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lVleasures of Semi-noncompa.ctness and AM-mappings 

Sun Daqing 

In this paper, we define measures of semi-noncompactness in a locally convex 
topological linear space with respect to a seminorm, and give some sim­
ple properties, including a fixed point theorem for a certain class of condensing 
mappings. 

0. Intmdnction. 

Generalizations of the notion of a which are related 

to the and which have fmmd fruitful application in 

de 

and Schep [11] have studied a measure of non-coJm.I)a :for operators 

on Banach lattices which exploits the underlying order structure and its relation to the 

norm topology. In this paper, motivated by the ideas of [11], we introduce a notion of 

measure of semi-noncompactness for subsets of a 

reduces to that given in [11] for the norm on a Banach but which applies 

to the weak topology in a wide class of Banach lattices. These ideas lead naturally 

we prove a :fixed theorem (Theorem An important example of an AM-mapping is 

given the (so-called) Nemytsky, or operator on the Banach lattice 1) 

associated ·v<rith a given giving a 

proof of a recent result of Banas [2] which highlights the natural role the order 

structure (Theorem \Ale assume throughout that the reader has some familiarity with 

the terminology and theory of Banach lattices, as can be found in the books [7], [9], [12]. 

1980 Mathematic3 Subject Classificaiion (1985 revision). Primary 46A40; secondary 

L17B55. 
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LDefinitions and basic results 

Let ( E, r) be a real, locally convex topological linear space. We assume that there is 

an order relation :=; in E, which makes E a vector lattice. For x E E, let x+ = x V 0, x- = 

( -x) V 0, Jx! = x+ + x-, and E-1- = { x E EJ x 2 0}. We assume that the topology r and 

the partial order :=; satisfy the following condition (H): 

(H). If x E E and if { xn} C E is any sequence which is r-convergent to x, then 

there exists a subsequence {xn;} C {x,J and there exist elements y, z E E with 0 :=; x+ :=; 

y, 0 :=; x- :=; z such that the subsequence {x~) (respectively {x;;:)) is r-convergent toy 

(respectively z). 

It is clear that condition (H) implies that the positive cone E-1- is r-closed in E. We 

remark that if E is a Banach lattice and if r is the norm topology on E then condition 

(H) is clearly satisfied since the lattice operations are continuous for the norm topology. If 

r is the weak topology on a Banach lattice then the situation is somewhat different, since 

that lattice operations are, in general, not weakly continuous. However, condition (H) will 

be satisfied for the weak topology of a Banach lattice E if the solid hull of any weakly 

compact subset of E is again relatively weakly compact, in particular, if E is reflexive or 

if E is an abstract L-space. 

Let ¢ be a seminorm in E, which is lower semicontinuous with respect to r, that 

is, if Bq, = {x E EJ <f;(x) :=; then B¢ is r-closed. In addition, we suppose that ¢is 

monotone with respect to the given partial order, that is, 0 S x :=; y implies ¢( x) :=; ¢(y ). 

If DC E, and if there exists r > 0 such that DC rB</>, then Dis called ¢-bounded. D 

is called almost order-bounded relative to !/>, if given E > 0, there exists u E E-1- such that 

D C [-u, u] + eB</>. This is equivalent to the statement: given f. > 0, there exists u E E+ 

such that 

Vx ED. 

'vVe remark that if E is an abstract L-space and if ¢ is the given norm on E then a subset 

D C E is almost order-bounded relative to ql if and only if Dis relatively weakly compact. 
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[7]0 For any subset D in E, define 

= inf{li > 0 I 3u E E+ such that DC [-u,tt] + liBq, }. 

It is seen that 

= inf{{j > 0 i 3tt E E+ such that i -- :::; 5,\fx ED}. 

We say that of D with respect to </J. We 

will omit </; if there is no of confusiono Our definition is motivated by t.he measure 

de and Schep [11 J and reduces to theirs for 

the case that E is a Banach lattice with <jJ the norm on E and T the norm 

if E i.s an abstract L-space and if (P is the norm on E then p,f; is the measure 

of weak F.Sode Blasi 

which for the case that E is a. Banach lattice 

and on E may be found in 

Lemma l, If D, sets in E 1 1~hen 

l) = xo E 

p(t5) = denotes the closure of D with respect io r; 

p(co(D)) ~= where 

Proof, and are clear, 

(ii) Let xk E k = 1, 20 Given E > 0, there exists Uk ?: 0 such that 

c + k: = 1,2. 



41 

It follows that 

p(D1 + Dz) :-:::; p(DI) + p(Dz) + E, 

for every E > 0, and (ii) follows. 

(v) From (iii), it follows that p(D) :-:::; p(l5). To prove the reverse inequality, if E > 0 is 

given, then there exists u E E+ such that 

Vx ED. 

If x E D,there exsists a sequence {x,} C D, with Xn --+ 7 x. By (H), there exists a 

subsequence {xn;} C {xn} satisfying: x;t; --+ y, Xn; +--+ z, and x+ :-:::; y, x- :-:::; z. So 

lxn; 1- u --+ 7 v- u, where v = y + z. By (H) again, there exists a subsequence {xn;'} 

of { x n; } such that 

From lower semicontinuity of cp relative to r and the fact ¢ is monotone, we have 

¢((1xl- u)+) :-:::; ¢;((v- u)+) 

:-:::; ¢(lim(lxn., i- u)+) 
J' J 

:-:::; lim,inf ¢((1xn;' 1- u)+) 
J 

:-:::; p(D) + t Vx E D. 

and the conclusion follows. 

(vi) By (iii) and (v), it is only necessary to prove p(co(D)) :-:::; p(D). For any ex> p(D), 

there exists u E E+ such that 

DC [-u, u] + aBq,. 

Because [-u, u] + aB¢ is a convex set, it follows that 

co(D) C [-u,u] + aB</>. 
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So and we get the conclusion. vVe now give a generaliza-

tion of the notion of r...J.n-cuH!JJ<l'"" •••. ~ ... ,... •.•• '"' studied in Section 123]. 

Definition 2. Let (E,7) be a locally convex real linear topological space, which is 

in addition a vector lattice such that condition (H) is satisfied, and let ¢Y be a monotone 

seminorm in E. Let D be a subset of E and P: D -t E be a 7-continuous mapping, which 

maps ¢Y-bounded sets to sets. IfF maps each ¢>-almost order bounded subset 

of D to a set, then F is called an AM-mapping on D. If for any 

set 8 C the condition > 0 implies < p(S), then F is called a 

Theorem 3, Suppose D is a 

If F: D -t D is a t:muH:n.•nw 

and 7-closed convex :mbset in E. 

in D. 

Proof. Let x 0 E D. Let Z be the collection of all r-dosed convex subsets of D which 

contain x 0 and are invariant under F. Because D E Z, Z is If 

then xo E c So is r-closed and convex, c c 

c c 

By co{F(S0 ), xo} E and from the definition of we have 

co{F(So), 

Lemma 1, it follows that 

= p(co{F(So),xo}) = xo}) = 

As F is a condensing rm:LPlPHJ.I!;, = 0, so that is an almost order -bounded 

compact since F is an AM-mapping. From 

and 

and 

itself consequently IS 

is 7-compact. By the fixed-point theorem [6], F has at least one fixed 

point in 80 C D and the proof is complete, 
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2. An example. 

In this section, we indicate how the approach of the previous section may be applied 

to give an alternative proof of a recent result of .J.Banas [2] concerning fixed points of the 

superposition operator on £ 1 (0, 1). Let 

f(t,x)=f: (O,l)xR1 -+R1 

satisfy the Caratheodory conditions, that is, f is measurable in t for any x and continuous 

in x for almost all t E (0, 1). Such a function f will be called a Caratheodory function. If 

f is a Caratheodory function then the operator F defined (on some appropriate function 

space on (0,1)) by setting 

F(x)(t)=f(t,x(t)), tE(O,l) 

is known as a Nemytsky or superposition operator. It is a well known result ofKrasnose/>skii 

[8], that F maps £ 1 (0, 1) continuously into itself if and only if there exists a function 

a(.) E £ 1 (0, 1) and a non-negative constant b such that 

[f(t,x)l:::; a(t) + b[xl 

for all (t, x) E (0, 1) x R 2 . The following result is due to Banas [2]. 

Theorem 4.Let f: (0, 1) x R 1 -+ R 1 be a Caratheodory function and suppose thai f 

satisfies the following conditions 

(i). f is nondecreasing on 1) x R 1 in the sense that 

for almost all (tt, t 2 ) E (0, 1)2 such that t 1 :::; t2 and 

(ii). There exists a non-negative function a E £ 1 (0, 1) and a constant b with 0 :::; b < 1 

such that the inequality 

x)l:::; a(t) + blxl (3) 
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holds for almost t E (0, 1) and all x E R 1 . IfF is the N emytsky operator on L 1 ( 0, 1) 

defined by setting 

F(x)(t) = f(t,x(t)), t E (0, 1), 

then F has a fixed point in L 1 (0, 1), which is non-decrea.sing in (0, 1). 

Proof. We denote by B the unit ballin L1 (0, 1 ). Observe first that if x, y, z E L1 (0, 1) 

and if 

X= y + z, 

then condition (ii) implies that 

F(x) E [-v,v] + bllziiB, 

where 

It follows immediately that F maps almost order-bounded subsets of £1 1) (for the 

norm topology) to almost order-bounded subsets of (0, 1), and if r = llal!(l- , then 

F maps rB to rB. Since the relatively weakly compact subsets of L1 (0, 1) are precisely 

those which are almost order-bounded for norm topology, it follows in particular that F 

maps almost order-bounded subsets of 1) to relatively weakly compact subsets of 

L 1 Let Q be the set of all functions in r B that are non-decreasing on (0, The set 

Q is norm dosed and convex, hence weakly closed. Since t,'} is compact in measure and 

since it is easily seen that F preserves sequential convergence in measure, it follows from 

a well-known theorem of Vitali [6] that the restriction ofF to Q is weakly continuous. It 

now follows that F is an AM-mapping on To complete the proof, it now suffices, via 

Theorem 3, to show that F is condensing. We suppose then that Ql C Q and p( Q1) > 0. 

}or any e > 0, there exists a non-negative u E L 1 (0, such that 

Ql C [-u,u] + (p(QI) + c)B. 

For every x E Q 1 ,there exists a decomposition 

x=y+z, yE[-u,u], zE(p(QI)+t)B. 
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so that 

Fx E [-a- bu,a + bu] + b(p(Qt) + e)B. 

It follows that 

Letting E -t 0, we get the conclusion that F is condensing on Q. By theorem 3, F has a 

fixed point in Q and the proof is complete. 

We remark that the preceding proof, while following the outline of that given in [2] 

depends in a natural manner on the notion of semi-noncompactness given in section 1 and 

does not use the expression given in [2] for measures of weak non-compactness in the space 

L 1 (0,1). 

Many thanks are due to Dr. Peter Dodds and Dr. Theresa Dodds for their help in 

preparing this paper. 
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