ON ENTIRE SOLUTIONS OF THE *p*-LAPLACIAN

J.Chabrowski

The University of Queensland, Department of Mathematics St. Lucia 4072, Qld, Australia

1. Introduction.

The main purpose of this paper is to establish the existence of positive solutions of the equation

(1)
$$-\sum_{i=1}^{n} D_{i}(|\nabla u(x)|^{p-2}D_{i}u(x)) + c|u(x)|^{p-2}u(x) = \sum_{i=1}^{N} r_{i}(x)|u(x)|^{q_{i}-2}u(x),$$

in \mathbb{R}_n , where 1 and <math>c > 0 is a constant, $p < q_i < \frac{np}{n-p}$ if n > p and $p < q_i < \infty$ if $p \ge n$. The functions $r_i : \mathbb{R}_n \to [0,\infty)$ (i = 1,...,N) satisfy the hypotheses (a_i) and (b_i) of Section 4, which depend on whether p < n, p = n or p > n. We are also interested in the behaviour of solutions at infinity and in the question of the existence of multiple solutions.

The paper is organized as follows. In Sections 2 and 3 we describe an abstract setting for the equation (1). Namely, we consider the equation

(2)
$$Au = \nabla \Phi(u)$$

in a reflexive Banach space X, where A is a potential operator and Φ is a real-valued functional on X. We follow here the ideas developed by Stuart in [18] and [20] for the equation

$$u = \nabla \Phi(u)$$

in a Hilbert space H, which is an abstract version of the equation (1) with p = 2. Since the equation (2) has a variational structure, solutions can be obtained by minimizing the potential J given by

$$J(u) = pa(u) - p\Phi(u),$$

where a is a potential of A. In Sections 2 and 3 we describe three methods of obtaining solutions of the equation (2). The first method is based on the mountain pass theorem (see Ambrosetti-Rabinowitz [1] or Rabinowitz [13 - 14]). In the second and third method, solutions are obtained as minimizers of J subject to some constraints. As an application in Section 4 we obtain the existence of solutions of (1). In both cases we need some results on imbedding of $W^{1,p}(\mathbb{R}_n)$ into a weighted space $L_r^p(\mathbb{R}_n)$. These results are discussed in Section 4 and we distinguish three cases: p < n, p = n and p > n. We also obtain some existence results when c = 0 if p < n. In particular, we show that in this case solutions of (1) converge, when $c \to 0$, to solutions of (1) with c = 0. In Section 5 we briefly discuss the exponential decay of positive solutions of (1). Finally, in Section 6 we establish the existence of influitely many solutions of the equation (1). The method used in this section is based on the Lusternik-Schnirelman theory of critical points.

If p = 2 there are some known existence results for infinitely many solutions. In particular, Berestycki and P.L. Lions [5] established the existence of infinitely radial solutions. The right hand side of (1), with p = 2, in [5] is replaced by a nonlinearity f depending only u and having a subcritical growth at infinity. Their results were extended by Stuart [19] and Ruppen [17] to (1), with p = 2, in a nonradial case. We additionally prove that a sequence of level sets of the functional J corresponding to the infinite sequence of solutions converges to ∞ . The existence results obtained in this paper, even in case p = 2, are more general than some existence results in [17 - 20]. However, we are not concerned in this paper with bifurcation, which has been extensively discussed in [19].

We point out here that for case p = 2, Ruppen [17] proved the existence of infinitely many branches of solutions all bifurcating from c = 0. However, this requires some assumptions on r_i , which control the behaviour of these functions from below at infinity.

2. Application of the mountain pass theorem.

We commence with some basic definitions and notations. We consider equation (2) in a real reflexive Banach space X. The dual X is denoted by X^* . We denote the duality pairing between X and X^* by $\langle \cdot, \cdot \rangle$. The weak convergence in X and X^* is denoted by \rightarrow and the strong convergence by \rightarrow . For a functional $\Phi : X \rightarrow \mathbb{R}$, we use both symbols $\nabla \Phi$ and Φ' to denote the Fréchet or Gâteaux dcrivatives.

The following terminology is standard and can be found in the monograph of Vainberg [22].

A mapping $A: X \to X^*$ is said to be a potential operator with a potential $a: X \to \mathbb{R}$, if a is Gâteaux differentiable and

$$\lim_{t\to 0}t^{-1}\bigl(a(u+tv)-a(u)\bigr)=\langle A(u),v\rangle$$

for all u and v in X. For a potential a we always assume that a(0) = 0. It is known that the potential operator with the potential a can be expressed by the formula

$$a(u) = \int_0^1 \langle A(tu), u \rangle \, dt.$$

We say that the mapping $A: X \to X^*$ is homogeneous of degree $\beta > 0$, if for every $u \in X$ and t > 0

$$A(tu) = t^{\beta} A(u).$$

Consequently, for the homogeneous potential operator A of degree β with the potential a we have

$$a(u) = rac{1}{eta+1} \langle A(u), u
angle.$$

We make the following assumption on A and Φ .

 (A_1) The mapping $A : X \to X^*$ is a homogenous continuous potential operator of degree p-1 with a potential a, where p > 1. Moreover, we assume that

$$(3) k_1 \leq a(u) \leq k_2$$

for some constants $k_1 > 0$ and $k_1 > 0$ and for all ||u|| = 1.

Since the potential a is homogeneous of degree p, we see that (3) implies that

$$(4) \qquad \qquad k_1 \|u\|^p \leq a(u) \leq k_2 \|u\|^p$$

for all $u \in X$. Also, the continuity of the potential operator A implies the Fréchet differentiability of its potential a.

$$(A_2) \Phi \in C^1(X, \mathbb{R})$$
 and

$$\phi(u) \ge \alpha \Phi(u) > 0 \text{ on } X - \{0\},$$

for some constant $\alpha > p$, where

$$\phi(u) = \langle \nabla \Phi(u), u \rangle = \Phi'(u)u.$$

Furthermore, we assume that

 $(A_3) \Phi(u) \leq C(||u||^{\alpha} + ||u||^{\gamma})$ on X for some constants $\gamma > \alpha$ and C > 0. Let us now set for a fixed $u \in X - \{0\}$

$$h(t) = \Phi(tu)t^{-\alpha} \text{ for all } t > 0.$$

Since

$$h'(t)=rac{\phi(tu)-lpha\Phi(tu)}{t^{lpha+1}}\geqq 0 ext{ for all } t>0,$$

we see that

(5)
$$\Phi(tu) \leq t^{\alpha} \Phi(u) \text{ for } 0 < t \leq 1$$

and

(6)
$$\Phi(tu) \ge \Phi(u)t^{\alpha} \text{ for } t \ge 1.$$

Also, we have $\Phi(0) = \nabla \Phi(0) = 0$.

To obtain the first existence result we minimize the functional

$$J(u) = \tilde{a}(u) - p\Phi(u),$$

where $\tilde{a}(u) = pa(u)$. Since

$$J'(u)v = pig(\langle A(u),v
angle - \langle
abla \Phi(u),v
angleig)$$

for all u and v in X, any critical point of J is a solution of (2). The first existence result is based on the Ambrosetti-Rabinowitz mountain pass theorem [1]. To apply this theorem we need an additional asumption on A.

A mapping $A: X \to X^*$ is strongly monotone if there exists a continuous function $\kappa : [0, \infty) \to [0, \infty)$, which is positive on $(0, \infty)$ and $\lim_{t \to \infty} \kappa(t) = \infty$, such that

$$\langle A(u) - A(v), u - v \rangle \ge \kappa (\|u - v\|) \|u - v\|$$

for all u and v in X.

A mapping $A : X \to X^*$ is said to satisfy the condition S_1 if for every sequence $\{u_j\}$ in X with $u_j \to u$ and $A(u_j) \to v$ in X^* we have $u_j \to u$. Evidently, every strongly monotone operator satisfies the condition S_1 .

THEOREM 1. Suppose that A is a strongly monotone potential operator and that $\nabla \Phi$ is strongly sequentially continuous (that is, $u_n \rightarrow u$ in X implies $\nabla \Phi(u_n) \rightarrow \nabla \Phi(u)$ in X^*). Then the equation (2) has a nontrivial solution.

PROOF: We check that the assumptions, of the mountain pass theorem are satisfied. It follows from (4) and (A_3) that

$$J(u) \ge k_1 p ||u||^p - pC(||u||^{\alpha} + ||u||^{\gamma}).$$

Since $\gamma > \alpha > p$, there exists $\rho > 0$ and $\delta > 0$ such that

 $J(u) \ge \rho$ for $||u|| = \delta$

and also

$$J(u) > 0$$
 for $0 < ||u|| \le \delta$.

Let $\|\vec{u}\| > \delta$, by (4) and (6) we have

$$J(t\bar{u}) \leq k_2 p t^p \|\bar{u}\|^p - p \Phi(\bar{u}) t^\alpha < 0$$

for t > 0 sufficiently large. We now show that J satisfies the Palais-Smale condition (PS). That is, if $\{u_n\}$ is a sequence in X such that $J(u_n)$ is bounded and $J'(u_n) \to 0$ in X^* , then $\{u_n\}$ possesses a convergent subsequence in X. It is easy to show that, under our assumptions, these two conditions on $\{u_n\}$ imply that $\{u_n\}$ is bounded. Hence we may assume that $u_n \to u$ in X. Since

$$J'(u_n) = p(A(u_n) - \nabla \Phi(u_n)) \to 0 \text{ and } \nabla \Phi(u_n) \to \nabla \Phi(u)$$

in X^* , we see that $A(u_n)$ is convergent in X^* . According to the condition S_1 , $u_n \to u$ in X. By the mountain pass theorem there exists $\tilde{u} \in X$ such that

$$J(\tilde{u}) = \inf_{g \in \Gamma} \max_{\substack{v \leq s \leq 1}} J(g(s)),$$

where $\Gamma = \{g \in C([0,1], X); g(0) = 0, g(1) = t\bar{u}\}$. Since $J(\tilde{u}) \ge \rho$, $\tilde{u} \ne 0$ and it is obvious that \tilde{u} is a solution of (2).

3. Constrained minimization.

In this section we additionally assume that

 $(\Lambda_4) \ \phi \in C^1(X, \mathbb{R})$ and the mappings $\Phi' : X \to X^*$ and $\phi' : X \to X^*$ are bounded mappings.

We now set $ilde{\phi}(u)=\phi(u)-p\Phi(u)$ for all u and assume that

 $(A_5) \ ilde{\phi}'(u)u \geqq lpha ilde{\phi}(u) \ ext{for all} \ u \in X - \{0\}.$

Instead of the assumption (A_3) we suppose that

 $(A'_3) \ \tilde{\phi}(u) \leq K (\|u\|^{\alpha} + \|u\|^{\gamma}) \text{ for all } u \in X \text{ and some constants } \gamma > \alpha > p$ and K > 0.

As in [19] we list the consequences of these hypotheses that will be needed later.

It follows from (A_2) that

(7)
$$\tilde{\phi}(u) = \phi(u) - p\Phi(u) \ge (\alpha - p)\Phi(u) > 0$$

for all $u \in X - \{0\}$. Hence by (A'_3) we have

(8)
$$\Phi(u) \leq \frac{K}{\alpha - p} \left(\|u\|^{\alpha} + \|u\|^{\gamma} \right)$$

for all $u \in X$, that is (A'_3) implies (A_3) . Now combining (8) and (A'_3) we get

(9)
$$0 < \phi(u) = \tilde{\phi}(u) + p\Phi(u) \leq \left(\frac{pK}{\alpha - p} + K\right) \left(\|u\|^{\alpha} + \|u\|^{\gamma} \right) = \frac{\alpha K}{\alpha - p} \left(\|u\|^{\alpha} + \|u\|^{\gamma} \right)$$

for all $u \in X - \{0\}$. Moreover, it follows from (A_5) and (A_2) that

(10)
$$\langle \phi'(u), u \rangle = \langle \tilde{\phi}'(u), u \rangle + p \langle \nabla \Phi(u), u \rangle \ge \alpha \tilde{\phi}(u) + \alpha p \Phi(u) = \alpha \phi(u).$$

Let us now set for a fixed $u \in X - \{0\}$

$$k(t) = \phi(tu)t^{-\alpha} \text{ for all } t > 0.$$

Then

$$k'(t) = \frac{\phi'(tu)tu - \alpha\phi(tu)}{t^{\alpha+1}} > 0$$

and consequently $t \to \phi(tu)t^{-\alpha}$ is strictly increasing on $(0,\infty)$ and we obtain that

(11)
$$\lim_{t \to 0} \phi(tu)t^{-p} = 0 \text{ and } \lim_{t \to \infty} \phi(tu)t^{-p} = \infty.$$

A similar statement can be derived for $\tilde{\phi}(u)$.

To describe the first method of the constrained minimization, we observe that if $u \in X$ is a solution of (1), then

$$g(u) = \langle A(u), u \rangle - \langle \nabla \Phi(u), u \rangle = \tilde{a}(u) - \phi(u) = 0.$$

Consequently, we minimize the functional J subject to the constraint g(u) = 0. We set

$$V = \{ u \in X - \{ 0 \}; \ g(u) = 0 \}.$$

It will be shown in Lemma 2 that $V \neq \emptyset$. We now observe that

(12)
$$J(u) = g(u) + \tilde{\phi}(u) \text{ for all } u \in X,$$

and

(13)
$$J'(u)u = \tilde{a}'(u)u - p\langle \nabla \Phi(u), u \rangle = p(\langle A(u), u \rangle - \langle \nabla \Phi(u), u \rangle)$$
$$= pg(u) = g'(u)u + \tilde{\phi}'(u)u.$$

Therefore for $u \in V$ we have

(14)
$$J(u) = \tilde{\phi}(u), \quad g'(u)u = -\tilde{\phi}'(u)u$$

and moreover

$$m = \inf\{J(u); u \in V\} = \inf\{\tilde{\phi}(u); u \in V\}.$$

LEMMA 1. (i) There exists $\delta > 0$ such that $\phi(u) \ge pk_1 ||u||^p \ge \delta > 0$ for $u \in V$,

(ii)
$$\inf_{u \in V} J(u) \ge \delta \frac{\alpha - p}{\alpha}$$
.
(iii) $\frac{\alpha}{\alpha - p} J(u) \ge pk_1 ||u||^p$ for $u \in V$,
(iv) If $u \in V$ and $J(u) = m$, then u satisfies (2) and

$$\frac{\delta(\alpha-p)}{\alpha} \leq \frac{pk_1(\alpha-p)}{\alpha} \|u\|^p \leq m.$$

PROOF: (i) If $u \in V$, then

$$pk_1 ||u||^p \leq \langle A(u), u \rangle = \phi(u) \leq \frac{K}{\alpha - p} (||u||^{\alpha} + ||u||^{\gamma}).$$

Since $u \neq 0$ and $p < \alpha < \gamma$, $||u|| \ge \text{Const} > 0$ for $u \in V$ and (i) follows. (ii) If $u \in V$, then by (14)

$$J(u) = \tilde{\phi}(u) \text{ and } \phi(u) = \tilde{\phi}(u) + p\Phi(u) \leq \tilde{\phi}(u) + \frac{p}{\alpha - p}\tilde{\phi}(u) = \frac{\alpha}{\alpha - p}\tilde{\phi}(u).$$

Consequently, according to (i) we have

$$J(u) = \tilde{\phi}(u) \ge \frac{\alpha - p}{\alpha} \phi(u) \ge \delta \frac{\alpha - p}{\alpha}$$

and this implies (ii). The estimate (iii) follows from the step (i) and the preceding inequality.

(iv) If $u \in V$ and J(u) = m, then there exists $\lambda \in \mathbb{R}$ such that

$$J'(u)v = \lambda g'(u)v$$
 for all $v \in X$.

It follows from (A_5) , (14) and (7) that g'(u)u < 0. Since J'(u)u = 0, we must have $\lambda = 0$, that is, J'(u)v = 0 for all $v \in X$ and u satisfies (1).

LEMMA 2. There exists a unique function $s: X - \{0\} \rightarrow (0, \infty)$ in $C^1(X - \{0\}, \mathbb{R})$ with the following property: if $u \in X - \{0\}$ and t > 0, then $tu \in V$ if and only if t = s(u). The gradient of s satisfies the estimate

$$|
abla s(u)| \leq rac{ig(p\|A(s(u)u)\|+\|
abla \phi(s(u)u)\|ig)s(u)^2}{(lpha-p)\phi(s(u)u)}.$$

PROOF: The proof is similar to that of Lemma 3.2 in [19]. We give only an outline. We introduce a function $\psi : (0, \infty) \times X \to \mathbb{R}$ defined by

$$\psi(t,u) = \tilde{a}(u) - \phi(tu)t^{-p}.$$

According to (10) we have

$$\psi_t(t,u)=-rac{\phi'(tu)tu-p\phi(tu)}{t^{p+1}} \leqq -rac{(lpha-p)\phi(tu)}{t^{p+1}};$$

also

$$\psi_u(t,u)v = p\langle A(u),v \rangle - \frac{\langle \nabla \phi(tu),v \rangle}{t^{p-1}}.$$

Since $\tilde{a}(u)$ is homogeneous of degree p, it is clear that for $u \in N - \{0\}$, $tu \in V$ if and only if $\psi(t, u) = 0$. Since $\phi(tu)t^{-p}$ is strictly increasing function, there exists a unique value t = s(u) such that $\psi(s(u), u) = 0$. We also have

$$\psi_t(s(u), u) \leq -\frac{(\alpha - p)\phi(s(u)u)}{s(u)^{p+1}} < 0$$

and the result follows from the implicit function theorem.

To show that the constrained minimization leads to a solution of (2) we must construct a suitable minimizing sequence.

LEMMA 3. There exists a sequence $\{u_n\} \subset V$ such that $J(u_n) \to m$, $u_n \to u$ in X and $\nabla J(u_n) \to 0$ in X^* .

PROOF: The proof is identical to that of Lemma 3.4 in [19]. Therefore we only sketch the main ideas of the proof. In this proof we use assumption (A_4) . It follows from Ekeland's variational principle [2], [9] that there exists $\{u_n\} \subset V$ such that

$$J(u_n) \le m + n^{-1}$$

and

$$J(w) \ge J(u_n) - n^{-1} \|w - u_n\|$$

for all $w \in V$. Since by Lemma 1(iii), $\{u_n\}$ is bounded, it follows from assumption (A₄) that $\{\nabla \phi(u_n)\}$ is also bounded. We now write for each $v \in X - \{0\}$

(15)
$$J(v) - J(u_n) = J(v) - J(s(v)v) + J(s(v)v) - J(u_n)$$

$$\geq J(v) - J(s(v)v) - n^{-1} ||s(v)v - u_n||.$$

Applying Lemma 2 we get

(16)
$$||s(v)v - u_n|| \leq C_1 ||v - u_n|| \text{ and } |s(v) - 1| \leq C_1 ||v - u_n||$$

for some $C_1 > 0$, provided $||v - u_n||$ is sufficiently small. To estimate J(v) - J(s(v)v)we observe that

$$|J(v) - J(s(v)v)| \leq |s(v) - 1||J'(\theta(v)v)v|,$$

where $\theta(v)$ lies between 1 and s(v). On the other hand $J'(u_n)u_n = 0$, since $u_n \in V$ and consequently

(17)
$$|J(v) - J(s(v)v)| \leq n^{-1} D ||v - u_n||$$

for some constant D > 0, provided $||v - u_n||$ is sufficiently small. Combining (15), (16) and (17) we obtain

$$J(v) - J(u_n) \ge -C_2 \frac{\|v - u_n\|}{n}$$

for some constant $C_2 > 0$. Taking ||z|| = 1 and t > 0 as small as $||v - u_n||$ we get

$$\frac{J(u_n+tz)-J(u_n)}{t} \geqq -\frac{C_2}{n},$$

which implies that $J'(u_n)z \ge -\frac{C_2}{n}$ and replacing z by -z we derive

$$|J'(u_n)z| \leq \frac{C_2}{n}$$

and the result follows.

We are now in a position to establish the following existence result.

THEOREM 2. Suppose that A is a strongly monotone potential operator and that $\nabla \Phi$ is strongly sequentially continuous. Let $\{u_n\}$ be sequence constructed in Lemma 3. Then $u_n \to u$ in X and u is a nontrivial solution of (2).

PROOF: Since A satisfies the condition S_1 , we show as in Theorem 1 that $u_n \to u$ in X and therefore J(u) = m, with $u \neq 0$, and the result follows from Lemma 1.

If both functionals a and Φ are homogeneous, then a constrained minimization problem can be solved under different set of assumptions. In particular, we need only the Gâteaux differentiability for a and Φ . To illustrate this situation we consider the following minimization problem

(I)
$$I = \min\{a(u); \Phi(u) = 1\}.$$

We follow here the approach from [7]. We assume that $A: X \to X^*$ is homogeneous of degree p-1, p>1, with a potential *a* satisfying (3). We stress here that we do not assume the continuity of A. The functional Φ is defined on a linear subspace $D(\Phi) \subset X$. Moreover, we assume that Φ is homogeneous of degree $\alpha > p$. Further assumptions on Φ will be formulated in Theorem 3 below.

THEOREM 3. (i) Suppose that the problem (1) has a solution u, that is, there exists $u \in D(\Phi)$ such that a(u) = I and $\Phi(u) = 1$, and that Φ has a linear continuous Gâteaux derivative $\langle \Phi'(u), v \rangle$ at all directions $v \in D(\Phi)$. Then

(18)
$$\langle A(u), v \rangle = I \frac{p}{\alpha} \langle \Phi'(u), v \rangle$$

for all $v \in D(\Phi)$. If I > 0 then the "scaled minimizer" $\bar{u} = \bar{\sigma}u$, where $\bar{\sigma} = \left(\frac{p}{\alpha}I\right)^{\frac{1}{\alpha-p}}$, satisfies the equation

(19)
$$\langle A(\bar{u}), v \rangle = \langle \Phi'(\bar{u}), v \rangle$$

for all $v \in D(\Phi)$.

(ii) Suppose that all weak limit points of every bounded subset of the level set $\Phi(u) = 1$ belong to $D(\Phi)$. If Φ_+ is weakly sequentially continuous, a and $\Phi_$ are weakly sequentially lower semicontinuous, then the constrained minimization problem (1) has a nontrivial solution.

PROOF: The proof is similar to those of Proposition 2.1 and Theorem 3.2 in [7]. Therefore we only sketch the main steps. To prove (i) we set $d = \Phi'(u)v$ and for $\sigma > 0$ we have by the definition of the Gâteaux derivative that

$$\Phi(\sigma u + \epsilon \sigma v) = \sigma^{\alpha}(1 + \epsilon d + o(\epsilon)).$$

There exists $\epsilon_{\circ} > \text{such that } 1 + \epsilon d + o(\epsilon) > 0$ for all $|\epsilon| < \epsilon_{\circ}$. Also, for such ϵ there exists $\sigma = \sigma(\epsilon)$ such that $\Phi(\sigma u + \epsilon \sigma v) = 1$. Consequently, if we set $c = \langle A(u), v \rangle$, we get

$$I \leq a(\sigma u + \sigma \epsilon v) = \sigma^r a(u + \epsilon v) = a(u) + \epsilon(c - rac{p}{lpha} Id) + o(\epsilon).$$

Since this inequality holds for all $|\epsilon| < \epsilon_{\circ}$, we must have $c - \frac{p}{\alpha}Id = 0$ and this proves (18). Since for $\sigma > 0$ we have $a(\sigma u + \epsilon v) = \sigma^{p}a(u + \epsilon \sigma^{-1}v)$ and $\Phi(\sigma u + \epsilon v) = \sigma^{\alpha}\Phi(u + \epsilon \sigma^{-1}v)$, it is easy to see that

$$\langle A(\sigma u), v \rangle = \frac{p}{\alpha} I \sigma^{p-\alpha} \langle \nabla \Phi(\sigma u), v \rangle.$$

Therefore, if I > 0, then $\bar{u} = \bar{\sigma}u$, with $\bar{\sigma} = \left(\frac{p}{\alpha}I\right)^{\frac{1}{\alpha-p}}$ satisfies (19).

(ii) Let $\{u_j\}$ be a minimizing sequence. Since $\{u_j\}$ is bounded, we may assume that $u_j \rightarrow u$ in X. According to our assumptions $u \in D(\Phi)$ and $a(u) \leq I$. We now have

$$\Phi_{-}(u_j) = \Phi_{+}(u_j) - 1 \to \Phi_{+}(u) - 1,$$

as $j \rightarrow \infty$, and consequently

$$\Phi_{-}(u) \leq \lim_{j \to \infty} \Phi_{-}(u_j) = \Phi_{+}(u) - 1.$$

Therefore $\Phi(u) \ge 1$ and $u \ne 0$. Assuming that $\Phi(u) > 1$, we have $\sigma^{\alpha} \Phi(u) = 1$, with $0 < \sigma^{\alpha} < 1$, hence $a(u) \le I \le a(\sigma u) = \sigma^{p} a(u)$, which implies that $1 \le \sigma^{p}$ and we arrive at the contradiction.

Remark. We now compare the constrained minimizations of Theorems 3 and 2. First, under the assumptions of Theorem $3 \nabla \Phi$ is a potential operator with a potential Φ of degree α . Therefore we have

$$\Phi(u) = \frac{1}{\alpha} \langle \nabla \Phi(u), u \rangle.$$

It is easy to check that a solution \bar{u} of the constrained minimization (I) satisfies the equation

$$\frac{p}{\alpha}a(\bar{u})=\Phi(\bar{u}).$$

We now set $H(u) = \frac{1}{p}J(u)$, that is, $H(u) = a(u) - \Phi(u)$. We show that

$$H(\bar{u}) = \inf\{H(v); v \in V\}.$$

If g(v) = 0, then $\langle A(v), v \rangle - \langle \nabla \Phi(v), v \rangle = 0$, which is equivalent to $\frac{p}{\alpha}a(v) = \Phi(v)$. Let $v \neq 0$ satisfy g(v) = 0. Then in view of (3) and the last identity $\Phi(v) > 0$. Hence there exists $\sigma > 0$ such that $\sigma^{\alpha} = \Phi(v)$. Let $v_{\circ} = \sigma^{-1}v$. Then the equation g(v) = 0 can be written as $\sigma^{\alpha} = \frac{p}{\alpha}\sigma^{p}a(v_{\circ})$, that is $\sigma = \left(\frac{p}{\alpha}a(v_{\circ})\right)^{\frac{1}{\alpha-p}}$. Hence

$$H(v) = \left(1 - \frac{p}{\alpha}\right)a(v) = \left(1 - \frac{p}{\alpha}\right)\sigma^{p}a(v_{\circ}) = \left(1 - \frac{p}{\alpha}\right)\left(\frac{p}{\alpha}a(v_{\circ})\right)^{\frac{p}{\alpha-p}}a(v_{\circ}).$$

On the other hand, for \bar{u} we have

$$H(\bar{u}) = (1 - \frac{p}{\alpha})\bar{\sigma}^p a(u) = (1 - \frac{p}{\alpha}) (\frac{p}{\alpha}I)^{\frac{p}{\alpha - p}}I.$$

Since $\Phi(v_{\circ}) = 1$, we have $I \leq a(v_{\circ})$ and consequently

$$H(\bar{u}) \leq (1 - \frac{p}{\alpha}) \left(\frac{p}{\alpha} a(v_{\circ})\right)^{\frac{p}{\alpha - p}} a(v_{\circ}) = H(v)$$

and this justifies our claim.

4. Existence results for the equation (1).

As an application of the results of Sections 2 and 3, we prove the existence of positive solutions of (1). We recall some basic properties of the *p*-Laplacian

$$\Delta_p u = \sum_{i=1}^n D_i (|\nabla u|^{p-2} D_i u).$$

All these properties can be found in J.L. Lions [11]. The *p*-Laplacian Δ_p maps $W^{1,p}(\mathbb{R}_n)$ onto $W^{-1,p'}(\mathbb{R}_n) = (W^{1,p}(\mathbb{R}_n))^*$, with $\frac{1}{p} + \frac{1}{p'} = 1$. If we now set

$$A(u) = -\Delta_p u + c|u|^{p-2}u,$$

where c > 0 is a constant, then for every $h \in W^{-1,p'}$ there exists a unique $u \in W^{1,p}(\mathbb{R}_n)$ such that A(u) = h. Furthermore, A is a strictly monotone potential operator with a potential $a: W^{1,p}(\mathbb{R}_n) \to \mathbb{R}$ given by

$$a(u) = \frac{1}{p} \left(\int_{\mathbb{R}_n} |\nabla u(x)|^p \, dx + c \int_{\mathbb{R}_n} |u(x)|^p \, dx \right).$$

It is known that $A: W^{1,p}(\mathbb{R}_n) \to W^{-1,p'}(\mathbb{R}_n)$ is uniformly continuous on bounded sets.

To formulate the assumptions on $r_i : \mathbb{R}_n \to [0, \infty)$ (i = 1, ..., N), guaranteeing the existence of a compact imbedding of $W^{1,p}(\mathbb{R}_n)$ in $L^{q_i}_{r_i}(\mathbb{R}_n)$, we distinguish three cases. In what follows we denote by Q(x, l) the cube of the form

$$Q(x,l) = \{y \in \mathbb{R}_n, |y_j - x_j| < \frac{l}{2}, j = 1, ..., n\}.$$

Case p < n. $(a_1) \ r_i \in L^{\frac{q_i + \epsilon_i}{\epsilon_i}}_{\log}(\mathbb{R}_n)$, where $p < q_i < q_i + \epsilon_i < \frac{np}{n-p} \ (i = 1, ..., N)$ and $(b_1) \lim_{|x| \to \infty} \int_{Q(x,l)} r_i(y)^{\frac{q_i + \epsilon_i}{\epsilon_i}} dy = 0 \ (i = 1, ..., N)$ for some l > 0. Case p = n. $(a_2) \ r_i \in L^{s_i}_{\log}(\mathbb{R}_n)$ for some $s_i > 1 \ (i = 1, ..., N)$ and $(b_2) \lim_{|x| \to \infty} \int_{Q(x,l)} r_i(x)^{s_i} dx = 0 \ (i = 1, ..., N)$ for some l > 0. Case p > n. $(a_3) \ r_i \in L^{j}_{\log}(\mathbb{R}_n) \ (i = 1, ..., N)$ and $(b_3) \lim_{|x| \to \infty} \int_{Q(x,l)} r_i(x) dx = 0 \ (i = 1, ..., N)$ some l > 0. We assume that $q_1 < ... < q_N$ and that at least one of the functions r_i is not identically equal to 0.

The functionals Φ : $W^{1,p}(\mathbb{R}_n) \to \mathbb{R}$, J: $W^{1,p}(\mathbb{R}_n) \to \mathbb{R}$, ϕ : $W^{1,p}(\mathbb{R}_n) \to \mathbb{R}$ and $\tilde{\phi}$: $W^{1,p}(\mathbb{R}_n) \to \mathbb{R}$ are given by

$$\Phi(u) = \sum_{i=1}^{N} \frac{1}{q_i} \int_{\mathbb{R}_n} r_i(x) |u(x)|^{q_i} dx,$$

$$\begin{aligned} J(u) &= p \bigg(a(u) - \sum_{i=1}^{N} \frac{1}{q_i} \int_{\mathbb{R}_n} r_i(x) |u(x)|^{q_i} \, dx \bigg) = \int_{\mathbb{R}_n} |\nabla u(x)|^p \, dx \\ &+ c \int_{\mathbb{R}_n} |u(x)|^p \, dx - p \sum_{i=1}^{N} \frac{1}{q_i} \int_{\mathbb{R}_n} r_i(x) |u(x)|^{q_i} \, dx, \end{aligned}$$
$$\phi(u) &= \sum_{i=1}^{N} \int_{\mathbb{R}_n} r_i(x) |u(x)|^{q_i} \, dx \end{aligned}$$

and

$$\tilde{\phi}(u) = \sum_{i=1}^{N} (1 - \frac{p}{q_i}) \int_{\mathbb{R}_n} r_i(x) |u(x)|^{q_i} dx = \sum_{i=1}^{N} \frac{q_i - p}{q_i} \int_{\mathbb{R}_n} r_i(x) |u(x)|^{q_i} dx.$$

To show that all these functionals are well defined we need some results on compact imbedding of $W^{1,p}(\mathbb{R}_n)$ into each space $L^{q_i}_{r_i}(\mathbb{R}_n)$ (i = 1, ..., N) defined by

$$L^{q_i}_{r_i}(\mathbb{R}_n) = \{ u : \, \int_{\mathbb{R}_n} r_i(x) |u(x)|^{q_i} \, dx < \infty \}$$

and equipped with the norm

$$\|u\|_{r_i,q_i} = \left(\int_{\mathbb{R}_n} r_i(x) |u(x)|^{q_i} dx\right)^{\frac{1}{q_i}}.$$

LEMMA 4. (i) Case n > p. Suppose that r_i (i = 1, ..., N) satisfy (a_1) and (b_1) . Then $W^{1,p}(\mathbb{R}_n)$ is compactly imbedded in each space $L_{r_i}^{q_i}(\mathbb{R}_n)$. (ii) Case n = p. Suppose that r_i (i = 1, ..., N) satisfy (a_2) and (b_2) . Then $W^{1,n}(\mathbb{R}_n)$ is compactly imbedded in each space $L^q_{r_i}(\mathbb{R}_n)$ for every $q \ge n$.

(iii) Case n < p. Suppose that r_i (i = 1, ..., N) satisfy (a_3) and (b_3) . Then $W^{1,p}(\mathbb{R}_n)$ is compactly imbedded in each space $L^q_{r_i}(\mathbb{R}_n)$ for each $q \ge p$.

PROOF: Case (i), is a special case of a slightly more general version of a result due to Berger-Schechter [6]. An independent proof of the compact imbedding of $W^{1,2}(\mathbb{R}_n)$ into $L_r^2(\mathbb{R}_n)$ with r bounded and satisfying (b_3) can be found in [12]. We follow the method from [12] to show (ii) and (iii). Obviously, the proof of (ii) and (iii), presented here, can also be used to prove (i). For simplicity we set $r = r_i$. In both cases it suffices to show that for every $\delta > 0$ there exists R > 0 such that

(20)
$$\|f - \chi_{Q(0,R)}f\|_{r,q} < \delta$$

for all f such that $||f||_{W^{1,p}(\mathbb{R}_n)} \leq 1$, where χ_Q is the characteristic function of the cube. Indeed, let $\{f_m\}$ be a bounded sequence in $W^{1,p}(\mathbb{R}_n)$. We assume that $||f_m||_{W^{1,p}} \leq 1$ for all $m \geq 1$. Consequently, we may assume that $f_m \to f$ in $W^{1,p}(\mathbb{R}_n)$ and in view of standard Sobolev compactness theorems there exists a subsequence of $\{f_m\}$, denoted again by $\{f_m\}$, such that $f_m \to f$ in $L^q(Q(0,R))$ in case (ii) and $f_m \to f$ uniformly on Q(0,R) in case (iii). On the other hand by (20) we have

$$\left(\int_{\mathbb{R}_n-Q(0,R)}|f_m-f|^q r\,dx\right)^{\frac{1}{q}}\leq 2\delta.$$

Combining this with the previous observation, we easily conclude that $f_m \to f$ in $L^q_r(\mathbb{R}_n)$.

To prove (20) we cover \mathbb{R}_n with cubes $Q(z, 1), z \in \mathbb{Z}^n$, where $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$. We may assume that (a_i) and (b_i) (i = 2, 3) hold with l = 1. For $\eta > 0$, in

case (ii), we use (b_2) to find N > 0 such that

$$\int_Q r(x)^s\,dx < \eta$$

for each Q = Q(z,1) outside Q(0,N). We now use the fact that if $f \in W^{1,n}(Q)$ then $f \in L^q(Q)$ for each $n \leq q < \infty$ and

$$||f||_{L^{q}(Q)} \leq C(q, n) ||f||_{W^{1,n}(Q)}$$

for some constant C(q,n) > 0. Hence by the Hölder inequality we have

$$\int_{Q} |f|^{q} r \, dx \leq \left(\int_{Q} r^{s} \, dx \right)^{\frac{1}{s}} \left(\int_{Q} f^{qs'} \, dx \right)^{\frac{1}{s'}} \leq \eta^{\frac{1}{s}} C(q,n) \|f\|_{W^{1,n}(Q)}^{q}.$$

We now choose $C(q,n)\eta^{\frac{1}{n}} < \delta$ and add these inequalities over all Q(z,1) outside Q(0,N) to obtain (20) with R = N. In case (iii) we use (b_3) to get $\int_Q r \, dx < \eta$ for each Q = Q(z,1) outside Q(0,N). We now repeat the previous argument using the inequality $\|f\|_{L^{\infty}(Q)} \leq C \|f\|_{W^{1,p}(Q)}$, which holds for all $f \in W^{1,p}(Q)$, with p > n, for some constant C > 0.

It is evident that under the assumptions of Lemma 4, Φ is Fréchet differentiable and

$$\langle \nabla \Phi(u), v
angle = \sum_{i=1}^N \int_{\mathbb{R}_n} r_i(x) |u(x)|^{q_i-2} u(x) v(x) dx$$

for all u and v in $W^{1,p}(\mathbb{R}_n)$.

It is now readily seen that all assumptions concerning regularity of ϕ , Φ and $\tilde{\phi}$ are satisfied. Therefore each of Theorems 1 or 2 yield the existence result for (1). THEOREM 4. Suppose that the assumptions of Lemma 4 hold. Then the equation (1) has at least one positive solution u in $W^{1,p}(\mathbb{R}_n)$.

Since a solution is obtained as a critical point of J, which has the property J(u) = J(|u|), we may assume that $u \ge 0$ on R_n . The strict positivity of u follows from the Harnack inequality.

If c = 0 a suitable Sobolev space for the equation (1) is a space $E^{1,p}(\mathbb{R}_n) = \{ \text{ completion of the space } C_{\circ}^{\infty}(\mathbb{R}_n) \text{ with respect to the norm } \|Du\|_p \}.$ Here $C_{\circ}^{\infty}(\mathbb{R}_n)$ is the space of C^{∞} -functions with compact supports. We only establish the existence result in case p < n. By the Sobolev inequality

$$\|u\|_{\frac{np}{n-p}} \leq S \|Du\|_p$$

for all $u \in C_{\circ}^{\infty}(\mathbb{R}_n)$ with a constant S = S(n,p). Consequently, $E^{1,p}(\mathbb{R}_n)$ can be regarded as a subspace of $L^{\frac{np}{n-p}}(\mathbb{R}_n)$. Also, $W^{1,p}(\mathbb{R}_n) \subset E^{1,p}(\mathbb{R}_n)$ with continuous injection. We now extend Lemma 4 to the space $E^{1,p}(\mathbb{R}_n)$.

LEMMA 5. Let p < n and suppose that r_i (i = 1, ..., N) satisfy (a_1) and that $r_i \in L^1(\mathbb{R}_n)$. Then for each i = 1, ..., N the space $E^{1,p}(\mathbb{R}_n)$ is compactly imbedded in $L^{q_i}_{r_i}(\mathbb{R}_n)$.

PROOF: The proof is similar to that of Lemma 4. For simplicity we set $q = q_i$, $r = r_i$ and $\epsilon = \epsilon_i$. It suffices to show that for every $\delta > 0$ there exists R > 0 such that the inequality (20) holds for all f such that $\|Df\|_p \leq 1$. Indeed, let $\{f_m\}$ be a bounded sequence in $E^{1,p}(\mathbb{R}_n)$. We may assume that $\|Df_m\|_p \leq 1$ for all $m \geq 1$. Since $p < q + \epsilon < \frac{np}{n-p}$, we may assume that there exists $f \in E^{1,p}(\mathbb{R}_n)$ such that $f_m \to f$ in $L^{q+\epsilon}(Q(0,R))$ and $Df_m \to Df$ in $L^p(\mathbb{R}_n)$. Thus

$$\int_{Q(0,R)} |f_m - f|^q r \, dx \leq \left(\int_{Q(0,R)} |f_m - f|^{q+\epsilon} \, dx \right)^{\frac{q}{q+\epsilon}} \left(\int_{Q(0,R)} r^{\frac{q+\epsilon}{\epsilon}} \, dx \right)^{\frac{\epsilon}{q+\epsilon}}.$$

On the other hand by (20) we have

$$\left(\int_{\mathbb{R}_n-Q(0,R)}|f_m-f|^q r\,dx\right)^{\frac{1}{q}}\leq 2\delta.$$

Since $f_m \to f$ in $L^{q+\epsilon}(Q(0,R))$, the last two inequalities give the convergence of f_m in $L^q_r(\mathbb{R}_n)$.

To prove (20) we cover \mathbb{R}_n with cubes $Q(z,1), z \in \mathbb{Z}^n$. For $\eta > 0$ we use (a_1) to find N > 0 such that

$$\int_Q r(y)^{\frac{q+\epsilon}{\epsilon}} \, dy \leq \eta$$

for every Q = Q(z, 1) outside Q(0, N) and so that

$$\int_{\mathbb{R}_n-Q(0,N)}r(y)\,dy<\eta.$$

If Q is any such cube we have by the Sobolev and Hölder inequalities that

$$\int_{Q} |f|^{q+\epsilon} dx \leq \left(\int_{Q} |f|^{\frac{np}{n-p}} dx \right)^{\frac{(n-p)(q+\epsilon)}{np}} \leq S^{q+\epsilon} \|Df\|_{p}^{q+\epsilon}.$$

and consequently, setting $f_Q = \frac{1}{|Q|} \int_Q f(x) dx$, we obtain by Poincaré's inequality

$$\begin{split} \int_{Q} |f|^{q} r \, dx &\leq 2^{q-1} \left[\int_{Q} |f - f_{Q}|^{q} r \, dx + + \int_{Q} \left(\int_{Q} |f(x)| \, dx \right)^{q} r(y) \, dy \right] \\ &\leq 2^{q-1} \left[\left(\int_{Q} |f - f_{Q}|^{q+\epsilon} \, dx \right)^{\frac{q}{q+\epsilon}} \left(\int_{Q} r^{\frac{q+\epsilon}{\epsilon}} \, dx \right)^{\frac{\epsilon}{q+\epsilon}} \\ &+ \left(\int_{Q} |f|^{\frac{np}{n-p}} \, dx \right)^{\frac{q(n-p)}{n-p}} \int_{Q} r(y) \, dy \right] \\ &\leq K \left(\int_{Q} |Df|^{p} \, dx \right)^{\frac{q}{p}} \left(\int_{Q} r^{\frac{q+\epsilon}{\epsilon}} \, dx \right)^{\frac{\epsilon}{q+\epsilon}} + 2^{q-1} S^{q} \left(\int_{\mathbb{R}_{n}} |Df|^{p} \, dx \right)^{\frac{q}{p}} \int_{Q} r(x) \, dx, \end{split}$$

where K > 0 is a constant. We now add all these inequalities over all Q(z, 1) outside Q(0, N) to get

$$\int_{\mathbb{R}_n-Q(0,N)} |f|^q r \, dx \leq K \eta^{\frac{\epsilon}{q+\epsilon}} + 2^{q-1} S^q \int_{\mathbb{R}_n-Q(0,N)} r \, dx \leq K \eta^{\frac{\epsilon}{q+\epsilon}} + 2^{q-1} S^q \eta.$$

We now choose η so that $K\eta^{\frac{q}{q+q}} + 2^{q-1}S^q\eta < \delta$ and add these inequalities over all Q(z,1) outside Q(0,N) to obtain (20) with R = N.

It is clear that, in case p < n, Theorem 4 continues to hold for the equation (1) with c = 0, provided r_i (i = 1, ..., N) satisfy the assumptions of Lemma 5. Obviously in this case a solution belongs to $E^{1,p}(\mathbb{R}_n)$. As an application of Theorem 3 we consider the equation (1) with $c \ge 0$ and N = 1, that is,

(21)
$$-\Delta_p u + c|u|^{p-2}u = r(x)|u|^{q-2}u \text{ in } \mathbb{R}_n,$$

with the function r(x) varying in sign.

THEOREM 5. Let p < n. If c > 0 we suppose that r_+ satisfies (a_1) and (b_1) for some $\epsilon > 0$ and that $r_- \in L^1_{loc}(\mathbb{R}_n)$. If c = 0 we suppose that r_+ satisfies (a_1) and that $r_+ \in L^1(\mathbb{R}_n)$ and $r_- \in L^1_{loc}(\mathbb{R}_n)$. Then the equation (21) admits at least one nontrivial solution in $E^{1,p}(\mathbb{R}_n)$ if c = 0 and belonging to $W^{1,p}(\mathbb{R}_n)$ if c > 0.

PROOF: We only consider the case c > 0. For a functional $\Phi(u) = \frac{1}{q} \int_{\mathbb{R}_n} r(x) |u(x)|^q dx$ we set $D(\Phi) = \{u; \int_{\mathbb{R}_n} |r(x)| |u(x)|^q dx < \infty\}$. It is obvious that $D(\Phi)$ is a linear subspace of $E^{1,p}(\mathbb{R}_n)$ containing $C_o^{\infty}(\mathbb{R}_n)$. In view of Theorem 5 it suffices to show that weak limit points of every bounded subset of $\{\Phi(u) = 1\}$ belong to $D(\Phi)$. Indeed, let u_m be bounded sequence in $\{\Phi(u) = 1\}$. We may assume that $u_m \to u$ in $W^{1,p}(\mathbb{R}_n)$ and $u_m \to u$ in $L_{r^+}^p(\mathbb{R}_n)$ and hence

$$\lim_{m \to \infty} \int_{\mathbb{R}_n} |u_m|^q r_+ \, dx = \int_{\mathbb{R}_n} |u|^q r_+ \, dx$$

and

$$\lim_{m \to \infty} \int_{\mathbb{R}_n} |u_m|^q r_- dx = \lim_{m \to \infty} \int_{\mathbb{R}_n} |u_m|^q r_+ dx - q = \int_{\mathbb{R}_n} |u|^q r_+ dx - q$$

By Fatou's lemma we see that $r_{-}|u|^{q} \in L^{1}(\mathbb{R}_{n})$ and

$$\int_{\mathbb{R}_n} |u|^q r_- dx \leq \lim_{m \to \infty} \int_{\mathbb{R}_n} |u_m|^q r_- dx = \int_{\mathbb{R}_n} |u|^q r_+ dx - q,$$

therefore $u \in D(\Phi)$. Since Φ is only Gâteaux differentiable at u in every direction $v \in C_{\rm e}^{\infty}(\mathbb{R}_n)$, the equation (21) is satisfied in the distributional sense, that is,

$$\int_{\mathbb{R}_n} (|Du|^{p-2} Du Dv + c|u|^{p-2} uv) \, dx = \int_{\mathbb{R}_n} r|u|^{q-2} uv \, dx$$

for each $v \in C^{\infty}_{o}(\mathbb{R}_{n})$.

According to Theorem 5 the equation (21), with c > 0, has a solution in $W^{1,p}(\mathbb{R}_n)$. Let us denote this solution by u_c . In Corollaries 1 and 2, below, we examine the behaviour of u_c , as $c \to 0$.

COROLLARY 1. Let p < n and suppose that $r \ge 0$ on \mathbb{R}_n , $r \in L^1(\mathbb{R}_n)$ and that the assumption (a_1) holds. Then $u_c \rightharpoonup u$ in $E^{1,r}(\mathbb{R}_n)$, as $c \rightarrow 0$, where u is a nontrivial solution of (22) with c = 0.

PROOF: The function u_c is a solution of the constrained minimization

$$a(u) = \inf\{a(v); \frac{1}{q} \int_{\mathbb{R}_n} |v(x)|^q r(x) \, dx = 1\}.$$

Repeating the approximation argument used in the proof of Lemma 4 in [16] we conclude that

$$\int_{\mathbb{R}_n} (|Du_c|^r + c|u_c|^r) \, dx = q \int_{\mathbb{R}_n} r|u_c|^q \, dx.$$

Consequently $\{u_c\}$ is bounded in $E^{1,p}(\mathbb{R}_n)$. Therefore we may assume that $Du_c \to Du$ in $L^p(\mathbb{R}_n)$, $u_c \to u$ in $L^P(K)$ on every bounded subset $K \subset \mathbb{R}_n$ and a.e. on \mathbb{R}_n . On the other hand in view of Lemma 5 $u_c \to u$ in $L^p_r(\mathbb{R}_n)$ as $c \to 0$. To complete the proof it is sufficient to show that $Du_c \to Du$ in $L^p(\mathbb{R}_n)$. We first show that $Du_c \to Du$ a.e. on \mathbb{R}_n . To show this we consider

$$0 \leq \int_{\mathbf{R}_n} \sum_{i=1}^n (|\nabla u_c|^{p-2} D_i u_c - |\nabla u|^{p-2} D_i u) D_i (u_c - u) \, dx$$

= $\int_{\mathbf{R}_n} r |u_c|^{q-2} u_c (u_c - u) \, dx - \int_{\mathbf{R}_n} \sum_{i=1}^n |\nabla u|^{p-2} D_i u D_i (u_c - u) \, dx = J_1 + J_2.$

By the weak convergence of Du_c we have $\lim J_2 = 0$. The following inequality

$$|J_2| \leq \left(\int_{\mathbb{R}_n} r|u_c|^q dx\right)^{\frac{q-1}{q}} \left(\int_{\mathbb{R}_n} r|u_c - u|^q dx\right)^{\frac{1}{q}}$$

yields that $\lim_{c\to 0} J_2 = 0$. Therefore

(22)
$$\lim_{c \to 0} \int_{\mathbb{R}_n} \sum_{i=1}^n (|\nabla u_c|^{p-2} D_i u_c - |\nabla u|^{p-2} D_i u) D_i (u_c - u) \, dx = 0$$

and consequently repeating the argument from [3] we see that $\lim_{c\to 0} Du_c = Du$ a.e. on \mathbb{R}_n . Applying the Hölder inequality we check that $\sum_{i=1}^n |\nabla u_c|^{p-2} D_i u_c D_i u$ is equiintegrable and consequently

$$\lim_{c\to 0}\int_{\mathbb{R}_n}\sum_{i=1}^n|\nabla u_c|^{p-2}D_iu_cD_iu\,dx=\int_{\mathbb{R}_n}|\nabla u|^p\,dx.$$

It now follows from (22) that

$$\lim_{c\to}\int_{\mathbb{R}_n}|\nabla u_c|^p\,dx=\int_{\mathbb{R}_n}|\nabla u|^p\,dx$$

and the result follows from the uniform convexity of the space $L^r(\mathbb{R}_n)$.

If p = 2 (2 < n) this result can be slightly improved by allowing r to vary in sign.

COROLLARY 2. Let 2 < n and suppose that r satisfies the assumptions of Theorem 5 with p = 2. Then $u_c \rightarrow u$ in $E^{1,2}(\mathbb{R}_n)$, as $c \rightarrow 0$, where u is a nontrivial solution of (21) with c = 0 and p = 2.

PROOF: The function u_c is a solution of the constrained minimization

$$a(u) = \inf\{a(v); \frac{1}{g} \int_{\mathbb{R}_n} |v|^q r \, dx = 1\},$$

where $a(u) = \frac{1}{2} \int_{\mathbb{R}_n} (|Du|^2 + cu^2) dx$ and moreover

$$\int_{\mathbb{R}_n} (Du_c Dv + cu_c v) \, dx = \int_{\mathbb{R}_n} r |u_c|^{q-2} u_c v \, dx.$$

for each $v \in C_{\circ}^{\infty}(\mathbb{R}_n)$. Inspection of the proof of Theorem 5 shows that $|u_c|^q r \in L^1(\mathbb{R}_n)$. Repeating the approximation argument used in the proof of Lemma 4 in [16] we conclude that

$$\int_{\mathbb{R}_n} (|Du_c|^2 + cu_c^2) \, dx = \int_{\mathbb{R}_n} ru_c^q \, dx = q.$$

Consequently $\{u_c\}$ is bounded in $E^{1,2}(\mathbb{R}_n)$. Therefore we may assume that $Du_c \rightarrow Du$ in $L^2(\mathbb{R}_n), u_c \rightarrow u$ in $L^2(K)$ on every bounded subset $K \subset \mathbb{R}_n$ and a. e. on \mathbb{R}_n .

On the other hand in view of Lemma 5 $u_c \to u$ in $L^2_{r+}(\mathbb{R}_n)$ as $c \to 0$, hence by Fatou's lemma

$$\int_{\mathbb{R}_n} |u|^q r_- dx \leq \lim_{c \to 0} \int_{\mathbb{R}_n} |u_c|^q r_+ dx - q = \int_{\mathbb{R}_n} |u|^q r_+ dx - q.$$

Consequently, $|u|^q r \in L^1(\mathbb{R}_n)$ and $1 \leq \int_{\mathbb{R}_n} |u|^q r \, dx$, so $u \neq 0$. It is easy to check that u satisfies (22), with c = 0, in the distributional sense.

Remark. If p = 2 the existence result obtained in Theorem 5 is more general than in [7] (see Proposition 4.1 there). For related existence results we refer to papers [14-15]. The above discussion shows that the solution u is obtained either by applying the mountain pass theorem or by a constrained minimization. However, we were unable to show whether these to methods give rise to the same or different solutions.

5. Exponential decay at infinity.

Inspection of the proof of Theorem 1.1 in [10] show that if r_i (i = 1, ..., N)are bounded for |x| > R for some R > 0, then any solution of (1) converges to 0 as $|x| \to \infty$. If p > n this follows from the fact that $u \in W^{1,p}(\mathbb{R}_n)$. To establish the exponential decay at infinity of a positive solution of (1) we apply the maximum principle (see Lemma 3.1 in [21]). First we observe that for $u \in C^2(\mathbb{R}_n)$ we have

$$\Delta_p u = (p-2) |\nabla u|^{p-4} \sum_{i,k=1}^n D_{ki} u D_k u D_i u + |\nabla u|^{p-2} \sum_{i=1}^n D_{ii} u.$$

Let $H(x, \delta) = \prod_{i=1}^{n} \cosh \delta x_i$ for $x \in \mathbb{R}_n$ and $\delta > 0$. Then by a direct computation we check that

$$\Delta_p(H^{-1}) = H^{-(p-1)}O(\delta^p).$$

Therefore there exists $\delta_{\circ} > 0$ such that for $0 < \delta < \delta_{\circ}$ and all $x \in \mathbb{R}_n$ we have

$$-\Delta_p(H^{-1}) + cH^{-(p-1)} = H^{-(p-1)}(O(\delta^p) + c) > 0.$$

THEOREM 6. Suppose that the functions r_i (i = 1, ..., N) satisfy the hypotheses of Lemma 4 and that they are bounded for $|x| \ge R$ for some R > 0. Then if $u \in W^{1,p}(\mathbb{R}_n)$ is a positive solution of (1), we have

(23)
$$u(x) \leq C e^{-\delta \sum_{i=1}^{n} |x_i|} \text{ in } \mathbb{R}_n$$

for some constants C > 0 and $\delta > 0$.

PROOF: The proof is a modification of the proof of Proposition 4.4 in [19]. Let $M = \max_{\mathbf{R}_n} u(x)$ and we choose $R_1 \ge R$ and $0 < \delta_1 \le \delta_0$ so that

$$-c+\sum_{i=1}^N r_i(x)u^{q_i-p} \leq -\frac{c}{2}$$

for $|x| \ge R_1$ and

$$-\Delta_{p}(H_{1}) + \left(c - \sum_{i=1}^{N} r_{i}u^{q_{i}-p}\right)H_{1}^{p-1} > 0$$

on \mathbb{R}_n for $0 < \delta \leq \delta_1$, where $H_1(x, \delta) = M^{-1}H(x - \tilde{R}, \delta)^{-1}$ and $\tilde{R} = (R, ..., R)$. We now define an open set

$$D(L) = \{x \in \mathbb{R}_n; \, R_1 < |x| < L, \, u(x) > H_1(x, \delta) \}$$

for $R_1 < L$. It is clear that

$$-\Delta_p(u-H_1) < -\left(c - \sum_{i=1}^N r_i u^{q_i-p}\right) \left(u^{p-1} - H_1^{p-1}\right) < 0$$

on D(L) in the distributional sense. We now deduce from Lemma 3.1 in [21] that

$$u(x) - H_1(x,\delta) \leq \max\left(0, \max_{\substack{|x|=L}}(u(x) - H_1(x,\delta))\right)$$

on D(L) and letting $L \to \infty$ the result follows.

We now proceed to estimate the gradient of u.

THEOREM 7. Let u be a positive solution in $W^{1,p}(\mathbb{R}_n)$ of the equation (1). Suppose that r_i (i = 1, ..., N) satisfy the assumptions of Theorem 6. Then there exists a constant $\lambda > 0$ such that

$$\int_{\mathbb{R}_n} |\nabla u(x)|^p e^{\lambda \sum_{i=1}^n |x_i|} dx < \infty.$$

PROOF: Let ψ : $\mathbb{R}_n \to [0,1]$ be a C^1 -function with properties: $\psi(x) = 1$ for $|x| \leq k, \ \psi(x) = 0$ for $|x| \geq k+1$ with $|\nabla \psi|$ bounded independently of k. Taking $v = uG^p \psi^p$, with $G(x,p) = \prod_{i=1}^n \cosh \lambda x_i, \ 0 < \lambda$, as a test function we get

$$(24) \quad \int_{\mathbb{R}_n} |\nabla u|^{p-2} \sum_{i=1}^n D_i u D_i u G^p \psi^p \, dx + p \int_{\mathbb{R}_n} |\nabla u|^{p-2} \sum_{i=1}^n D_i u u D_i G G^{p-1} \psi^p \, dx$$
$$+ p \int_{\mathbb{R}_n} |\nabla u|^{p-2} \sum_{i=1}^n D_i u u G^p D_i \psi \psi^{p-1} \, dx + \int_{\mathbb{R}_n} c u^p G^p \psi^p \, dx$$
$$= \int_{\mathbb{R}_n} \sum_{i=1}^N r_i |u|^{q_i} G^p \psi^p \, dx.$$

Let us denote the second and third integral on the left side by J_1 and J_2 , respectively. A straightforward application of the Hölder inequality gives for $\epsilon > 0$

$$|J_1| \leq (p-1)\epsilon^{\frac{p}{p-1}} \int_{\mathbb{R}_n} |\nabla u|^p G^p \psi^p \, dx + \epsilon^{-p} \int_{\mathbb{R}_n} u^p |\nabla G|^p \psi^p \, dx$$

and

$$|J_2| \leq (p-1)\epsilon^{\frac{p}{p-1}} \int_{\mathbb{R}_n} |\nabla u|^p G^p \psi^p \, dx + \epsilon^{-p} \int_{\mathbb{R}_n} u^p G^p |\nabla \psi|^p \, dx.$$

Inserting these two estimates into (24) and choosing $(p-1)e^{\frac{p}{p-1}} = \frac{1}{4}$, we get

(25)
$$\frac{1}{2} \int_{\mathbb{R}_n} |\nabla u|^p G^p \psi \, dx + \int_{\mathbb{R}_n} (cG^p - (4(p-1))^{p-1} |\nabla G|^p) \psi^p u^p \, dx$$
$$\leq (4(p-1))^{p-1} \int_{\mathbb{R}_n} u^p G^p |\nabla \psi|^p \, dx + \int_{\mathbb{R}_n} \sum_{i=1}^N r_i u^{q_i} G^p \psi^p \, dx.$$

Let $\delta > 0$ be the constant from the estimate (23). Since $|\nabla G|^p = O(\lambda^p)G^p$, we see that there exists $0 < \lambda_o < \min_{1 \leq i \leq N}(q_i \delta)$ such that

$$cG^{p} - (4(p-1))^{p-1} |\nabla G|^{p} \ge \frac{c}{2}G^{p}$$

for all $\in \mathbb{R}_n$ and $0 < \lambda < \lambda_0$. Letting $k \to \infty$ and using Theorem 7 we derive from (25) that

$$\frac{1}{2}\int_{\mathbb{R}_n}|\nabla u|^pG^p\,dx+\frac{\mathfrak{c}}{2}\int_{\mathbb{R}_n}u^pG^p\,dx\leq\int_{\mathbb{R}_n}\sum_{i=1}^Nr_iu^{q_i}G^p\,dx<\infty$$

and the result follows.

6. Existence of infinitely many solutions.

To obtain the existence of infinitely many solutions we apply the Lusternik-Schnirelman theory of critical points. We assume that the functions r_i (i = 1, ..., N) are nonnegative and satisfy the assumptions of Lemma 4.

LEMMA 6. Suppose that $\sum_{i=1}^{N} r_i(x) > 0$ on \mathbb{R}_n . Then for any m-dimensional subspace E_m of $W^{1,p}(\mathbb{R}_n)$ the set

$$F_m = \{ u \in W^{1,p}(\mathbb{R}_n); J(u) \ge 0 \} \cap E_m$$

is bounded.

PROOF: Let $E_m = \text{span} \{\Psi_1, ..., \Psi_m\}$, where $\Psi_i \in W^{1,p}(\mathbb{R}_n)$ (i = 1, ..., m) are linearly independent. Suppose that Γ_m is unbounded. Therefore, there exists a sequence $\{u_j\}$ in F_m such that $\|u_j\|_{W^{1,p}} \to \infty$ as $j \to \infty$. Since $u_j = \sum_{i=1}^m t_i^j \Psi_i$, this implies that $|t^j| \to \infty$, where $t^j = (t_1^j, ..., t_m^j)$ and we may assume that $\tau_i = \lim_{j\to\infty} \frac{t_i^j}{|t^j|}$ (i = 1, ..., m) and $\sum_{i=1}^m \tau_i = 1$. For every u_j we have

(26)
$$K|t^{j}|^{p} \ge \int_{\mathbb{R}_{n}} \sum_{s=1}^{n} r_{s}(x)|u_{j}(x)|^{q_{s}} dx,$$

where K > 0 is a constant independent of j. Since $\{\Psi_i\}$ (i = 1, ..., m) are linearly independent $\lim_{j\to\infty} |\sum_{i=1}^m \frac{t_i^j}{|t^j|} |\Psi_i^j| > 0$ on a set of positive measure. According to our assumption on $\{r_i\}$ there exists r_k such that

(27)
$$r_k(x) \lim_{j \to \infty} |\sum_{i=1}^m \frac{t_i^j}{|t^j|} \Psi_i| > 0$$

on a set of positive measure. On the other hand the inequality (26) yields that

$$K|t^j|^{p-q_k} \geq \int_{\mathbb{R}_n} r_k(x) |\sum_{i=1}^m \frac{t_i^j}{|t^j|} \Psi_i(x)|^{q_k} dx.$$

Letting $j \to \infty$ we derive from this inequality that

$$r_k(x)\lim_{j o\infty}|\sum_{i=1}^mrac{t_i^j}{|t^j|}\Psi_i(x)|=0$$

a.e. on \mathbb{R}_n contradicting (27) and this completes the proof.

Remark. If there is an open set $\mathcal{O} \subset \mathbb{R}_n$ such that $r_i(x) = 0$ on \mathcal{O} (i = 1, ..., N), then Lemma is not true. In fact, if supp $\Psi_i \subset \mathcal{O}$ for (i = 1, ..., m), then the inequality (26) takes the form $\sum_{i=1}^n |t_i|^p \geq 0$, which shows that the set P_m is unbounded.

We now introduce a sequence of subspaces $E_m \in W^{1,p}(\mathbb{R}_n)$ with dim E_m = m and $E_m \subset E_{m+1}$ for each m. We assume that linear manifold generated by $\bigcup_{m\geq 1} E_m$ is dense in $W^{1,p}(\mathbb{R}_n)$. By E_m^c we denote a topological and algebraic complement of E_m . We set $\Gamma^* = \{h; h : W^{1,p}(\mathbb{R}_n) \to W^{1,p}(\mathbb{R}_n), h(0) =$ 0, h is an odd homeomorphism, and $h(B) \subset \{u; J(u) \ge 0\}\}$, where B denotes the unit ball in $W^{1,p}(\mathbb{R}_n)$ centered at 0.

The following theorem is an immediate consequence of Theorem 2.13 in [1].

THEOREM 8. Suppose that $\sum_{i=1}^{N} r_i(x) > 0$ on \mathbb{R}_n . Then

$$c_m = \sup_{h \in \Gamma^*} \inf_{u \in \partial B \cap E_{m-1}^c} J(h(u))$$

is a critical value of J. Moreover, $c_m \leq c_{m+1}$ and $\alpha_o \leq c_m$ for all m.

Here $\alpha_{\circ} > 0$ is a constant such that $J(u) \ge \alpha_{\circ}$ for $||u|| = \rho_{\circ}$, where ρ_{\circ} is sufficiently small.

Let $\Sigma(W^{1,p}(\mathbb{R}_n))$ denote the class of closed subsets of $W^{1,p}(\mathbb{R}_n) - \{0\}$ symmetric with respect to origin. We say that a set A in $\Sigma(W^{1,p}(\mathbb{R}_n))$ has genus m, denoted by $\gamma(A) = m$, if m is smallest integer for which there exists an odd mapping $\Phi \in C^1(A, \mathbb{R}_n - \{0\})$. $\gamma(A) = \infty$ if there exists no finite such m and $\gamma(\emptyset) = 0$. For properties of genus we refer to papers [8] and [13]. By Γ_m we denote the following subset of $\Sigma(W^{1,p}(\mathbb{R}_n))$:

 $\Gamma_m = \{ K \subset W^{1,p}(\mathbb{R}_n) \};$

K is compact, symmetric with respect to the origin and for all $h \in \Gamma^*$,

$$\gamma(K \cap h(\partial B)) \ge m\}.$$

We are now in a position to state the following existence result which follows from Theorem 2.8 in [1]. THEOREM 9. Suppose that $\sum_{i=1}^{N} r_i(x) > 0$ on \mathbb{R}_n and let

$$b_m = \inf_{K \in \Gamma_m} \max_{u \in K} J(u).$$

Then $0 < \alpha_o \leq b_m \leq b_{m+1}$ is a critical value of J. Moreover, if $b_{m+1} = \dots = b_{m+s} = b$, then $\gamma(K_b) \geq s$, where $K_b = \{u \in W^{1,p}(\mathbb{R}_n); J(u) = b, J'(u) = 0\}.$

According to Theorems 2.8 and 2.13 in [1] we also have $c_m \leq b_m$. In Theorem 10, below, we show that both sequences b_m and c_m converge to infinity. In the proof we use some ideas from the proof Theorem 3.14 [1] (see also the proof of Theorem 4.3 in [4]).

THEOREM 10. Suppose that $\sum_{i=1}^{N} r_i(x) > 0$ on \mathbb{R}_n . Then $\lim_{m \to \infty} c_m = \infty$. PROOF: Let

$$M = \{ u \in W^{1,p}(\mathbb{R}_n) - \{0\}; \ \int_{\mathbb{R}_n} (|Du|^p + c|u|^p) \, dx \leq \int_{\mathbb{R}_n} \sum_{i=1}^N \frac{p}{q_i} r_i(x) |u(x)|^{q_i} \, dx \}.$$

First we show that there exists b > 0 such that

$$\int_{\mathbb{R}_n}\sum_{i=1}^N r_i(x)|u(x)|^{q_i}\,dx\geqq b$$

for all $u \in M$. Indeed, by a compact imbedding of $W^{1,p}(\mathbb{R}_n)$ into $L^{q_i}_{r_i}(\mathbb{R}_n)$ (i = 1, ..., N) (see Lemma 4) we have for each k

$$\left(\int_{\mathbb{R}_n} r_k |u|^{q_k} dx\right)^{\frac{1}{q_k}} \leq \sum_{i=1}^N \left(\int_{\mathbb{R}_n} r_i |u|^{q_i} dx\right)^{\frac{1}{q_i}} \leq B\left(\int_{\mathbb{R}_n} (|Du|^p + c|u|^p) dx\right)^{\frac{1}{p}}$$
$$\leq B\left(\int_{\mathbb{R}_n} \sum_{i=1}^N \frac{p}{q_i} r_i |u|^{q_i} dx\right)^{\frac{1}{p}},$$

and this implies that

$$\int_{\mathbb{R}_n} \sum_{k=1}^N r_k |u|^{q_k} \, dx \leq \sum_{k=1}^N B^{q_k} \left(\int_{\mathbb{R}_n} \sum_{i=1}^N \frac{p}{q_i} r_i |u|^{q_i} \, dx \right)^{\frac{q_k}{p}}.$$

Since $p < q_k$ for k = 1, ..., N, our claim easily follows. We now define

$$d_m = \inf\{ \|u\|_{W^{1,p}}; \, u \in M \cap E_m^c \}.$$

We now show that $d_m \to \infty$ as $m \to \infty$. In the contrary case there exists $0 < d < \infty$ and $u_m \in M \cap E_m^c$ such that $||u_m||_{W^{1,p}} \leq d$, so we may assume that $u_m \to 0$ weakly in $W^{1,p}(\mathbb{R}_n)$ and strongly in $L_{r_i}^{q_i}(\mathbb{R}_n)$ (i = 1, ..., N). Obviously this contradicts the previous step.

For R > 1 we define the mapping $h_m : E_m^c \to E_m^c$ by $h_m(u) = R^{-1}d_m u$ for $u \in E_m^c$. We check that h_m can be extended to an application belonging to Γ^* . Indeed, it is easy to see that for each $u \in W^{-1,p}(\mathbb{R}_n) - \{0\}$ there exists a unique $\beta(u) > 0$ such that $\beta(u)u \in M$ and $J(tu) \ge 0$ for all $0 \le t \le \beta(u)$. This $\beta(u)$ can be found as a unique root of the equation

(28)
$$t^{p} \int_{\mathbb{R}_{n}} \left(|Du|^{p} + c|u|^{p} \right) dx - \sum_{i=1}^{N} \int_{\mathbb{R}_{n}} \frac{p}{q_{i}} r_{i} t^{q_{i}} |u|^{q_{i}} dx = 0.$$

Therefore for an arbitrary $u_{\circ} \in E_m^c \cap B - \{0\}$ we have

$$R^{-1}d_m \leq d_m = \inf\{\|u\|_{W^{1,p}}; u \in M \cap E_m^c\} \leq \beta(u_o)\|u_o\|_{W^{1,p}}.$$

Consequently, this implies that

$$h_m(E_m^c \cap B) \subset \{ u \in W^{1,p}(\mathbb{R}_n); J(u) \ge 0 \}.$$

For an $\epsilon > 0$ we define by Z_{ϵ} a set of all sums u + v with $u \in R^{-1}d_m(E_m^c \cap B)$ and $v \in \epsilon(E_m \cap B)$. We now show that

(29)
$$Z_{\epsilon} \subset \{W^{1,p}(\mathbb{R}_n) - \{0\} - M\}.$$

In the contrary case there exists a sequence $R^{-1}d_m u_j + \epsilon_j v_j \in M$ with $\epsilon_j \to 0$, as $j \to \infty$. Since u_j and v_j are bounded in $W^{1,p}(\mathbb{R}_n)$, $\epsilon_j v_j \to 0$ in $W^{1,p}(\mathbb{R}_n)$ and we may assume that $R^{-1}d_m u_j \to R^{-1}d_m u$ weakly in $W^{1,p}(\mathbb{R}_n)$ and strongly in $L^{q_i}_{r_i}(\mathbb{R}_n)$ for i = 1, ..., N. By the previous step of the proof we must have

$$b \leq \sum_{i=1}^{N} \frac{p}{q_i} \int_{\mathbf{R}_n} r_i |R^{-1} d_m u_j + \epsilon_j v_j|^{q_i} dx.$$

Also, $R^{-1}d_m u \in M$. On the other hand we have $0 < R^{-1}d_m < \beta(u)$, so $J(R^{-1}d_m u)$ > 0, that is,

$$\int_{\mathbb{R}_n} \left(|Du|^p + c|u|^p \right) \, dx > \sum_{i=1}^N \int_{\mathbb{R}_n} r_i (R^{-1} d_m)^{q_i - p} |u|^{q_i} \, dx$$

and we arrive at a contradiction. We can now define the extension of h_m by

$$\bar{h}_m(u) = \begin{cases} h_m(u) \text{ for } u \in E_m^c, \\ \epsilon u \quad \text{for } u \in E_m. \end{cases}$$

It follows from (29) that $\bar{h}_m(B) \subset \{u \in W^{1,p}(\mathbb{R}_n); J(u) \geq 0\}$. To complete the proof we show that $\inf_{\partial B \cap E_m^c} J(\bar{h}_m(u)) \to \infty$, as $m \to \infty$. Let $u \in \partial B \cap E_m^c$, then

$$J(\bar{h}_m(u)) = (R^{-1}d_m)^p \left(\min(1,c) - \sum_{i=1}^N \frac{p}{q_i} \int_{\mathbb{R}_n} r_i (R^{-1}d_m)^{q_i-p} |u|^{q_i} dx \right).$$

On the other hand by (28) we have

$$\sum_{i=1}^{N} \frac{p}{q_i} \int_{\mathbb{R}_n} r_i (R^{-1} d_m)^{q_i - p} |u|^{q_i} dx \leq R^{-(q_1 - p)} \sum_{i=1}^{N} \frac{p}{q_i} \int_{\mathbb{R}_n} r_i \beta^{q_i - p} |u|^{q_i} dx \leq R^{-(q_1 - p)} \max(1, c).$$

llence

$$J(\bar{h}_m(u)) \ge (R^{-1}d_m)^p \left(\max(1, c) - R^{-(q_i - p)} \max(1, c) \right)$$

and taking R sufficiently large, our claim follows.

References

- 1. A. Ambrosetti & P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Functional Analysis 14 (1973), 349-381.
- J.P. Aubin & I. Ekeland, "Applied nonlinear analysis," A. Wiley Interscience Publications, 1968.
- 3. L. Boccardo, F. Murat & J.F. Fuel, Existence of bounded solutions for nonlinear elliptic unilateral problems, Annali di Mat. Fura Appl 152 (1988), 183-196.
- J.P. Garcia Azorero & I. Peral Alonso, Existence and nonuniqueness for the p-Laplacian: non linear eigenvalues, Comm. in Partial Differential Equations 12(82) (1987), 1380-1430.
- 5. II. Berestycki & P.L. Lions, Existence of solutions for nonlinear scalar field equations, Arch. Rational Mech. Anal 82 (1983), 313-345.
- 6. M.S Berger & M. Schechter, Embedding theorems and quasi-linear elliptic value problems for unbounded domains, Trans. Am. Math. Soc 172 (1972), 261-278.
- 7. E. Brüning, On the variational approach to semilinear elliptic equations with scale covariance, J. Diff. Equations 83 (1990), 109-144.
- C.V. Coffman, A minimum maximum principle for a class nonlinear eigenvalue problems, J. d'Analyse Math 22 (1969), 391-419.
- 9. I. Ekeland, On the variational principle, J. Math. Anal. Appl 47 (1974), 324-353.
- 10. Li Gongbao, Some properties of weak solutions of nonlinear scalar field equations, Ann. Acad. Sc. Fennicae 14 (1989), 27-36.
- 11. J.L. Lions, "Quelqués méthodes de resolutions des problèmes aux limites nonlinéaires," Dunod Gautier - Villars, Paris, 1961.
- G. Muraz & P. Szeptycki, Inclusions of H¹ in L², Prépublications de l'Institut Fourier Laboratoire de Mathématiques, Grenoble no 120 (Année 1988).
- P.H Rabinowitz, The mountain pass theorem: theme and variations, Lecture Notes in Mathematics, Springer Verlag 957 (1982), 235-271.
- 14. P.H. Rabinowitz, Variational methods for nonlinear eigenvalue problems, C.I.M.E (1974), 142-195.
- W. Rother, Bifurcation of nonlinear elliptic equations on R^N, Bull. London Math. Soc 21 (1989), 567-572.
- 16. W. Rother, Bifurcation for a semilinear elliptic equation on \mathbb{R}^N with radially symmetric coefficients, Manuscripta Mathematica 65 (1989), 413-426.
- H.J. Ruppen, The existence of infinitely many bifurcating branches, Proc. Roy. Soc. Edin 101A (1985), 307-320.
- C.A. Stuart, Bifurcation for Dirichlet problems without eigenvalues, Proc. London Math. Soc (3)45 (1982), 167-192.
- C.A. Stuart, Bifurcation in L^p(R^N) for a semilinear elliptic equation, Proc. London Math. Soc (3)57 (1988), 511-541.
- C.A. Stuart, Bifurcation from the essential spectrum, Proceedings of Equadiff, Lecture Notes in Mathematics, Springer Berlin 1017 (1983), 573-596.
- 21. P. Tolksdorf, On the Dirichlet problem for quasilinear elliptic equations in domains with conical boundary points, Comm. in Partial Differential Equations 8(7) (1983), 773-817.
- 22. M.M. Vainberg, "Variational method and method of monotone operators in the theory of nonlinear equations," John Wiley & Sons, New York Toronto, 1973.