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Functional Calculus for Non-Commuting Operators 

A. J. Pryde 

1. Introduction 

Let i!iJ be a unital Banach algebra and a = (a1, ••• , am) E &1fi1. We 

construct a functional calculus <!P a : &.> -> fit with a joint spectrum y(a). 

The space &.> is a Banach algebra of functions f : !Rm ..;; rc and <t; a is a 

bounded linear transformation with compact support supp ( <!P a) in IRm. If 

the a'j commute then (JJ a is a homomorphism and if also f is a polynomial 

in a neighbourhood of supp (4ia) then .Pa(f) = f(a). In the non-commuting 

case weaker properties are retained. 

Our primary interest is in the case fit = fit(X), the space of bounded 

linear operators on the Banach space v 
-"'-· However, it is convenient to 

formulate the results in the more general setting. This work extends that 

of Taylor [9], Anderson [1], Mcintosh and Pryde [5] and Pryde [6]. 

1980 Mathematics subject classification (1985 version): 47A60. 
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2. Vector~valued distribution 

The construction of is via ~-valued distributions and the 

compactness of supp (@a) follows from the Paley-Wiener theorem. 

For this section we require only that ~ be a Banach space. Let 

9{!Rm) denote the Schwartz space of rapidly decreasing functions with its 

natural Frechet topology. Let L(9{1Rm), fR) denote the space of continuous 

linear functions from 9{1Rm) to f/J, that is the space of ~-valued 

tempered distributions. 

A function e : ICm -7 ~ is called entire if it is norm differentiable 

in each variable Cj at each C = ((1' ... , Cm) E ICm. Such a function is 

of Paley-Wiener type (s, where s, r ;::;:: 0, if 

for all C E em and some c > 0. 

If e is entire of Paley-Wiener type then it generates a distribution 

E : 9{1Rm) -7 fil where E(f) = (2nfm J m e(~) f(e) d.;. This integral is the 
IR 

Bochner integral of the fil-valued integrand. 

Each tempered distribution has a Fourier transform 

.f: : 9{1Rm) -7 ~ defined by .f:(t) = ECQ where f(A) = J e-i<A, .;> d.; 
!Rm 

and <l, ~> = \e1 + ... + A.m.;m. So, if E is generated by e then its 

Fourier transform W is given by W(f) = (2nfm J m e(<!) f(.;) de. 
IR 
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The supp (W), of a distribution W is the smallest closed 

set K in IRm such that = 0 whenever f has compact support 

disjoint from K. 

Theorem 2.1 (Paley~Wiener theorem) Let W E L(9{1Rm), fll). Then W has 

compact support if and if w is the Fourier transform of a 

distribution E generated an entire function e of Paley-Wiener type 

r) for some S, r ~ 0. In that case, supp(W) !;;;; E IRm Ill :S r}. 

The of this theorem follows from the corresponding 

theorem for scalar-valued distributions. For the latter, see for example 

Reed and Simon The entil'e function e is obviously unique and we 

shaH call it the of W. 

Let C ~ (~'m) denote the space of infinitely differentiable functions on 
'"' 

!Rm with compact supporL If p 

then p(D) 

where D and 

in [1]. 

Theo:rem 2.2 Let w IRm -l> &iJ 

symbol e. Let {) E coo 
c 

supp (W). Then for an polynomials 

a polynomial, say 

l 
I,., 

ial :::;;; m 

The follo'.;ving result was proved 

be a compactly supported distribution with 

be identically 1 on a neighbourhood of 

p : iRm -)> te, W(fJp) = p(D)e(O). 
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3. Examples 

In this section we exhibit some entire functions e of Paley-Wiener 

type. These symbols give rise to functional calculi constructed in the 

following section. Again let f/1 denote a unital Banach algebra. 

We shall say that an m-tuple is of 

Paley-Wiener type (s, r), where s, r ~ 0, if 

for all C E u::m and some c > 0. As elsewhere, <a, '> 

So an m-tuple a is of Paley-Wiener type (s, r) if and only if the 

function ea : ' ~ ei<a, '> is of Paley-Wiener type (s, r). 

Example 3.1 Let a1, • "", am be bounded self-adjoint operators on a 

Hilbert space H. Taylor [9] proved that a = (a 
1' 

... ,am) is of 

Paley-Wiener type (0, r) where r = <II a1 11 2 + ... + II 112)1/Z • 

Example 3.2 Let b E $(X) where X is a Banach space. It is proved in 

Colojoara and Foias [3] that b is a generalized scalar operator with real 

spectrum if and only if II eibt! II s c(l + I~ 1)8 for all ~ E IR and some 

s, c ~ 0. Hence b is generalized scalar with real spectrum if and only if 

it is of Paley-Wiener type. 

It follows that · for commuting operators in $(X), the 

function is of Paley-Wiener type if and only if each is 

generalized scalar with real spectrum. 
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Example 3.3 Let aj E fil be of Paley-Wiener type (sj, rj) for 1 :S j ::s; m. 

Let T E Sm the group of permutations on (1, ... , m). The function 

is of Paley-Wiener type (s, r) where and 

r = (r 2 + + r 2)1/2 
1 ... m · 

Example 3.4 Let fil = Mn the algebra of n by n complex matrices with a 

suitable norm. Suppose a1, ... , am 

matrices in fil with real spectra. 

are simultaneously triangularizable 

It is proved in Pryde [7] that 

a = (a1, ... , am) is of Paley-Wiener type (n - 1, r(a)) where 

r(a) = sup {Ill : l E y(a)} and m r 2 y(a) = {l EIR : 'r (aj - lj) is not 

invertible}. Also proved is an extension of this result to the case of 

certain triangularizable m-tuples in fi/(H) for a separable Hilbert space H. 

4. Functional calculus 

For a = (a1, ... , am) E fll11 and T E sm, consider the entire 

functions ea and ea,T defined in section 3. If ea 

Paley-Wiener type then it is the symbol of a compactly 

(resp. ea, 't') is of 

supported fi/-valued 

distribution which we denote by W (resp. W ). In such a case, let a a,-r 
(} E C~ (IRm) be identically 1 in a neighbourhood of the support. 

For a multi-index let p : IRm -7 II: 
a denote the 
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Theorem 4.1 Let (a1, ••• , am) be of Paley-Wie:ner type. For each 

a' \' multi-index a, Wa((}pa) = lafr ~ a.,.(l) ... a.,.(lal) where the summation is 

over all maps a : {1, ... , I a!} 7 {1, ... , m} which assume the value j 

exactly aj times for 1 s j s m. 

Theorem 4.2 Let each aj be of Paley-Wiener type. For each multi-index a 
al am 

and each permutation -r E Sm, Wa,-/()p01) = aT(l) •oo• a• (m)" 

These two theorems follow readily from theorem 2.2. For the first, see 

Anderson [1]. 

Following Mcintosh and Pryde [5], we extend W (resp. W ) a a,-r 

to a large function space Indeed, for s ;;::: 0 let L 8 = 
1 

is Lebesgue measure on fRm. Then 

the space of inverse Fourier transforms of elements of L1 
8• With the norm 

from 

# becomes a Banach algebra under pointwise operations. Moreover, 9{1Rm) 

is dense in #. 

If is of Paley-Wiener (s, r) then II W a(f) II :S c II f II for 

extends uniquely to a bounded 

linear operator : # 7 $, Moreover, 

Similarly, if ea,r is of Paley-Wiener type (s, r) then 

extends to a bounded linear operator ifP : # -l> f1J with 
ot,T 

supp(if/J ) = supp (W ) ~ {1 E IRm : 111 :5 r} . 
01,1: a,r 
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5. Joint spectrum 

Much use was made in [5] and [6] of spectral sets of the following 

form. Let a = (a1, ••• , am) E l!ifi1 and for A. E IRm define p(A., a) = 
m z 
~ (aj - A.j) . By <r5 we will denote a closed unital subalgebra of t'll 

containing each aj, and by .J the intersection of all such <rl. So 

.J ~ <r5 ~ t'll. If x E <r5 then u <Jx) denotes its spectrum as an element of <r5 

and p <Jx) its resolvent. The spectral sets are defined by 

y <Ja) = {A. E IRm : 0 E u <r5 (p(A., a))} 

and y(a) = y .Ja). 

In general y t'll( a) ~ y cJ a) ~ y( a). However, if for all A. E IRm the 

resolvent set p ~(A., a)) has no bounded connected components then 

y m<a) = y <Ja) = A.( a). This is the case for example if t'll is finite 

dimensional or if u m<p(A., a)) ~ IR for all A. E IRm. 

The following theorem was proved in [5]. There it was stated for the 

case t'll = t'll(X), X a Banach space, but the same proof is valid in the more 

general setting. Part (b) for m = 1 is due to Foias [4]. Part (c) is a 

spectral mapping theorem. 

Theorem 5.1 Let a = (a1, ••• , am) be a commuting m-tuple in t'll of 

Paley-Wiener type (s, r). 

(a) cJ> a : # -7 .J is a homomorphism of Banach algebras. 

(b) supp (C/> a) = y(a). 

(c) u(C/>a(f)) = f(y(a)) for all f E #. 
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Again let ~ be a closed unital subalgebra of containing 

a1, ••• , am. Let rad 'iff be the Jacobson radical of ~. So rad 'iff is the 

intersection of all maximal left ideals of <&' and is a closed two-sided 

ideaL (See Bonsall and Duncan [2].) Let n: : 'iff -7 /rad <&' be the natural 

homomorphism and set We shall say that 

a = (a1, ••• , am) commutes modulo rad <&' if n(a) is a commutative 

m-tuple. The integrands in the expresions used to define tfJ a and tfJ are a,T 

elements of <&'. Hence these operators have range in <&'. A theorem similar 

to the following was announced in [6]. 

Theorem 5.2 Let a = (a1, ••• , am) be an m~tuple in 8ll which commutes 

modulo rad <&' and for which ea is of Paley-Wiener type (s, r). 

(a) n(a) is a commuting m-tuple of Paley~Wiener type (s, r) and 

:n: 0 q;a = 4i:n:(ar 

Theorem 5.3 The previous theorem remains valid with ea replaced by 

and tl;a by tfJ for any permutation r E S . a,r m 

e a,-r 

Coronary 5.4 Let a = ... , am) be an m-tuple in 8ll which commutes 

modulo rad <&' and for which each is of Paley-Wiener type. Then 

y &ll(a) = y(a). 

(Complete proofs of these results will appear elsewhere.) 
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