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AN INVITATION TO THE ANTI-PERIODIC PROBLEM 

Hiroko Okochi 

1. INTRODUCTION 

Let u be a vector-valued function defined on R. We say u is 

~-ant for a fixed ">0 if 

This property seems to have been first studied in [13]. On the other 

hand, we cal u ~-periodic if U(t+~)=U(t) holds for each teR. By 

definition, ~-anti-periodic functions are 2~-periodlc. 

In this note, we shall explain results on the anti-periodic 

problem oj nonlinear evolution equations with odd subdlfferential 

operator terms which are defined In real Hilbert spaces. For this, 

we also relate the definition and properties of subdlfferential 

operator, and some results on the periodic problem. 

The author hopes that this note will interest the,reader in the 

anti-periodic problem. 

2. SUBDIFFERENTIAL OPERATOR <PRELIMINARY> 

Let H be a real Hilbert space with lnnerproduct (.,.) and norm 

H. The subdlfferential is a (possibly multlvalued) operator 

defined as below: Let ~: H ~ (-oo,+oo] be a proper lower 

semi-continuous (l.s.c.) convex functional. The effective domain of 
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~ is the set <xeH; ~<x><+m} and denoted by D<~>. The subdil/erentiaL 

a~ of ~ is defined by 

a~<x>=<l;eH; O;,,y-x>~~<y>-~<i> hoLds for aLL yED(~) } , 

D<a~>=<xeD<~>; the set a~<x> is nonempty }. 

By definition, the relation l;ea~<x> for xeD<a~> is illustrated by the 

following figure; 
graph of ~ 

graph 

H ----~--------~x~--~Y~----------

The following properties are known ([2], [3],[11]): 

<I> If~ is differentiable at xeD<a~>. then a~<x> is a singleton set 

and a~<x>= grad ~(X). On the other hand, if xeD(a~> and~ is sharp 

at x then a~<x> is multivalued. 

<II> D<a~> = D<~>. 

<III> a~ is monotone, i.e., for all x, yeD<a~> the estimate 

(2 .1) * * <x -y , x-y> ~ o , x*ea~<x> , y*ea~<Y> 
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holds. This property is obtained by convexity of~. Moreover, since 

~is proper and l.s.c., it is known that 8~ is maxima~ monotone. 

Hence, by applying the nonlinear semigroup theorem started by Komura 

[11], 8~ generates a <nonlinear) semigroup {S(t);t~O} defined on 

D<8~) <=D<~) c H). In other words, for each u0eD<8~), the function 

S<t>u0 , tE[O,+ClO), is the unique solution in w1 • 1 <0 m•H) to the 1 oc • • 

initial-value problem 

{ 
d 
~(t) + 8~(U(t)) 3 0 , t>O , 

(2.2) 

Here the uniqueness of solutions of (2.2) is obtained by monotonicity 

(2.1), which is equivalent to nonexpansion of <S<t>;t~O}. 

<IV> The semigroup <S<t>;t~O} generated by 8~ has a smoothing effect 

property in the sense that for each u0eD<8~) one has S<t>u0eD<8~> for 

t>O. No other operator is known to have this property in the 

nonlinear-case. 

<V> The solution of (2.2) is the projection to H of the steepest 

descent on the graph G<~>cHxR. Moreover 

(2. 3·) a.e.t>O. 

This property is easily understood in the case where~ is smooth. 
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We give examples in the real Hilbert space L2 (Q) with Q a 

domain of R0 with a smooth boundary 8Q . 

Example 2.1. Put 

{ 
.l J Q I vu I 2 dx 

q.;l (U)= 2 

+oo otherwise 

Then ~l is proper l.s.c. convex functional on L2 CQ) and the 

subdifferential e~l is as below; 

Example 2.2. Put 

{ 
} f Q I vu I 2 dx 

qJ2(U)= 

"'"" ' otherwise . 

Then 

-AU , 

Example 2.3. Let p~2 . Put 

{ 

1 n leu IP - JQ .2 ex. dx 
p t.=l "L 

"'"" ' 

u E D<cp 3 ) (defined suitably) 

otherwise . 

Then. 

n e ( 1 au 1 p- 2 au ) 
e~3<uJ = i~lexi axi axi ' 

D< 3 > is defined depending on Dc~ 3 > 
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Example 2.4. 
n a 

8~4 (U)= 2 Clx.ai(X,VU) + b(U) , 
i=l 1, 

where {ai} and b satisfy some conditions (see [14]). 

Example 2.5. Let C be a closed convex subset of a Hilbert 

space H. Put 

Ic<u>= { 0 uec , 
+a> otherwise 

Then 

{ {0} , UE Int c , 
9Ic<u> = 

{ l;EH; (l;,V-U)~O for each VEC}, UE c' Int c , 

D<aic> = c 

Example 2.5 is useful if we consider parabolic differential 

equations on t-dependent domains, obstacle problems or free boundary 

problems (e.g. [9], [16], [19]). 

3. AN EVOLUTION EQUATION WITH FORCING TERM 

In this section we explain results on the periodic and 

anti-periodic problem of the following parabolic evolution equation 

defined in a real Hilbert space H; 

(3 .1) 
d 
~(t) + 9~(U(t)) ~ /(t) 

with~ a proper l.s.c. convex functional on H, 9~ the subdifferential 

of ~ and 
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(3.2) and I is -r-periodic. 

Here the regularity of I in (3.2) is assumed only in order to get the 

existence of a solution to the initial-valued problem (3.1) with any 

initial-value u0eD<8~>. 

3.1. ON THE PERIODIC PROBLEM The following results are known; 

<A> <sufficient condition) Suppose that a~ is coercive, i.e., 

(3.3) lim . f <aw<x>.x> 
R-+«> ll~U~R llxll 

or eqivalently 

~<a~> = H • 

Then there is a -r-periodic solution to (3.1). 

<B> <sufficient condition, Haraux [6]) Suppose 

(3.4) l J-rl<t>dt e Int ~<a~> • 
't: 0 

Then there is a -r-periodic solution to (3.1). 

<C> ([6]) In the case where a~ is linear, hence, by definition, a~ is 

a nonnegative self-adjoint operator, the relation 

l J-rl<t>dt e ~<a~> 
't: 0 

holds if and only if (3.1) has a -r-periodic solution. 

<D> <necessary condition, [6]) Suppose that there is a -r-periodic 

solution to (3.1). Then 

(3.5) 



185 

In fact, if there is a c;-periodic solution u to (3.1), then 

integrating (3.1) over [0,~] and next dividing by~ one has 

J't 8cp (U{t ))dt c 
0 

Here we noted that !(8cp) is convex ln H. 

is strictly monotone, or equivalently, <P is 

strictly convex, then the number of periodic solutions to (3.1) is 

one or less. In fact, for any two solutions u and v, one has 

(U(t))+8cp(V(t)), U(t)-V(t)) < 0 

a.e.t 

CF) CBalllon and Haraux [2]) Let u and v be periodic solutions to 

(3.1). Then 

U(t)-v(t) = consL E H , tE!R . 

3.2. !REMARKS Before :relating results on the anti-periodic problem 

(3.1), we give some remarks about Examples 2.1-2.4: Suppose that Q 

is unbounded in Rn. Then, for any 8cp of Examples 2.1-2.3 and 

Example·2.4 with b=O, one has 

(3.6) Int ~(9~) is empty, 

(3.7) The level set C(A):{uEH; ~(U)~A} is not compact for any 

A > min ~ , or equivalently, the semigroup {S\t)} generated by 

8~ is not completely continuous. 

On the other hand, if Q is bounded, then the properties which fail in 
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(3.6) and (3.7) are satisfied for many a~ in Examples 2.1-2.4~ 

By (3.6), if Q is unbounded, we can not use condition (3.4) to 

get the existence of periodic solution (3.1). 

Property (3.7) concerns the asymptotic strong convergence of 

S<t>x for xED<a~> in the following fact; If C(A) is compact for 

A > min ~ , then 

(3.8) S<t>x converges strongly to a minimum point of ~ as t~+oo. 

The following condition (3.9) is also known to be sufficient for 

the convergence (3.8) ([5], [18)); 

(3.9) 3S>O; ~(-SX) ~ ~(X) holds for XED(~) . 

In particular, the case of s=1 in (3.9) is the evenness of ~. or 

equivalently, the oddness of a~. Clearly, all a~ of Examples 2.1-2.4 

are able to satisfy (3.9) independently of whether or not Q is 

bounded or unbounded. 

' 3.3. THE ANTI-PERIODIC PROBLEM Our results are the following ([13J); 

THEOREM 3.1. Suppose 

(3.10) a~ is odd, or equivaLentLy, ~ is even, 

(3.11> f is ~-anti-periodic; f<t+ ~>= -f<t>, teJR. 

Then equation (3.1) has a unique ~-anti-periodic soLution. 

COROLLARY 3.2. Under (3.10) and (3.11), equation (3.1) has a 
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~-periodic soLution. 

Assumptions (3.10) and (3.11) t.ogeiher yield the anti-periodicity 

condition 

{8~ + f(t+ ~)}(-X) -(8~ + /(t)J(X), 

Hence it seems to be reasonable to assume (3.10) and (3.11) in the 

anti-periodic problem. 

Now we shall view the conditions (3.10) and (3.11) from 

Corollary 3.2. 

First we verify the necessary condition (3.5) in (D) under (3.10) 

and (3.11). In fact, by (3.10) 

{3.12) 0 E 8~(0) c ~(8~) . 

On the other hand, (3.11) yields 

(3.13) 0 . 

Hence (3.5) holds. 

Relation (3.12) holds under the generalized evenness condition 

(3.9), since 0 is a minimum point of~. Therefore one might expect 

to generalize (3.10) into (3.9) in Corollary 3.2. But we have; 

PROPOSITION 3.3. Let dim H = +oo • Then there is a proper ~.s.c. 
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convex functionaL q1 on H and !EL 2 <R·H) such that (3.9) and (3.11) 
l oc ' 

ho~d and there is no periodic so~ution to (3.1). 

We also see that condition (3.11) can not be generalized into 

(3.13) in Corollary 3.2. In fact we have; 

PROPOSITION 3.4. Let dim H = +oo • Then there is a proper L.s.c. 

convex Junctiona~ q~ and a •-periodic Junction /EL 21 CR;H) such that oc 

(3.10) and (3.13) hoLd and there is no periodic soLution to (3.1). 

By these propositions, the anti~periodic problem seems to be 

reasonable in our situation. 

4. FURTHER RESULTS ON Tl-IE ANTI-PERIODIC PROBLEM 

In this section we see the existence of anti-periodic solutions 

to differential equations in a non-monotone framework ([8]) or 

t-dependent unbounded monotone framework ([15), [16), [17]), though 

the uniqueness of anti-periodic solutions and relation to periodic 

problem are also stated in [8]. 

4.1. NON-MONOTONE PARABOLIC EQUATIONS (Haraux [8]) We consider the 

differential system in Rn of the form 

(4 .1) u • c t ) + eG w < o ) "' 1 <t ) , 

with Here 

u• denotes Cd/dt>u and we put H=R 0 . We assume 
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(4.2) <anti-periodicity) f<t+ i>= -f<t>, teR , 

(4.3) (oddness) 8G<-z>= -8G<z>, zeRn. 

We also consider the evolution equation 

(4.4) U'(t) + 8~(U(t)) - AU(t) 3 /(t) 

defined in a real Hilbert space H, where A>O, 8~ is the 

subdifferential of a proper l.s.c. convex functional ~:H ~ RU{+m} and 

/ELioc<R;H>. We assume (4.2) and 

(4.5) (oddness) 8~<-z>= -8~<z>, zeH. 

The following results are obtained; 

THEOREM 4.1. (i) If uew~~~<R;H> is a i -anti-periodic soLution to 

< 4. 1) <or < 4. 4)) , then 

(4.6) 

(4.7) 

llu' II s: llfll 
, L 2 <o.~/2;H> L 2 <o.~/2;H> 

nun m 
L <0.~/2;H> 

s: h/2 llfll 
L 2 <o.~/2;H> 

(ii) There is a i -anti-periodic soLution uew~~~<R;H> to <4.1> 

<or (4.4)). Here, in the case of (4.4), 1.1e assume that 

(4.8) For each c>O the set Ec={zED<~>: llzlls:c, ~<z>s:c} is compact. 

Proof of <i> Let u be a i -anti-periodic solution to (4.1). Then 
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multiplying (4.1) by U' and integrating over (0, ~ ) we have 

I
T./2 

]u•U 2dt + G(U(T./2)) - GCU(O)) = 
0 

I
T./2 

(f(t),u'ct))d~ 
0 

Since U(T./2)= -U(O) and G is even, we deduce 

T./2 T./2 1/2 T./2 1/2 
I <J,u'>dt :s:: <I 11/11 2dt> <I llu•U 2dt> 

0 0 0 

or (4.6). 

In case of considering (4.4), put 

G(Z) zED(cp). 

Then, by (2.3), we get (4.6) in the same way. 

To verify (4.7), let te<O,T./2). Then by (4.6) 

Uu<t>U 
t+T./2 It+T./2 

= Uuct> - ~I u<s>ds II :s:: ~ Uu<t>-u<s>Uds 
t-T./2 t-T./2 

I
t+T./2 __ 

:s:: l /T./2 11/11 ds :s:: /T./2 IIIII 2 
T. t-T./2 L2<0,T./2;H> L <O,T./2;H>. 

Hence (4.7) holds. 

Outline of Proof of <ii> For any constant a>O, we can find an 

auxiliary potential to (4.1) satisfying 

(4.9) 
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(4.10) For any z 0eH there is a solution V(.,z0 >eW~~~<O,m;H> to 

(4.11) There is a constant P>O such that IIV('t'/2;z0 >11:S:P holds 

whenever llz011:S:P . 

By Brouwer's fixed point theorem, the map T:<llzii:S:P} ~ <llzii:S:P} defined 

by Tz = -v('t'/2;z> has a fixed point z 1 in the closed ball 

<llzii:S:P}, or equivalently, v<.,z1 > is a 't'/2-anti-periodic solution to 

Since V(. ,z1 > satisfies (4.7), putting c ~ /'t'/2 11£11 
L2<0,'t'/2;H> 

and noting (4.9), we get the existence of 't'/2-anti-periodic solution 

to (4.1) 

In case of considering (4.4), using Schauder's fixed point 

theorem, we get the existence in a similar way. 

COROLLARY 4.2. Let Q be a bounded domain in Rn, 9 an odd 

nondecreasing (continuous> Junction on R and A~O. For each 

/ELi 0 bR:L~(Q)) satisfying /(t+'t'/2, .)= -!<t,.> a.e.teR, there is a 

so~ution ueLm<R:H01 <Q>> n w1 • 2 <R·L 2 <Q>> to loc ' 

(4.12) 

(4.13) 

ut- ~u + g<u> -AU= !<t,x>, 

u<t+'t'/2, .) = -u<t,.>, teR. 

<t ,x>eRxQ, 

Remarks 4.3. (i) Corollary 4.2 is of interest when 9 is sublinear at 

infinity. Because, if 9 is superlinear, then the existence of a 

't'-periodic solution is obtained under 't'-periodicity of /. Moreover 
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the existence of ~/2-anti-periodic solution is obtained by applying 

Schauder's fixed point theorem directly under the ~/2-anti-periodicity 

of /. 

(ii) In some cases of "bad" nonlinearities producing blow-up 

phenomona, we can also show the existence of anti-periodic 

solutions. (See [8; Theore• 2.4 and Corollary 2.6].) 

4.2. NON-MONOTONE HYPERBOLIC EQUATIONS C[8J) We consider the 

differential system 

(4.14) U"(t) + BCU'(t)) + 9GCU(t)) = /Ct) 

in IRn, where 9G:IRn~IRn is the gradient of a function Gew2 •""c1Rn> 
loc ' 

and /eLioc<IR;IRn). We 

assume 

(4.15) B and G are odd, 

(4.16) <Bz,z> ~ ccllzll 2- a • 

for some constants cc>O, c~O; We also consider the nonlinear wave 

equation 

(4.17) 

defined in L2 CQ) with Q a bounded domain of IRn, B:IR~IR a ~aximal 

monotone operator and /EL 2 <IR·L 2CQ)). We assume (4.15) and (4.16) loc ' 
in respect of 8 and g and some conditon on g (see [8]). 
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The following result is obtained: 

E 2 TH OREM 4,4, For any ~/2-anti-periodic !EL 10 c<R;H), there exists a 

~12-anti-periodic soLution u to (4.14) Cor ~12-anti-periodic ueak 

solution uEC<R; 1 <Q)) n <R;L 2 CQ)) to (4.17)). 

Re•ark 4.5. Put g=O and B<v>=cUvUp-lv p>l, c>O, in (4.17). 

Then, in case n:::t3 and p>(n+2)/Cn-2/, the existence of ·c-periodic 

solutions in the natural class CCR; 1 CQ)) n 

unknown for general ~-periodic forcing terms /EL 2 cR;L 2 (Q)), (See 

[8;sectlon 4] and Its references.) 

;L :L PARABOUC HHJAHONS WITH T-DEPENDENT UNBOUNDED MONOTONE TERJIIS 

In [15] and [16] (see also [17]), we obtain the existence of 

anti-periodic solutions to the parabolic evolution equation 

defined in a real Hilbert space, where 8~ is an odd subdlfferential 

operator and IFCtl;teR} Is a family of monotone operators satisfying 

the anti-periodicity condition 

DCF<t+~/2))= -D<F<tl), tER , 

F(t+;;/2) (-Z) = -F(t)z, zED(f(t)), tER 

and some conditions (see [15], [16]). We do not assume any 

compactness of ~ or FCtl in the sense of the strong topology of H. 
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Remark 4.6. The essential reason for assuming the monotonicity of 

F<t), teR, is to apply Browder's fixed point theorem, in which 

compactness in the strong topology is not assumed, but nonexpansion 

of the solutions is needed. On the other hand, in Theorem 4.1, the 

compactness (4.8) is assumed only for applying Schauder's fixed point 

theorem. 
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