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BOOLEAN ALGEBRAS OF PROJECTIONS OF UNIFORM 

MULTIPLICITY ONE 

Werner J. Ri~ker 

A classical result of J. von Neumann states that if T is a bounded selfadjoint operator 

in a separable Hilbert space, then the following four algebras are the same: (i) the algebra 

of all bounded Borel functions ofT; (ii) the weakly dosed operator algebra generated by 

T; (iii) the uniformly dosed operator algebra generated by the projections in the resolution 

of the identity forT; (iv) the bicommutant ofT. 

In Banach spaces (or, more generally, locally convex Hausdorff spaces) the analogues 

of selfadjoint operators are scalar-type spectral operators with real spectrum. The extent 

to which von Neumann's bicommutant theorem carries over to such operators Tin locally 

convex spaces X is discussed in the survey article [6]. If X is a Banach space, then the 

algebras (i)- (iii) always coincide [6; Theorem 1]. The question of whether they also agree 

with (iv) is still not satisfactorily resolved in general. For instance, it is known that if 

the resolution of the identity for T has uniform multiplicity one, then the algebras 

(iii) do coincide with [6; Theorem 1]. Unfortunately, this condition is not necessary 

[6; Remarks 6 & 7]. For non-normable spaces X, even the equality of (i) - (iii), when 

appropriately formulated, is no longer valid in general. However, if the weakly closed 

operator algebra generated by the resolution of the identity ofT is algebraically isomorphic 

to for some completely regular Hausdorff space then equality does hold, [6; 

Theorem 2]. Under this restriction, it again turns out that uniform multiplicity one is a 

sufficient condition for the equality of - (iv ). 

In practice it may be difficult to determine whether a given Boolean algebra (briefly, 

B.a.) of projections has uniform multiplicity one. However, it is often easier to establish 

whether or not a vector exists. Since the existence of a cyclic vector implies uniform 

multiplicity one, this at least some hope of testing for uniform multiplicity one in 

specific examples. Unfortunately, it is easy to produce examples of Boolean algebras of 
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projections with uniform multiplicity one which are not cyclic. For instance, this is the 

case for the B.a. of all diagonal projections in £P(r), 1 ::::; p < oo, with r an uncountable 

set. However, such examples are always exhibited in non-separable spaces which leads to 

the question of whether these are the only spaces in which this can happen. 

The purpose of this note is to examine this question. It is shown that there do indeed 

exist Boolean algebras of projections in separable spaces which are of uniform multiplicity 

one but not cyclic. However, such a space must necessarily be non-metrizable. That is, in a 

separable (and complete) metrizable locally convex space a ( u-complete) B.a. of projections 

is of uniform multiplicity one if and only if it is cyclic. In the Appendix we make some 

remarks, particularly relevant to non-metrizable spaces, concerning the relation between 

Boolean algebras of projections and spectral m.easures, thereby making the connection 

with scalar-type spectral operators. 

VVhenever X is a locally convex Hausdorfi" space, always assumed to be quasicomplete, 

let L(X) denote the space of all continuous linear operators from X into itself. It is always 

assumed that L( .. Y) is sequentially cor.nplete for the strong operator topology. The concept 

of a B.a. of projections is standard. A B.a. in L(X) is called equicontinuous if it is an 

equicontinuous subset of L(X). The notions of a-completeness and completeness of a B.a. 

used Bade in the Banach space setting [1] are algebraic and topological and consequently 

extend themselves immediately to the locally convex setting; see [8], for example, and also 

the Appendix. 

Given a B.a. A1 C and an element x EX, let ,;VI[x] denote the closed subspace 

of X generated by {Bx; BE /\11}, A complete, equicontinuous B.a, .M C L(X) is said to 

be of uniform multiplicity one if, for every x E X, there is a projection B E /\11 whose 

range is precisely M [ x J. If there exists an element x such that A1 [ x j = X, then A1 is called 

cyclic and x is called a cyclic vector for .M. 

'I'HEORElVL Let X be a separable Precbet (locally convex) space . .t-1 a-complete 

Boolean algebra }vi C is of uniform multiplicity one if and only if it is cyclic. 

Proof. The metrizability of X ensures that ./\/1 is equicontinuous [8; Proposition 1.2] 

and the separability of }[ implies that A1 is actually a complete Ra.; see the proof of 
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Corollary 4.7 in (8). 

Suppose that M has uniform multiplicity one. Let d be a translation invariant metric 

generating the topology of X. Let {xn}~=l be a countable, dense set in X. By Proposition 

2. 7 of (3] there exists in X the structure of a complex Riesz space such that X is a 

locally solid, topologically complete Riesz space which is Dedekind complete, has Lebesgue 

topology and such that the B.a. of all band projections coincides with M. Let 1·1 denote 

the corresponding Riesz space order in X. 

For each n = 1,2, ... , the ball Bn = {x E X;d(x,O) < 2-n} is open in X and so 

absorbs the bounded (singleton) set {lxnl}. That is, there is an> 0 such that anlxnl E Bn 

or, equivalently, d(anlxnl, 0) < 2-n. The translation invariance of d implies that 

d (t, •;lx ;I, t, •;lx; 1) ~ {t.:;lx ;I, 0) $ ,,t;-j, 
00 

for every n > m. By completeness of X there is an element e EX such that L ailx il =e. 
i=l 

Then e is a weak order unit in X. Indeed, if y EX and IYI/\ e = 0, then IYI/\ lxnl = 0, for 

every n = 1, 2, ... It follows that IYI/\ IYI = 0, by density of {xn}~=l and continuity of the 

lattice operations. By Proposition 2.4 (vi) of (3) the vector e EX is cyclic forM. 

The existence of a cyclic vector for M is known to imply that M has uniform multi­

plicity one; see Proposition 2.6 of (3) and the remarks prior to it, for example. D 

For non-metrizable spaces the situation is different. 

EXAMPLE. Let N = {1, 2, ... }. For each n = 1, 2, ... , let Xn be the vector subspace 

of eN whose elements have support in {1, 2, ... , n}. Fix 1 :::; p < oo. Let Xn have the 

subspace topology from J!P(N), for every n = 1, 2, ... Equip X= U~=lXn with the (strict) 

inductive lilnit topology. Then X is a separable, complete locally convex space which is 

not metrizable. Let ~ denote the u-algebra of all subsets of N and associate with each 

E E ~the projection operator P(E) E L(X) of co-ordinatewise multiplication by XE, that 

is, 

P(E)x = (XE(1)xll XE(2)xz, .. . ), x EX. 

Then M = {P(E); E E ~} is a complete, equicontinuous B.a. of projections in X. It 

is clear that M has no cyclic vector in X. However, M is of uniform multiplicity one. 
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Indeed, if x EX is non-zero then, with Ex = {n E N; Xn =/:- 0}, the cyclic space M[x] is 

precisely the range of P(Ex)· D 

APPENDIX 

The connection between Boolean algebras of projections and spectral measures (for 

example, resolutions of the identity of scalar-type spectral operators) is well known in 

the Banach space setting. Recall that a B.a. of projections M is called Bade complete 

(a--complete) if it is complete (a--complete) as an abstract B.a. with respect to the usual 

partial order of range inclusion and if, for every family (sequence) {Ba} C M, it is the 

case that 

the closed subspace of X spanned by UaBaX; see [1]. Such Boolean algebras are necessarily 

uniformly bounded in L(X), [1; Theorem 2.2]. Once this fact is available it follows [1; 

Lemma 2.3] that M satisfies the following 

Monotone (a--monotone) property: Whenever {BaJ C M is a monotonic net 

(sequence) with respect to the order in M, then lima Ba exists with respect to the weak 

operator topology in L(X) and is an element of M. 

Now, the definition of Bade completeness (a--completeness) extends immediately to 

the locally convex setting. Furthermore, whenever M is a complete (a--complete) B.a. 

which is uniformly bounded (i.e. equicontinuous), then the monotone (a--monotone) prop­

erty follows [8; Proposition 1.3]. A B.a. satisfying the monotone (a--monotone) property 

will be called mp-complete (mp-o--complete). So, every equicontinuous Bade complete (a-­

complete) B.a. is mp-complete (mp-o--complete). An examination of the proof of Theorem 

1 in [5] shows that it can be adapted to the setting of non-normable spaces to establish 

that a mp-complete (mp-o--complete) B.a. in any locally convex space is actually Bade 

complete (a--complete). In particular, for Boolean algebras in Frechet spaces, the notions 

of mp-complete (mp-o--complete) and Bade complete (a--complete) coincide. 

It may be of interest to note that, even in the Banach space setting, the "monotone 

property" version of completeness and a--completeness have been adopted as the appro­

priate definitions by some authors; see [7], for example. Granted that the main feature of 
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complete and a-complete Boolean algebras should be their realization as the range of a 

spectral measure, there is good reason for adopting the "monotone property" definition, 

especially in view of the fact that such Boolean algebras of interest exist which are not 

equicontinuous; see the Proposition below and the remarks following its proof. 

We recall that a spectral measure is a map P : 'E -t L(X), where 'E is a o--algebra 

of subsets of some set fl, which is multiplicative (i.e. P(E n F) = P(E)P(F), for every 

E, F E :E), assigns the identity operator to 0, and is countably additive for the strong 

operator topology in L(X). 

PROPOSITION. Let M be amp-a-complete Boolean algebra in L(X). Then 

there exists a <7-algebra of sets 'E and a spectral measure P : 'E -t L(X) such that 

M = {P(E);E E I:}. 

Conversely, the range of any spectral measure is a mp-<7- complete B.a. of projections. 

Proof. Realize M as the range of a finitely additive, multiplicative measure Q defined 

on the algebra A of all simultaneously open and dosed subsets of a compact, totally 

disconnected Hausdorff space rl, The assignment E t--t Q(E) is also an order isomorphism 

in the sense that E $ F (with respect to set inclusion) if and only if Q(E) $ Q(F) 

(with respect to the usual partial order for commuting projections). It follows from the 

compactness of 0 and the fact that members of A are both closed and open that Q is 

actually o--additive on A for the and hence, also for +he weak, operator topology in 

L(X), 

Suppose {En} C A is an increasing sequence of sets, Then Q(En) $ Q(En+ 1 ), 

for every n = 1, 2, ... , and so {Q(En)};::'=l C M is monotonic. By assumption, there 

is B E M such that B = limn-.co Q(En) with respect to the weak operator topology. 

By the Theorem of Extension for vector measures [4] there is a <7-additive measure 

P : 'E -t L(X) such that P(E) = Q(E), for all E E here 'E is the u-algebra generated 

by A. If A" is the system of all sets E = U;::'=1En where {En}~1 ~ A is increasing, 

then P(E) = limn-oo Q(En), for the weak operator topology, and so P(E) E M, for all 

E E Au, If Auo is the system of all sets E = n;::'=1 En where {En}~1 ~Au is decreasing, 

then P(E) = limn~,00 P(En), for the weak operator topology, and so P(E) E M, for all 
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.E E This argument can be continued via transfinite induction to conclude that the 

extended measure P: 2:: --l> L(X) assurnes all of its values in M. Accordingly, {P(E); E E 

2::} =!vi. 

It remains to check that the so defined measure P is multiplicative. This can be done 

as in the proof of Proposition 3.6 in [2]. 

That the range of a spectral measure is an abstract B.a. with the a-monotone property 

can be proved as in the Banach space setting; see [5; Lemma 1], for example. It follows 

"We conclude with some remarks. If the space X is barrelled, then it follows from the 

equieontinu-

ous. 

Problem. Is a Bade complete (a-complete) B.a. in a barrelled space necessarily 

equicontinuous '? 

In non-barrelled spaces it is easy to exhibit mp-complete Boolean 

algebras which are not equicontinuous. For let X denote 1]), 1 <p< oo, 

equipped with its weak topology. Then X 1s quasicomplete and 1s sequentially 

complete for the strong operator topology. Let ~ be the 

and, for each E E 2::, let P(E) E L(X) be the operator of pointwise multiplication by XE· 

Then P : ~ --l> is a spectral measure and hence JiA EE is a mp-o·-

complete B.a. But, A1 is not an equicontinuous subset of 
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