted by $E_n f$ or $E(f|\mathcal{F}_n)$.

Lemma 2. The conditional expectation operator E_n has the following basic properties:

- (i) $E_n(f) = \tilde{E}_n(\psi f) / \tilde{E}_n(\psi);$
- (ii) E_n is linear;
- (iii) $\forall A \in \mathcal{F}_n$ $\int_A |E_n(f)| \ |d\nu| \le C_0 \int_A |f| \ |d\nu|$

where C_0 is the constant appearing in condition (1);

(iv) $||E_n(f)||_p \leq C_0||f||_p$, $1 \leq p \leq \infty$; (v) if $f \in L^1(|d\nu|)$, $g \in \mathcal{M}(\mathcal{F}_n)$, and $gf \in L^1(|d\nu|)$, then $E_n(gf) = gE_n(f)$; (vi) $E_n(1) = 1$; (vii) $m \leq n$ implies $E_m(E_nf) = E_mf$.

Proof. (i) By the calculation in Lemma 1 we need only verify that

$$\psi_n \rho_n = \frac{1}{\tilde{E}_n(\psi)}.$$

In fact, for $A \in \mathcal{F}_n$,

$$\begin{split} \int_{A} \psi |d\nu| &= \int_{A} d\nu = \int_{A} d\nu_{n} = \int_{A} \frac{1}{\psi_{n}} |d\nu_{n}| \\ &= \int_{A} \frac{1}{\psi_{n}\rho_{n}} |d\nu|_{n} = \int_{A} \frac{1}{\psi_{n}\rho_{n}} |d\nu|. \end{split}$$

Therefore

$$\tilde{E}_n(\psi) = \frac{1}{\psi_n \rho_n}.$$

(ii) This is a consequence of (i).

$$\begin{split} \int_{A} |E_{n}(f)| |d\nu| &= \int_{A} |\rho_{n}\psi_{n}\tilde{E}_{n}(\psi f)| |d\nu| \\ &\leq C_{0} \int \chi_{A} |\tilde{E}_{n}(\bar{\psi}f)| |d\nu| \\ &= C_{0} \int |\tilde{E}_{n}(\chi_{A}\psi f)| |d\nu| \\ &\leq C_{0} \int_{A} |f| |d\nu|, \end{split}$$

since the operators \tilde{E}_n are contractions on $L^1(|d\nu|)$.

(iv) If $1 \le p < \infty$,

$$\int |E_n(f)|^p |d\nu| = \int |\rho_n \psi_n \tilde{E}_n(\psi)|^p |d\nu|$$
$$\leq C_0^p \int |\tilde{E}_n(\psi)|^p |d\nu|$$
$$\leq C_0^p \int |f|^p |d\nu|,$$

since the operators \tilde{E}_n are contractions on $L^p(|d\nu|), \quad 1 \le p < \infty.$

The case $p = \infty$ is also a consequence of (i) and the corresponding property of \tilde{E}_n .

(v) If $g \in \mathcal{M}(\mathcal{F}_n)$, then

$$E_n(gf) = \psi_n \rho_n \tilde{E}_n(\psi gf) = g\psi_n \rho_n \tilde{E}_n(\psi f) = gE_n(f).$$

(vi) This is a consequence of (i).

(vii) Let $A \in \mathcal{F}_m \subset \mathcal{F}_n$. Then

$$\int_{A} E_m(f) d\nu = \int_{A} f d\nu = \int_{A} E_n(f) d\nu = \int_{A} E_m(E_n f) d\nu.$$

From the uniqueness we conclude that $E_m f = E_m(E_n f)$. \Box

Lemma 3. The following conditions are equivalent.

$$\begin{split} &1^{\circ} \ ||\rho_{n}||_{\infty} \leq C_{0}, \ \forall n; \\ &2^{\circ} \ \forall p \in [1,\infty], ||E_{n}f||_{p} \leq C_{0}||f||_{p}, \forall n, \forall f \in L^{p}. \\ &3^{\circ} \ \exists \ p_{0} \in [1,\infty] \text{ such that } ||E_{n}f||_{p_{0}} \leq C_{0}||f||_{p_{0}}, \ \forall n, \forall f \in L^{p_{0}}. \end{split}$$

Proof. The proof of Lemma 2 shows that $1^{\circ} \Rightarrow 2^{\circ}$, while it is obvious that $2^{\circ} \Rightarrow 3^{\circ}$. We proceed to prove that $3^{\circ} \Rightarrow 1^{\circ}$. If $p_0 < +\infty$, assumption 3° means that

$$\int |\rho_n|^{p_0} |\tilde{E}_n(\psi f)^{p_0} | d\nu| \le C_0^{p_0} \int |f|^{p_0} | d\nu|, \quad \forall f \in L^{p_0}.$$

In particular, if $f = \overline{\psi}g$, $g \in L^{p_0} \cap \mathcal{M}(\mathcal{F}_n)$, we have

$$\int |\rho_n|^{p_0} |g|^{p_0} |d\nu| \le C_0^{p_0} \int |g|^{p_0} |d\nu|, \quad \forall g \in L^{p_0} \cap \mathcal{M}(\mathcal{F}_n)$$

This implies that

 $||\rho_n||_{\infty} \leq C_0.$

If $p_0 = \infty$, replace f by $\overline{\psi}g$, where $g \in L^{\infty} \cap \mathcal{M}(\mathcal{F}_n)$, in the equality

 $||\rho_n \tilde{E}_n(\psi f)||_{\infty} \le C_0 ||f||_{\infty}.$

It follows that

 $||\rho_n g||_{\infty} \leq C_0 ||g||_{\infty}, \quad \forall g \in L^{\infty} \cap \mathcal{M}(\mathcal{F}_n),$

and so $||\rho_n||_{\infty} \leq C_0$. \Box

Lemma 4. Let

$$E^*(f) = \sup_n |E_n(f)|.$$

Then E^* is of strong-type (p, p), 1 , and of weak-type <math>(1, 1).

Proof. This is a consequence of the formula

 $E_n(f) = \rho_n \tilde{E}_n(\psi f)$

and the corresponding result for standard martingales. \Box

As in the standard case, if a sequence $\{g_n\}_{n=1}^{\infty}$ has the properties $g_n \in \mathcal{M}(\mathcal{F}_n)$ and $E_m(g_n) = g_m$, $m \leq n$, then we call it a martingale.

2. Littlewood-Paley theory

Denote by L_0^p the space of functions in $L^p(|d\nu|)$ for which $E_0(f) = 0$. If $f \in L_0^1(|d\nu|)$, we define the square function of f to be

$$S(f) = \sqrt{\sum_{n=1}^{\infty} |E_n f - E_{n-1} f|^2}.$$

Theorem. If $1 , there is a constant <math>C_p$ such that

$$||Sf||_p \le C_p ||f||_p,$$

for all $f \in L_0^p(|d\nu|)$. There is a constant C_1 such that

$$|d\nu|(\{x:Sf>\lambda\}) \leq \frac{C_1}{\lambda}||f||_1$$

for all $f \in L_0^1(|d\nu|)$.

Remarks on the proof. Among the obstacles to using standard methods to prove the theorem is the fact that E_n is no longer self-adjoint on $L^2(|d\nu|)$; so we do not have orthogonality between the various $(E_n - E_{n-1})$'s. More precisely, the following is no longer true:

$$\int (E_n - E_{n-1}) f \ \overline{(E_m - E_{m-1})g} \ |d\nu| = 0 \quad (m \neq n).$$

In proving the theorem, we decompose the difference operator $E_n - E_{n-1}$ into two parts: the estimate on the first part reduces to the standard case; the other brings to mind the kind of integral that appears in Carleson measure arguments. We deal with it by using techniques similar to those in Garsia's book [G].

Proof of the case $2 \le p < \infty$

For $k \in \mathbb{N}$, write

$$S_k(f) = \sqrt{\sum_{n=1}^k |E_n f - E_{n-1} f|^2}.$$

Substitute $\alpha = p/2$, $\rho = (S_k/S_{k-1})^2$ in the following inequality:

$$\rho^{\alpha} - 1 \le \alpha(\rho - 1)\rho^{\alpha - 1}, \quad \alpha \ge 1, \quad \rho \ge 1.$$

We have

$$\int S_n^p(f) = \sum_{k=1}^n \int S_k^p(f) - S_{k-1}^p(f)$$
$$\leq \frac{p}{2} \sum_{k=1}^n \int S_k^{p-2} (S_k^2 - S_{k-1}^2).$$

Let

$$\theta_k = S_k^{p-2} - S_{k-1}^{p-2}.$$

We then have that

$$\int S_n^p(f) \le \frac{p}{2} \sum_{k=1}^n \sum_{l=1}^k \int \theta_l (S_k^2 - S_{k-1}^2)$$
$$= \frac{p}{2} \sum_{l=1}^n \sum_{k=l}^n \int \theta_l (S_k^2 - S_{k-1}^2)$$
$$= \frac{p}{2} \sum_{l=1}^n \int \theta_l (\sum_{k=l}^n |\Delta_k f|^2),$$
(2)

where we have written $\triangle_k f = E_k f - E_{k-1} f$. Using the decomposition

$$E_{k}f - E_{k-1}f = \frac{\tilde{E}_{k}(\psi f) - \tilde{E}_{k-1}(\psi f)}{\tilde{E}_{k}(\psi)} - \frac{\tilde{E}_{k}(\psi) - \tilde{E}_{k-1}(\psi)}{\tilde{E}_{k}(\psi)\tilde{E}_{k-1}(\psi)}\tilde{E}_{k-1}(\psi f),$$
(3)

we see that the right side of (3) is at most

$$C\sum_{l=1}^{n}\int\theta_{l}\sum_{k=l}^{n}|\tilde{\Delta}_{k}(\psi f)|^{2}+C\sum_{l=1}^{n}\int\theta_{l}\sum_{k=l}^{n}|\tilde{\Delta}_{k}\psi|^{2}|\tilde{E}_{k-1}(\psi f)|^{2}$$
$$=CI_{1}+CI_{2}$$

where we have used the fact that $|\tilde{E}_n(\psi)|^{-1} = |\rho_n| \leq C_0$ a.e., and $\tilde{\Delta}_k g$ denotes $\tilde{E}_k g - \tilde{E}_{k-1}g$.

The estimate of I_1 is standard (see [G, pp. 28–30]):

$$I_{1} = \sum_{l=1}^{n} \int \theta_{l} \tilde{E}_{l} (\sum_{k=l}^{n} |\tilde{\Delta}_{k}(\psi f)|^{2})$$

= $\sum_{l=1}^{n} \int \theta_{l} \tilde{E}_{l} (|\tilde{E}_{n}(\psi f) - \tilde{E}_{l-1}(\psi f)|^{2})$
 $\leq 4 \sum_{l=1}^{n} \int \theta_{l} |\tilde{E}^{*}(\psi f)|^{2} = 4 \int S_{n}^{p-2} (\tilde{E}^{*}(\psi f))^{2}$
 $\leq 4 (\int S_{n}^{p})^{1-\frac{2}{p}} (\int (\tilde{E}^{*}(\psi f))^{p})^{2/p}.$

To estimate I_2 , set

$$G_n = \sup_{1 \le k \le n} |\tilde{E}_k(\psi f)|^2, \ G_{-2} = G_{-1} = G_0 = 0$$

$$\tau_n = G_n - G_{n-1}, \tau_0 = \tau_{-1} = 0.$$

Then τ_n is \mathcal{F}_n -measurable and $\tau_n \geq 0$. Therefore

$$I_{2} \leq \sum_{l=1}^{n} \int \theta_{l} \tilde{E}_{l} \Big[\sum_{k=l}^{n} |\tilde{\Delta}_{k}\psi|^{2} (\sum_{j=l-1}^{k-1} \tau_{j} + G_{l-2}) \Big]$$

= $\sum_{l=1}^{n} \int \theta_{l} \tilde{E}_{l} (\sum_{k=l}^{n} |\tilde{\Delta}_{k}\psi|^{2} \sum_{j=l-1}^{k-1} \tau_{j})$
+ $\sum_{l=1}^{n} \int \theta_{l} \tilde{E}_{l} (\sum_{k=l}^{n} |\tilde{\Delta}_{k}\psi|^{2} \cdot G_{l-2})$
= $J_{1} + J_{2}$,

where

$$J_{2} = \sum_{l=1}^{n} \int \theta_{l} G_{l-2} \tilde{E}_{l} (\sum_{k=l}^{n} |\tilde{\Delta}\psi|^{2})$$

= $\sum_{l=1}^{n} \int \theta_{l} G_{l-2} \tilde{E}_{l} (|\tilde{E}_{n}\psi - \tilde{E}_{l-1}\psi|^{2})$
 $\leq 4 \int (\sum_{l=1}^{n} \theta_{l}) (\tilde{E}^{*}(\psi f))^{2}$
 $\leq 4 (\int S_{n}^{p})^{(p-2)/p} (\int (\tilde{E}^{*}(\psi f))^{p})^{2/p},$

(5)

(4)

and

$$J_{1} = \sum_{l=1}^{n} \int \theta_{l} \tilde{E}_{l} \left(\sum_{j=l-1}^{n-1} \tau_{j} \sum_{k=j+1}^{n} |\tilde{\Delta}_{k} \psi|^{2} \right)$$
$$= \sum_{l=1}^{n} \int \theta_{l} \sum_{j=l-1}^{n-1} \tilde{E}_{l} (\tau_{j} \sum_{k=j+1}^{n} |\tilde{\Delta}_{k} \psi|^{2}).$$

Since $j + 1 \ge l$, we have

$$J_{1} = \sum_{l=1}^{n} \int \theta_{l} \sum_{j=l-1}^{n-1} \tilde{E}_{l} (\tilde{E}_{j+1}(\tau_{j} \sum_{k=j+1}^{n} |\tilde{\Delta}_{k}\psi|^{2})$$

$$= \sum_{l=1}^{n} \int \theta_{l} \sum_{j=l-1}^{n-1} \tilde{E}_{l}(\tau_{j}\tilde{E}_{j+1}(\sum_{k=j+1}^{n} |\tilde{\Delta}_{k}\psi|^{2}))$$

$$= \sum_{l=1}^{n} \int \theta_{l} \sum_{j=l-1}^{n-1} \tilde{E}_{l}(\tau_{j}\tilde{E}_{j+1}(|\tilde{E}_{n}\psi - \tilde{E}_{j}\psi|^{2}))$$

$$= \sum_{l=1}^{n} \int \theta_{l} \sum_{j=l-1}^{n-1} (\tau_{j}|\tilde{E}_{n}\psi - \tilde{E}_{j}\psi|^{2})$$

$$\leq 4 \sum_{l=1}^{n} \int \theta_{l} \sum_{j=l-1}^{n-1} \tau_{j}$$

$$\leq 4 \int S_{n}^{p-2} (\tilde{E}^{*}(\psi f))^{2}$$

$$\leq 4 (\int S_{n}^{p})^{(p-2)/p} (\int \tilde{E}^{*}(\psi f)^{p})^{2/p}.$$
(6)

By combining (4), (5) and (6) with the fact that the maximal function operator \tilde{E}^* is bounded on $L^p(|d\nu|)$, we conclude that

$$\left(\int S_n^p\right)^{1/p} \le C_p \left(\int |f|^p\right)^{1/p}$$

for some constant C_p independent of f. This finishes the proof for the case $2 \le p < \infty$.

Proof for the case 1

Since S is a sub-linear operator, it will suffice to show that S is of weak-type (1,1). Then we use the Marcinkiewicz interpolation theorem. We shall use a variant of Gundy's Lemma appropriate to the present context.

Lemma 5. Let $\lambda > 0$, $f \in L^1(|d\nu|)$. Then there exist $g, H, h, k \in L^1(|d\nu|)$ such that f = g + H, |H| = h + k and

(i)
$$|d\nu|(\{x: \sup_{n} |E_{n}g(x)| > 0\}) \leq \frac{C}{\lambda} ||f||_{1}, ||g||_{1} \leq C||f||,$$

(ii) $\sum_{n=1}^{\infty} ||\tilde{E}_{n}h - \tilde{E}_{n-1}h||_{1} \leq C||f||_{1}, \text{ in particular } ||h||_{1} \leq C||f||,$
(iii) $||k||_{\infty} \leq C\lambda, ||k||_{1} \leq C||f||_{1}.$

Temporarily accepting Lemma 5, let us prove the weak-type (1, 1) inequality for S. In the proof, we use the same letter C to denote constants that may alter from line to line.

By using the sub-linearity of S and the decomposition (3), we have

$$\begin{split} S(f) &\leq S(g) + S(H) \\ &\leq S(g) + C_0 \sqrt{\sum_{n=1}^{\infty} |\tilde{\Delta}_n(\psi H)|^2} + C_0^2 \sqrt{\sum_{n=1}^{\infty} |\tilde{\Delta}_n \psi|^2 |\tilde{E}_{n-1}(\psi H)|^2} \\ &\leq S(g) + C_0 S_1 + C_0^2 S_2. \end{split}$$

Now

$$S_{2} \leq \sqrt{\sum_{n=1}^{\infty} |\tilde{\Delta}_{n}\psi|^{2} \ \tilde{E}_{n-1}(|H|)^{2}}$$

$$\leq \sqrt{\sum_{n=1}^{\infty} |\tilde{\Delta}_{n}\psi|^{2} |\tilde{E}_{n-1}(h)|^{2}} + \sqrt{\sum_{n=1}^{\infty} |\tilde{\Delta}_{n}\psi|^{2} |\tilde{E}_{n-1}(k)|^{2}}$$

$$= T_{1} + T_{2},$$

say.

$$S(f) \le S(g) + C_0 S_1 + C_0^2 T_1 + C_0^2 T_2$$

where C_0 is the constant in condition (1). Since $C_0 \ge 1$

$$\{x: S(f) > 4C_0^2\lambda\} \subset \{x: S(g) > \lambda\} \cup \{x: S_1 > \lambda\} \cup \cup \{x: T_1 > \lambda\} \cup \{x: T_2 > \lambda\}.$$

Now

$$\{x: S(g) > \lambda\} \subset \{x: \sup_{n} |E_n g(x)| > 0\}.$$

So, by Lemma 5(i),

$$|d\nu|(\{x:S(g)>\lambda\}) \le \frac{C}{\lambda}||f||_1.$$

Since S_1 is a standard square function associated to the standard martingale $\tilde{E}_n(\psi H)$, we have

$$|d\nu|(\{x:S_1>\lambda\}) \leq \frac{C}{\lambda}||\psi H||_1 \leq \frac{C}{\lambda}||f||_1.$$

To handle T_2 , refer to the estimate of I_2 in the proof of the case $2 \le p < \infty$. This shows that

$$\int T_2^2 |d\nu| \le C \int |\frac{k}{\psi}|^2 \le C\lambda \int |k| \le C\lambda ||f||_1.$$

On the other hand

$$\int T_2^2 |d\nu| \ge \lambda^2 |d\nu| (\{x: T_2 > \lambda\}),$$

so we get the appropriate weak-type (1, 1) estimate for T_2 .

Now look at T_1 . Notice that

$$\{\sum_{k=1}^{n} \tilde{\Delta}_k \psi. \tilde{E}_{k-1}(h)\}_{n=1}^{\infty}$$

is a martingale in the standard sense, and T_1 is just the corresponding Littlewood-Paley S-function. Therefore, by the standard weak-type (1, 1) inequality ([G, p. 58])

$$|d\nu|(\{x:T_1>\lambda\}) \le \frac{C}{\lambda} \int \sup_{n} |\sum_{k=1}^{n} \tilde{\Delta}_k \psi.\tilde{E}_{k-1}(h)|$$

$$= \frac{C}{\lambda} \int \sup_{n} |\sum_{k=1}^{n} \tilde{\Delta}_{k} \psi. \sum_{l=1}^{k-1} \tilde{\Delta}_{l} h|$$

$$= \frac{C}{\lambda} \int \sup_{n} |\sum_{l=1}^{n-1} \tilde{\Delta}_{l} h \sum_{k=l+1}^{n} \tilde{\Delta}_{k} \psi|$$

$$= \frac{C}{\lambda} \int \sup_{n} |\sum_{l=1}^{n-1} \tilde{\Delta}_{l} h(\tilde{E}_{n} \psi - \tilde{E}_{l} \psi)|$$

$$\leq \frac{C}{\lambda} \int \sup_{n} \sum_{l=1}^{n-1} |\tilde{\Delta}_{l} h|$$

$$\leq \frac{C}{\lambda} \int \sum_{l=1}^{\infty} |\tilde{E}_{l} h - \tilde{E}_{l-1} h|$$

$$\leq \frac{C}{\lambda} ||f||_{1}$$

by Lemma 5(iii). Now we conclude that

$$|d\nu|(\{x:S(f)>4C_0\lambda\}) \le \frac{C}{\lambda}||f||_1$$

Our last job is to prove the variant of Gundy's Lemma (Lemma 5). We shall use the following concept:

Definition 2. Let $r: \Omega \to \mathbb{Z}^+ \cup \{\infty\}$. Then if $\{x: r(x) = n\} \in \mathcal{F}_n, \forall n$, we call r(x)a stopping time. By definition, $\mathcal{F}_{\infty} = \mathcal{F}$.

Lemma 6. If r(x) is a stopping time, then $\int_{\Omega} |f_{r(x)}(x)| \ |d\nu| \leq C_0 \int_{\Omega} |f(x)| \ |d\nu|$

where $f_{\infty}(x) = f(x)$.

Proof.

$$\int |f_{r(x)}(x)| \ |d\nu| = \sum_{k=1}^{\infty} \int_{\{x:r(x)=k\}} |f_k(y)| \ |d\nu| + \int_{\{x:r(x)=\infty\}} |f(y)| \ |d\nu|$$
$$\leq C_0 \sum_{k=1}^{\infty} \int_{\{x:r(x)=k\}} |f(y)| + \int_{\{x:r(x)=\infty\}} |f(y)|$$
$$= C_0 \int |f| \ |d\nu|,$$

by using Lemma 2(iii). □

Lemma 7. If r(x) is a stopping time, then $f_n^{\sharp}(x) = f_{n \wedge r(x)}(x)$ is a martingale; in fact we have $f_n^{\sharp} = E_n(f_{r(x)})$.

We omit the proof of Lemma 7 since there is no difference from the standard case. The only issue concerns measurability. (See, for example, [L]).

Lemma 8. If $f \in L^p(|d\nu|)$, $1 \le p < \infty$, then $E_n f \to f$ in $L^p(|d\nu|)$.

Proof. As in the standard case, $\forall \varepsilon > 0$, there exist $n \in \mathbb{Z}^+$, and g_n such that $g_n \in \mathcal{M}(\mathcal{F}_n)$ and $||f - g_n||_p \leq \varepsilon$ (for details, see [EG, Chapter 5] for example). Then

$$E_m f - f = E_m (f - g_n) + (E_m g_n - g_n) - (f - g_n).$$

Since $||E_m(f-g_n)||_p \leq C_0 ||f-g_n|| \leq C_0 \varepsilon$, $\forall m$, and if m > n, $E_m g_n - g_n = 0$, then

$$\limsup_{m \to +\infty} ||E_m f - f||_p \le \limsup_{m \to +\infty} ||E_m (f - g_n)||_p + ||f - g_n||_p \le (a + C_0)\varepsilon.$$

This establishes the desired convergence. \Box

Now we are in a position to prove Lemma 5.

Proof of Lemma 5. Define $r(x) = \inf\{n : |f_n(x)| > \lambda\}$, with the convention that the infimum of the empty set is taken to be ∞ . It is a stopping time, since

$$\{x: r(x) = n\} = \{x: |f_1(x)|, \dots, |f_{n-1}(x)| \le \lambda, |f_n(x)| > \lambda\} \in \mathcal{F}_n.$$

Next write $|f_n(x)| = \sum_{k=1}^n \phi_k(x)$, where $\phi_k = |f_k| - |f_{k-1}|$, $f_0 = 0$. Set

$$\varepsilon_n(x) = \phi_n(x)\chi_{\{y:r(y)=n\}}(x).$$

Obviously $\varepsilon_n \geq 0$. Define a new stopping time s by

$$s(x) = \inf\{n : \sum_{k=0}^{n} \tilde{E}_{k}(\varepsilon_{k+1})(x) > \lambda\};$$

like r(x), it too is a stopping time.

Now set $t(x) = r(x) \wedge s(x)$. We wish to prove that

$$|d\nu|(\{x:t(x)\neq\infty\})\leq \frac{C}{\lambda}||f||_1.$$

First of all

$$\{x:t(x)\neq\infty\}\subset\{x:r(x)\neq\infty\}\cup\{x:s(x)\neq\infty\},$$
(6)

and

$$\{x: r(x) \neq \infty\} = \{x: \sup_{n} |f_{n}(x)| > \lambda\}$$
$$\therefore \quad |d\nu|(\{x: r(x) = \infty\}) \le \frac{C}{\lambda} ||f||_{1}$$

by the maximal martingale Lemma 4. On the other hand

$$\{x:s(x)\neq\infty\}\subset\{x:\sum_{k=0}^\infty \tilde{E}_k(\varepsilon_{k+1})(x)>\lambda\}$$

and

$$\int \sum_{k=0}^{\infty} \tilde{E}_k(\varepsilon_{k+1}) = \sum_{k=0}^{\infty} \int \varepsilon_{k+1} = \sum_{k=0}^{\infty} \int_{\{x:r(x)=k+1\}} |f_{k+1}| - |f_k|$$
$$\leq \sum_{k=0}^{\infty} \int_{\{x:r(x)=k+1\}} |f_{k+1}| = \int |f_{r(x)}(x)| \leq C_0 ||f||_1$$

which gives

$$|d\nu|(\{x:s(x)\neq\infty\})\leq \frac{C}{\lambda}||f||_1.$$

From the relation (6) we get

$$|d\nu|(\{x:t(x)\neq\infty\})\leq \frac{C}{\lambda}||f||_1.$$
(7)

Let $g(x) = f(x) - f_{t(x)}(x)$, $H(x) = f_{t(x)}(x)$, so that $E_n g = f_n - f_n^{\sharp}$ where $f_n^{\sharp} = f_{n \wedge t(x)}(x)$, by Lemma 7, and

$$\{x: \sup_{n} |E_n g(x)| \neq 0\} \subset \{x: t(x) \neq \infty\}.$$

From (7) it follows that property (i) of Lemma 5 holds. Notice that

$$|f_n^{\sharp}| = |f_{n \wedge t(x)}(x)| = \sum_{j=1}^n (\gamma_j + \varepsilon_j) \chi_{\{y:s(y) \ge j\}},$$

)

where $\gamma_j = \phi_j \chi_{\{y: r(y) > j\}}$. Set

$$h_n(x) = \sum_{j=1}^n (\varepsilon_j - \tilde{E}_{j-1}(\varepsilon_j)) \chi_{\{y:s(y) \ge j\}} = \sum_{j=1}^n \psi_j$$

and

$$k_n(x) = \sum_{j=1}^n (\gamma_j + \tilde{E}_{j-1}(\varepsilon_j)) \chi_{\{y:s(y) \ge j\}}.$$

Obviously, $h_n + k_n = |f_n^{\sharp}|$. Since

$$\begin{split} \int \sum_{j=1}^{\infty} |\psi_j| &\leq \sum_j \int_{\{y:s(y) \geq j\}} \varepsilon_j + \sum_j \int_{\{y:s(y) \geq j\}} \tilde{E}_{j-1}(\varepsilon_j) \\ &\leq 2 \sum_j \int_{\{y:s(y) \geq j\}} \varepsilon_j \leq 2 \sum_j \int \varepsilon_j \\ &\leq 2 \sum_j \int_{\{x:r(x) = j\}} |f_j| \leq 2C_0 ||f||_1 \end{split}$$

from Lemma 5, we conclude that there exists $h \in L^1$ such that $||h||_1 \leq C||f||_1$ and $h_n \to h$ in $L^1(|d\nu|)$. Now from Lemma 8 we also have that $\lim_{n\to\infty} |f_n^{\sharp}| = \lim_{n\to\infty} |E_n f_{t(x)}| = |f_{t(x)}|$ in $L^1(|d\nu|)$; hence there exists $k \in L^1(|d\nu|)$ such that $||k||_1 \leq C||f||_1$ and $k_n \to k$ in L^1 .

It remains to prove that $||k||_{\infty} \leq C\lambda$. To do this, we shall treat the following two inequalities separately:

(α) $||\sum_{j=1}^{n} \gamma_j \chi_{\{y:s(y) \ge j\}}||_{\infty} \le C\lambda$

$$(\beta) \qquad ||\sum_{j=1}^{n} \tilde{E}_{j-1}(\varepsilon_j)\chi_{\{y:s(y)\geq j\}}|| \leq C\lambda$$

As to (α) , we have

$$\left|\sum_{j=1}^{n} \gamma_{j}(x) \chi_{\{y:s(y) \ge j\}}(x)\right| = \left|\sum_{j=1}^{n} \phi_{j}(x) \chi_{\{y:r(y) > j\}} \chi_{\{y:s(y) \ge j\}}(x)\right|$$
$$= \left|\sum_{j=1}^{n \land r(x) - 1 \land s(x)} \phi_{j}(x)\right| \le \lambda$$

from the definition of ϕ_j and r(x).

As to (β) ,

$$0 \leq \sum_{j=1}^{n} \tilde{E}_{j-1}(\varepsilon_j) \cdot \chi_{\{y:s(y)\geq j\}}$$
$$\leq \sum_{j=1}^{s(x)} \tilde{E}_{j-1}(\varepsilon_j)$$
$$= \sum_{j=0}^{s(x)-1} \tilde{E}_j(\varepsilon_{i+1}) \leq \lambda$$

from the definition of s(x).

This completes the proof of Lemma 5. The proof of the theorem is also complete. $\hfill\square$

References

- [CJS] R.R. Coifman, P.W. Jones and S. Semmes, Two elementary proofs of the L^2 boundedness of Cauchy integrals on lipschitz curves. Preprint.
- [EG] R.E. Edwards and G.I. Gaudry, Littlewood-Paley and Multiplier Theory. Springer-Verlag Berlin-Heidelberg-New York, 1977.
- [G] A. Garsia, Martingale Inequalities. Seminar Notes on Recent Progress. Benjamin, 1973.
- [L] R.L. Long, H_p martingale theory. Beijing University, 1985.
- [S] E.M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory. Princeton University Press, Princeton, 1970.

M.G. Cowling School of Mathematics University of New South Wales P.O. Box 1 Kensington. N.S.W. 2033 Australia G.I. Gaudry & T. Qian School of Mathematical Sciences The Flinders University of South Australia Bedford Park. S.A. 5042 Australia