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MONQOTONE OPERATORS AND OBSTACLE PROBLEMS
J.H. Michael

1. INTRODUCTION

Let © be a bounded open set in B and let ¢ be a continuous function on 0
(the boundary of @ ). Consider first of all the following problem.

Does there exist a continuous function u on the closure Q of 1, agreeing with 1

on 00, C" on I and satisfying the non-linear partial differential equation
.9
(1) ; %—iai(w,u(x),Du(a:)) —b(z,u(z), Du(z)) =0

for £ € . The a; and b are given functions.

If the a; and b are sufficiently smooth and satisfy an ellipticity condition as well
as certain growth conditions and if 0 is sufficiently smooth, then such a function u
is known to exist. One way of proving this is to use fixed point theory.

When such a function v exists and ¢ is a suitably smooth function, vanishing on

081, then repeated integration and integration by parts gives
(2) i/ ai(w,u,Du)—é—?édx + / b(z,u, Du)pdzr = 0.
i=1 Q2 3;2:,‘ Q

Equation (2) still makes sense when the a;, b and u are less smooth. u is called a
weak solution when (2) holds for all ¢.

When showing that a weak solution exists (under appropriate conditions on a;, b
and 00 ), fixed point theory does not seem to work. But a valuable tool is provided by
the theory of monotone and pseudo-monotone operators. This theory is based on the
following two results in R"™.

(A) The Brouwer fixed point theorem.
(B) If K isa compact convex, non-empty subset of R* and = € R™ ~ I, then there

isa y € K, such that
(v—y)-(y—2)20

forall ue K.
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The theory of monotone operators was begun by George Minty in 1962 and since
then has been considerably developed and expanded into the theory of pseudo- monotone
operators. The theory is fairly easily developed from (A) and (B) but applying it to
problems like (2) requires quite a lot of hard work. It was not easy, however, to develop
the theory in such a way that it could be applied extensively.

The theory has such wider applications than to problems like (2). If we put

(3) o= inf/;z |Dv(z)|?dz = inf'/Q [,2:; (gx%(x))z} dz,

where the infimum is taken over the set E of all Sobolev functions on ), agreeing with

1 on O in a suitable way and if we assume that E # 0, then it is well-known that
there exists a u € F, such that

) [ 1Du(@)Pde = a
Q
and that
. o= 0%u
(5) Au(z) = 0;1.e. ; 6_:c?($) =0
for z € Q.

Now let 6 be a function defined on a non-empty subset F of . Put
(6) B = inf/ | Dv(z)|dz,
Q

where now the infimum is taken over the set E* of all Sobolev functions v, agreeing

with ¢ on 00 in a suitable way and such that
(M v(z) 2 0(z)

for all o € F' (except for certain exceptional values of z , which will be specified later).
This is a simple example of an obstacle problem. If one assumes that E* # ¢,

then one can show that there exists a u € E* | with

(8) /Q |Du(z)|?dz = B.
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But in this case, u does not satisfy an equation, not even weakly. An elementary

argument shows that

9) Z/ Bx,( &cz (z)de >0

for all Sobolev functions ¢ on Q with ¢ =0 on 9Q (i.e. ¢ € Wy*(Q)) and with
(10) ¢(z) 2 (z) — u(z)

for all z € F' (excluding the exceptional values).
(9) is a simple example of a variational inequality. Variational inequalities can

come from many sources other than obstacle problems.

2. GENERAL OBSTACLE PROBLEMS
Let a and v be real numbers, such that o > 1 and sup{a—1,1} <y < a. Let

a; and b be functions on  x R x R™, which satisfy the following conditions.

(i) Each a; and b is a Caratheodory function; i.e., for almost all z € &, a;(z, -, )
and b(z,-,-) are continuous on R X R™, while for all 2 € R and p € R*, ai(-,2,p)

and (-, z,p) are measurable on (1.

(i1) There exists a constant g > 0 and such that

(11) la(z, 2,p)| < plp|*™ + plz ™ + 4,
(12) b(z, 2,p)] < plp|*™ + pulz|* 7 + 4
and

(13) p'a(a:,z,p)—}-zb(x,z,p)

2 |p|® — plz" — u
forall € l, z€ R and p€ R™.

(iii) la(z,2,p) —a(z,2,¢)] - (p—¢) >0 forall z€Q, 2z€ R and p,g € R

with p #¢q.
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Consider the following general obstacle problem.
Does there exist a u € Wh%(Q) agreeing with 7 on 9Q in some way, with

u(z) > 0(z) for ¢ € F (excluding the exceptional values) and such that
(14) i/ ai(z,u(z) b(m))a—¢(x)dx
=1 vQ ’ ’ ax,-

+/ b(z,u(z), Du(z))¢(z)dz >0
Q

for all ¢ € Wy *(Q) with
(15) #(z) 2 0(z) — u()

for all £ € F' (excluding the exceptional values).

If the inequality (14) comes from a variational problem, then the existence of u;
can be proved by variational methods as described earlier. If it does not, then under
certain assumptions on 8,7 and OS2, monotone or pseudo-monotone operators may be
used.

First of all, one must decide in what sense the solution is required to be > 6. The
solution will be a Sobolev function and these are defined almost everywhere, so one is
tempted to say u(z) > 6(z) except for a set of measure zero. This approach would rule
out an important case, discussed by H. Lewy in 1968. In Lewy’s case,  C R3, the
set F' is a straight line segment and 6 is a continuous function on F'. Since F has
measure zero, then for every Sobolev function v, one has v(z) > 6(z) for almost all
z€F.

In some work done jointly with W.P. Ziemer on obstacle problems, capacity was
used. In this work, Bessel capacity was used, but it will be easier to explain here, if I

use Riesz capacity. The Riesz capacity R(E) of a bounded subset E of R™ is defined
to be

(16) " inf /Rn f(z)%dz,

where the infimum is taken over all non-negative f € L*(R™) such that

an [ sl f@da 21
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for all y € E. Capacity is subadditive but not additive. A set of capacity zero is much

smaller than a set of measure zero.

For each Sobolev function g € WH*(Q), it can be shown that

(18) LN ARGL:
~ exists, except for a set of capacity zero ( f denotes the integral average). (18) is used
to extend the domain of definition of each Sobolev function.

We then require that the solution u of (14) should satisfy u(z) > 6(z) for quasi-all
z € F';ie. forall £ € F' except for a set of capacity zero and that (15) should hold for
quasi-all z € F'. It is not difficult to show that a theory based on capacity will include
the Lewy example. When applying the theory of pseudo-monotone operators to (14),

one needs the following theorem of Egeroff type, which is proved in [Mi].

2.1. THEOREM

Let T' be an open set in R™ and let {v,} converge strongly to v in WH%(T).
Then there is a subsequence {v.,} which converges pointwise to v, quasi-everywhere
on I'.

In [MZ] it is assumed that § satisfies a Wiener criterion at each boundary point
and that (i), (ii) and (iii) hold. A restriction has to be placed on the obstacle function
8 , particularly when 8 is unbounded. By using pseudo-monotone operators, it is shown

that there exists a function u € W,;%(Q), such that

u(z) 2 6(z) - u(=)
for quasi-all z € F, (14) holds for every ¢ € W *(Q) which vanishes outside a compact
subset of { and has

¢(z) 2 (z) — u(z)
for quasi-all z € F' and

lim u(z) = (=)
for all z € 0Q2.
In [Mi] obstacle problems involving higher order operators are discussed, general

bounded domains are considered, but the solutions only satisfy the boundary conditions

in a weak sense. Again, the theory of pseudo-monotone operators is used.
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