Functional Calculus for Non-Commuting Operators

A. J. Pryde

1. Introduction

Let \mathscr{B} be a unital Banach algebra and $a = (a_1, ..., a_m) \in \mathscr{B}^m$. We construct a functional calculus $\Phi_a : \mathscr{F} \to \mathscr{B}$ with a joint spectrum $\gamma(a)$. The space \mathscr{F} is a Banach algebra of functions $f : \mathbb{R}^m \to \mathbb{C}$ and Φ_a is a bounded linear transformation with compact support supp (Φ_a) in \mathbb{R}^m . If the a_j commute then Φ_a is a homomorphism and if also f is a polynomial in a neighbourhood of supp (Φ_a) then $\Phi_a(f) = f(a)$. In the non-commuting case weaker properties are retained.

Our primary interest is in the case $\mathscr{B} = \mathscr{B}(X)$, the space of bounded linear operators on the Banach space X. However, it is convenient to formulate the results in the more general setting. This work extends that of Taylor [9], Anderson [1], McIntosh and Pryde [5] and Pryde [6].

¹⁹⁸⁰ Mathematics subject classification (1985 version): 47A10, 47A60.

2. Vector-valued distribution

The construction of Φ_a is via \mathscr{B} -valued distributions and the compactness of supp (Φ_a) follows from the Paley-Wiener theorem.

For this section we require only that \mathscr{B} be a Banach space. Let $\mathscr{A}(\mathbb{R}^m)$ denote the Schwartz space of rapidly decreasing functions with its natural Frechet topology. Let $L(\mathscr{A}(\mathbb{R}^m), \mathscr{B})$ denote the space of continuous linear functions from $\mathscr{A}(\mathbb{R}^m)$ to \mathscr{B} , that is the space of \mathscr{B} -valued tempered distributions.

A function $e : \mathbb{C}^m \to \mathscr{B}$ is called *entire* if it is norm differentiable in each variable ζ_j at each $\zeta = (\zeta_1, ..., \zeta_m) \in \mathbb{C}^m$. Such a function is of *Paley-Wiener type (s, r)*, where s, $r \ge 0$, if

$$\| \mathbf{e} (\zeta) \| \leq \mathbf{c}(1 + |\zeta|)^{\mathbf{s}} \mathbf{e}^{\mathbf{r} | \operatorname{Im} \zeta |}$$

for all $\zeta \in c^m$ and some c > 0.

If e is entire of Paley-Wiener type then it generates a distribution $E : \mathscr{A}(\mathbb{R}^m) \to \mathscr{B}$ where $E(f) = (2\pi)^{-m} \int_{\mathbb{R}^m} e(\xi) f(\xi) d\xi$. This integral is the Bochner integral of the \mathscr{B} -valued integrand.

Each tempered distribution $E : \mathscr{H}(\mathbb{R}^m) \to \mathscr{B}$ has a Fourier transform $\hat{E} : \mathscr{H}(\mathbb{R}^m) \to \mathscr{B}$ defined by $\hat{E}(f) = E(\hat{f})$ where $\hat{f}(\lambda) = \int_{\mathbb{R}^m} e^{-i \langle \lambda, \xi \rangle} f(\xi) d\xi$ and $\langle \lambda, \xi \rangle = \lambda_1 \xi_1 + \ldots + \lambda_m \xi_m$. So, if E is generated by e then its Fourier transform W is given by $W(f) = (2\pi)^{-m} \int_{\mathbb{R}^m} e(\xi) \hat{f}(\xi) d\xi$. The support, supp (W), of a distribution W is the smallest closed set K in \mathbb{R}^{m} such that W(f) = 0 whenever f has compact support disjoint from K.

<u>Theorem 2.1</u> (Paley-Wiener theorem) Let $W \in L(\mathscr{G}(\mathbb{R}^m), \mathscr{B})$. Then W has compact support if and only if W is the Fourier transform of a distribution E generated by an entire function e of Paley-Wiener type (s, r) for some s, $r \ge 0$. In that case, $supp(W) \subseteq \{\lambda \in \mathbb{R}^m : |\lambda| \le r\}$.

The proof of this theorem follows readily from the corresponding theorem for scalar-valued distributions. For the latter, see for example Reed and Simon [8]. The entire function e is obviously unique and we shall call it the *symbol* of W.

Let $C_c^{\infty}(\mathbb{R}^m)$ denote the space of infinitely differentiable functions on \mathbb{R}^m with compact support. If $p : \mathbb{R}^m \to \mathbb{C}$ is a polynomial, say

$$p(\lambda) = \sum_{|\alpha| \le m} a_{\alpha} \lambda^{\alpha} ,$$

then
$$p(D) = \sum_{|\alpha| \le m} a_{\alpha} D^{\alpha}$$

where
$$D = (D_1, ..., D_m)$$
 and $D_j = \frac{1}{i} \frac{\partial}{\partial \lambda_j}$. The following result was proved in [1].

<u>Theorem 2.2</u> Let $W : \mathbb{R}^m \to \mathscr{B}$ be a compactly supported distribution with symbol e. Let $\theta \in C_c^{\infty}(\mathbb{R}^m)$ be identically 1 on a neighbourhood of supp (W). Then for all polynomials $p : \mathbb{R}^m \to \mathbb{C}$, $W(\theta p) = p(D)e(0)$.

3. Examples

In this section we exhibit some entire functions e of Paley-Wiener type. These symbols give rise to functional calculi constructed in the following section. Again let *B* denote a unital Banach algebra.

We shall say that an m-tuple $a = (a_1, ..., a_m) \in \mathscr{B}^m$ is of Paley-Wiener type (s, r), where s, $r \ge 0$, if

$$\| e^{i < a, \zeta >} \| \le c(1 + |\zeta|)^{s} e^{r |\operatorname{Im} \zeta|}$$

for all $\zeta \in \mathbb{C}^m$ and some c > 0. As elsewhere, $\langle a, \zeta \rangle = a_1\zeta_1 + \ldots + a_m\zeta_m$.

So an m-tuple a is of Paley-Wiener type (s, r) if and only if the function $e_a : \zeta \mapsto e^{i < a, \zeta >}$ is of Paley-Wiener type (s, r).

Example 3.1 Let $a_1, ..., a_m$ be bounded self-adjoint operators on a Hilbert space H. Taylor [9] proved that $a = (a_1, ..., a_m)$ is of Paley-Wiener type (0, r) where $r = (|| a_1 ||^2 + ... + || a_m ||^2)^{1/2}$.

Example 3.2 Let $b \in \mathscr{B}(X)$ where X is a Banach space. It is proved in Colojoara and Foias [3] that b is a generalized scalar operator with real spectrum if and only if $|| e^{ib\xi} || \le c(1 + |\xi|)^s$ for all $\xi \in \mathbb{R}$ and some s, $c \ge 0$. Hence b is generalized scalar with real spectrum if and only if it is of Paley-Wiener type.

It follows that for commuting operators $a_1, ..., a_m$ in $\mathscr{B}(X)$, the function e_a is of Paley-Wiener type if and only if each a_j is generalized scalar with real spectrum.

Example 3.3 Let $a_j \in \mathscr{B}$ be of Paley-Wiener type (s_j, r_j) for $1 \le j \le m$. Let $\tau \in S_m$ the group of permutations on (1, ..., m). The function

$$e_{a,\tau}: \zeta \mapsto e^{i < a_{\tau(1)}, \zeta_1 > \dots e^{i < a_{\tau(m)}, \zeta_m > \dots}}$$

is of Paley-Wiener type (s, r) where $s = s_1 + ... + s_m$ and $r = (r_1^2 + ... + r_m^2)^{1/2}$.

Example 3.4 Let $\mathscr{B} = M_n$ the algebra of n by n complex matrices with a suitable norm. Suppose $a_1, ..., a_m$ are simultaneously triangularizable matrices in \mathscr{B} with real spectra. It is proved in Pryde [7] that $a = (a_1, ..., a_m)$ is of Paley-Wiener type (n - 1, r(a)) where $r(a) = \sup \{|\lambda| : \lambda \in \gamma(a)\}$ and $\gamma(a) = \{\lambda \in \mathbb{R}^m : \sum_{1}^m (a_j - \lambda_j)^2 \text{ is not invertible}\}$. Also proved is an extension of this result to the case of certain triangularizable m-tuples in $\mathscr{B}(H)$ for a separable Hilbert space H.

4. Functional calculus

For $a = (a_1, ..., a_m) \in \mathscr{B}^m$ and $\tau \in S_m$, consider the entire functions e_a and $e_{a,\tau}$ defined in section 3. If e_a (resp. $e_{a,\tau}$) is of Paley-Wiener type then it is the symbol of a compactly supported \mathscr{B} -valued distribution which we denote by W_a (resp. $W_{a,\tau}$). In such a case, let $\theta \in C_c^{\infty}(\mathbb{R}^m)$ be identically 1 in a neighbourhood of the support.

For a multi-index $\alpha = (\alpha_1, ..., \alpha_m)$ let $p_{\alpha} : \mathbb{R}^m \to \mathbb{C}$ denote the monomial $p_{\alpha}(\lambda) = \lambda^{\alpha}$ and set $|\alpha| = \alpha_1 + ... + \alpha_m$ and $\alpha! = \alpha_1! ... \alpha_m!$.

<u>Theorem 4.1</u> Let $(a_1, ..., a_m)$ be of Paley-Wiener type. For each multi-index α , $W_a(\theta p_{\alpha}) = \frac{\alpha!}{|\alpha|!} \sum_{\sigma} a_{\sigma(1)} \dots a_{\sigma(|\alpha|)}$ where the summation is over all maps $\sigma : \{1, ..., |\alpha|\} \rightarrow \{1, ..., m\}$ which assume the value j exactly α_i times for $1 \le j \le m$.

<u>Theorem 4.2</u> Let each a_j be of Paley-Wiener type. For each multi-index α and each permutation $\tau \in S_m$, $W_{a,\tau}(\theta p_{\alpha}) = a_{\tau(1)}^{\alpha} \dots a_{\tau(m)}^{\alpha}$.

These two theorems follow readily from theorem 2.2. For the first, see Anderson [1].

Following McIntosh and Pryde [5], we extend W_a (resp. $W_{a,\tau}$) from $\mathscr{I}(\mathbb{R}^m)$ to a large function space \mathscr{P}^{S} . Indeed, for $s \ge 0$ let $L_1^{S} = L_1(d\mu)$ where $d\mu = (1 + |\xi|)^{S} d\xi$ and $d\xi$ is Lebesgue measure on \mathbb{R}^m . Then \mathscr{P}^{S} is the space of inverse Fourier transforms of elements of L_1^{S} . With the norm

$$\| f \| = (2\pi)^{-m} \int_{\mathbb{R}^m} (1 + |\xi|)^{\delta} |\hat{f}(\xi)| d\xi$$

 \mathscr{F}^{s} becomes a Banach algebra under pointwise operations. Moreover, $\mathscr{A}(\mathbb{R}^{m})$ is dense in \mathscr{F}^{s} .

If e_a is of Paley-Wiener type (s, r) then $|| W_a(f) || \le c || f ||$ for all $f \in \mathcal{R}^m$ and some $c \ge 0$. Hence W_a extends uniquely to a bounded linear operator $\Phi_a : \mathscr{F}^s \to \mathscr{B}$. Moreover,

$$\operatorname{supp} (\Phi_a) = \operatorname{supp} (W_a) \subseteq \{\lambda \in \mathbb{R}^m : |\lambda| \leq r\} .$$

Similarly, if $e_{a,\tau}$ is of Paley-Wiener type (s, r) then $W_{a,\tau}$ extends to a bounded linear operator $\Phi_{\alpha,\tau} : \mathscr{F}^{S} \to \mathscr{B}$ with

$$\operatorname{supp}(\Phi_{\alpha,\tau}) = \operatorname{supp} (W_{\mathfrak{a},\tau}) \subseteq \{\lambda \in \mathbb{R}^{\mathfrak{m}} : |\lambda| \leq \mathfrak{r}\}$$

5. Joint spectrum

Much use was made in [5] and [6] of spectral sets of the following form. Let $a = (a_1, ..., a_m) \in \mathscr{B}^m$ and for $\lambda \in \mathbb{R}^m$ define $p(\lambda, a) = \prod_{j=1}^m (a_j - \lambda_j)^2$. By \mathscr{C} we will denote a closed unital subalgebra of \mathscr{B} containing each a_j , and by \mathscr{A} the intersection of all such \mathscr{C} . So $\mathscr{A} \subseteq \mathscr{C} \subseteq \mathscr{B}$. If $x \in \mathscr{C}$ then $\sigma_{\mathscr{C}}(x)$ denotes its spectrum as an element of \mathscr{C} and $\rho_{\mathscr{C}}(x)$ its resolvent. The spectral sets are defined by

$$\gamma_{\mathscr{C}}(\mathbf{a}) = \{ \lambda \in \mathbb{R}^{\mathrm{m}} : 0 \in \sigma_{\mathscr{C}}(\mathbf{p}(\lambda, \mathbf{a})) \}$$

and $\gamma(a) = \gamma_{\mathcal{A}}(a)$.

In general $\gamma_{\mathscr{B}}(a) \subseteq \gamma_{\mathscr{C}}(a) \subseteq \gamma(a)$. However, if for all $\lambda \in \mathbb{R}^{m}$ the resolvent set $\rho_{\mathscr{B}}(p(\lambda, a))$ has no bounded connected components then $\gamma_{\mathscr{B}}(a) = \gamma_{\mathscr{C}}(a) = \lambda(a)$. This is the case for example if \mathscr{B} is finite dimensional or if $\sigma_{\mathscr{B}}(p(\lambda, a)) \subseteq \mathbb{R}$ for all $\lambda \in \mathbb{R}^{m}$.

The following theorem was proved in [5]. There it was stated for the case $\mathscr{B} = \mathscr{B}(X)$, X a Banach space, but the same proof is valid in the more general setting. Part (b) for m = 1 is due to Foias [4]. Part (c) is a spectral mapping theorem.

<u>Theorem 5.1</u> Let $a = (a_1, ..., a_m)$ be a commuting m-tuple in \mathscr{B} of Paley-Wiener type (s, r).

- (a) $\Phi_a : \mathscr{B}^{\mathbb{S}} \to \mathscr{A}$ is a homomorphism of Banach algebras.
- (b) supp $(\Phi_a) = \gamma(a)$.
- (c) $\sigma(\bar{\varphi}_{a}(f)) = f(\gamma(a))$ for all $f \in \mathscr{F}^{S}$.

Again let \mathscr{C} be a closed unital subalgebra of \mathscr{B} containing $a_1, ..., a_m$. Let rad \mathscr{C} be the Jacobson radical of \mathscr{C} . So rad \mathscr{C} is the intersection of all maximal left ideals of \mathscr{C} and is a closed two-sided ideal. (See Bonsall and Duncan [2].) Let $\pi : \mathscr{C} \to /rad \mathscr{C}$ be the natural homomorphism and set $\pi(a) = (\pi(a_1), ..., \pi(a_m))$. We shall say that $a = (a_1, ..., a_m)$ commutes modulo rad \mathscr{C} if $\pi(a)$ is a commutative m-tuple. The integrands in the expressions used to define Φ_a and $\Phi_{a,\tau}$ are elements of \mathscr{C} . Hence these operators have range in \mathscr{C} . A theorem similar to the following was announced in [6].

<u>Theorem 5.2</u> Let $a = (a_1, ..., a_m)$ be an m-tuple in \mathscr{B} which commutes modulo rad \mathscr{C} and for which e_a is of Paley-Wiener type (s, r).

- (a) $\pi(a)$ is a commuting m-tuple of Paley-Wiener type (s, r) and $\pi \circ \Phi_a = \Phi_{\pi(a)}$.
- (b) supp $(\Phi_a) \supseteq \gamma_{\mathscr{C}}(a)$.
- (c) $\sigma_{\mathscr{C}}(\Phi_a(f)) = f(\gamma_{\mathscr{C}}(a))$ for all $f \in \mathscr{F}^{S}$.

<u>Theorem 5.3</u> The previous theorem remains valid with e_a replaced by $e_{a,\tau}$ and Φ_a by $\Phi_{a,\tau}$ for any permutation $\tau \in S_m$.

<u>Corollary 5.4</u> Let $a = (a_1, ..., a_m)$ be an m-tuple in \mathscr{B} which commutes modulo rad \mathscr{C} and for which each a_j is of Paley-Wiener type. Then $\gamma_{\mathscr{B}}(a) = \gamma(a)$.

(Complete proofs of these results will appear elsewhere.)

References

- [1] R.F.V. Anderson, The Weyl functional calculus, J. Funct. Anal. 4 (1969), 240-267.
- [2] F.F. Bonsall and J. Duncan, *Complete normed algebras*, Ergebnisse der Mathematik and ihrer Grenzgebiete, Band 80, Springer-Verlag, Berlin, Heidelberg, New York, 1973.
- [3] I. Colojoara and C. Foias, *Theory of generalised spectral operators*, Mathematics and its applications, vol. 9, Gordon and Breach, New York, London, Paris, 1968.
- [4] C. Foias, Une application des distributions vectorielles à la theorie spectrale, Bull. Sci. Math. (2) 84 (1960), 147-158.
- [5] A. McIntosh and A. Pryde, A functional calculus for several commuting operators, Indiana U. Math. J., 36 (1987), 421-439.
- [6] A.J. Pryde, A non-commutative joint spectral theory, Proc. Centre for Mathematical Analysis, Canberra, vol. 20 (1988), 153-161.
- [7] A.J. Pryde, Inequalities for exponentials in Banach algebras, submitted.
- [8] M. Reed and B. Simon, *Methods of modern mathematical physics I*, Academic Press, New York, London, Toronto, Sydney, San Francisco, 1980.
- M.E. Taylor, Functions of several self-adjoint operators, Proc. Amer. Math. Soc. 19 (1968), 91-98.

Department of Mathematics Monash University Clayton, Victoria 3168 Australia.