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1. Introduction.
The main purpose of this paper is to establish the existence of positive

solutions of the equation

" 2u(z),

(Hy - Z D;(|Vu(z)P 2 Diu(z)) + clu(z)|P u(z) = Z ri(z)|u(z)

=1 =1
in R, where | < p < oo and ¢ > 0 is a constant, p < ¢; < —713_3'; if n > p and
p < q; < ooil p2mn. The functions r; + R, — [0,00) (i = 1,...,, N) satisly the
hypotheses (a;) and (b;) of Section 4, which depend on whether p < n, p = n or
p > n. We are also interested in the behaviour of solutions at infinity and in the
question of the existence of multiple solutions.

The paper is organized as follows. In Sections 2 and 3 we describe an

abstract setting for the equation (1). Namely, we consider the equation

(2) - Au = Ve(u)
in areflexive Banach space X', where 4 is a potential operator and @ is a real-valued
functional on X. We follow here the ideas developed by Stuart in {18] and |20] for

the equation

1w = Vd(u)
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in a Hilbert space H, which is an abstract version of the equation (1) with p = 2.
Since the equation (2) has a variational structure, solulions can be obtained by

minimizing the potential J given by
J(w) = pa(u) - p(u),

where a is a poteniial of A. In Sections 2 and 3 we describe three methods of
obtlaining solutions of the equation (2). The first method is based on the mountain
pass theoremn (see Ambrosetti-Rabinowitz {1] or Rabinowitz {13 - 14]). In the
second and third method, solutions are obtained as minimizers of J sub ject to some
constraints. As an application in Section 4 we obtain the existence of solutions of
(1). In both cases we need some results on imbedding of W1 7(R,) into a weighted
space LZ(R,). These results are discussed in Seclion 4 and we distinguish three
cases: p < n, p=n and p > n. We also obtain some existence results when ¢ = 0
il p < n. In particular, we show that in this case solutions of (1) converge, when
¢ — 0, to solutions of (1) with ¢ = 0. In Section 5 we briefly discuss the exponential
decay of posilive solutions of (1). Finally, in Section 6 we establish the existence
of infinitely many solutions of the equation (1). The method used in this section is
based on the Lusternik-Schnirelman theory of critical points.

If p = 2 there are some kpown existence results for infinitely many so-
lutions. In particular, Berestycki and I"L. Lions [5] established the existence of
infinitely radial solutions. The right hand side of (1), with p = 2, in [5] is replaced
by a nonlinearity f depending only u and having a subcritical growth al infinity.
Their results were extended by Stuart [19] and Ruppen [17] to (1), with p = 2, iv a
nonradial case. We additionally prove that a sequence of level sets of the functional

J corresponding to the infinite sequence of solutions converges to co. The existence
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results obtained in this paper, even in case p = 2, are more general than some
existence resulls in [17 - 20]. However, we are not concerned in this paper with
bifurcation, which has been extensively discussed in [19].

We point oul here that for case p = 2, Ruppen [17] proved the existence
of infinitely many branches of solutions all bifurcaling from ¢ = 0. However, this
requires some assumptions on r;, which control the behaviour of these functions

from below atl infinity.

2. Application of the mountain pass theorem.

We commence with some basic definitions and notations. We consider
equation (2) iu a real reflexive Banach space X. The dual X is denoted by X*.
We denote the duality pairing between X and X* by (-,-). The weak convergence
in X and X" is denvted by — and the strong convergence by —. For a functional
® : X — R, we use both symbols V& and @' to denote the Fréchet or Gateaux
derivatives.

The following terminology is standard and can be found in the monograph
of Vainberg [22].

A mapping 4 : X — X" is said to be a potential operator with a potential

a: X — R, if ais Gateaux differentiable and
{iu(l}t']‘(a(u + tv) — a(u)) = (A(u),v)

for all v and v in X. For a potential @ we always assume that «(0) = 0. It is known

that the potential operator with the poteniial ¢ can be expressed by the formula

1
a(u) = /0 (A(tw),w) dt.
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We say that the mapping A : X — X is homogeneous of degree § > 0,
ifforeveryu € X andt >0
A(tu) = tP A(u).

Consequently, for the homogeneous potential operator A of degree @ with the po-

tential a we bhave

1
a(u) = m(A(u%“f

We make the following assumption on 4 and 9.
{A1) The wapping 4 : X — X" is a homogenous continuous potential

operator of degree p— 1 with a poleuntial a, where p > 1. Moreover, we assume that
(3) ky S a(u) S ks

for some constants k; > 0 and k; > 0 and for 2ll |jul| = 1.
Since the potential a is homogeheous of degree p, we see that (3) implies

that
(4) kuflull” £ a(u) < kallull”

for all w € X. Also, the continuity of the potential operator A implies the Fréchet

differentiability of ils potential a.

(43) & € CI(X,R) and
#u) Z a®() > 0 on X ~ {0},
for some constant a > p, where
Plu) = (Ve®{u),u) = ®'(uw)u.

[furthermore, we asswne that
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(43) ®(u) £ C(Jlul|® + ||u[|") on X for some constants ¥ > a and C > 0.

Let us now set for a fixed v € X — {0}

h(t) = ®(tu)t™ for all t> 0.

Since
w() = 2 = o) 5 o all ¢ > 0,

fotl

we see that

(5) B(tu) < 1°8(u) for <1< 1
and
(6) P(tu) Z P(u)t® for ¢ 2 1.

Also, we have $(0) = V&(0) = 0.

To obtain the first existence result we minimize the functional
J(w) = () - p(u),
where a(u) = pa(u). Since
J'(u)v = p((AJ(u),v) —(V&(u),v))

for all w and v in X, any critical point of J is a solution of (2). The first existence
resull is based on the Amnbrosetti-Rabinowitz mountain pass theorem [1]. To apply
this theorem we need an additional asumption on A.

A mapping 41 X — X" is strongly monotone if there exists a continuous
function « : [0,00) — [0,00), which is pousitive on (0.cc) and liny .. w(f) = co.
such that

(A(w) = Av)u =) 2 w(lu— o) llu - vl
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for all w and v in X.
A mapping 4 1 X — X" is said to satisly the condition §; if for every
sequence {u;} in X with u; — w and A(u;) — v in X" we have u; — u. Evidently,

cvery strongly monpotone operator satisfies the condition 5.

THEOREM L. Suppose that A is a strongly monotone potential operator and that
V® is strongly sequentially continuous ( that is, u, — u in X implies V®(u,) —

V®(u) in X* ). Then the equation (2) has a nontrivial solution.

PROOF: We check that the assumptlions, of the mountain pass theorem are satis-

fied. It follows from (4) and (A4;3) that
T(w) 2 kapll” = pO(ll® + 1l
Since v > a > p, there exists p > 0 and § > 0 such that
Tw) 2 p for Jul = 6

and also

J(u) >0 for 0 < JJul| £ 6.
Let ||&]] > 6, by (4) and (6) we have
J(t2) S kapt?||af|” — p@()t* < 0

for £ > 0 sulliciently large. We now show that J satisfies the Palais-Smale condition

(PS). That is, if {un} is a sequence in X such that J(u,) is bounded and J'(u,) — 0

in X, then {u,} possesses a convergent subsequence in X. It is easv to show that,
1

under our assumptions, these two conditious on {u,} imply that {u,} is bonnded.

llence we way assuine thal u, — v in X. Since

J'(wn) = p(A(un) = V¥(u,)) — 0 and \_‘fi’(un) — VP(u)
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in X*, we see that A(u,) is convergent in X*. According to the condition S,

U, — win X. By the mountain pass theorem there exists @ € X such that

J(@) = inf wax J(g(s)),

gel'ugszl

where I’ = {g € C([0,1], X); ¢(0) = 0,9(1) = t@}. Since J(&) Z p, & # 0 and it is

obvious that % is a solution of (2).

3. Counstrained minihmnization.

In this section we additionally assume that

(Aq) ¢ € CH{X,R) and the mappings ' : ¥ —» X* and ¢' : X — X are
bounded mappings. ’ |

We now set ¢(u) = ¢(u) — p&(u) for all u and assume that

(4s) ¢'(w)u 2 ad(u) for all v € X - {0}.

1nstead of the assumption (4;) we suppose that

(A3) $(u) £ K (|Ju]|* +|ul|?) for all w € X and some constants v > & > p
and I > 0.

Asin [19] we list the consequences of these hypotheses that will be needed
later.

It follows {rom (Az) that
(M ¢(u) = ¢(u) — p®(u) 2 (o — p)®(u) > 0

for all w € X — {0}. Hence by (4}) we have

I

a—p

(8) ®(u) (el + ll™)

A
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for all w € X, that is (44) implies (43). Now combining (8) and (A4}) we get

(9) 0.< #(0) = $u) +p8() £ (L4 1) (Il + Jul”) =

aK @ o
(aell™ + fll ™)
- P
for all u € X — {0}. Moreover, it follows {rom (45} and (A;) that
(10)  (¢'(w)yu) = (' (u),u) + p(V(u),u) Z ad(u) + apd(u) = ad(u).
Let us now set for a fixed u € X — {0}
k(t) = p(tu)t™ for all ¢ > 0.

Then

k(1) = d)'(tu)t;::]ad)(tu) 0

and consequently 1 — ¢({u){™% is strictly increasing on (0,00) and we obtain that
(1) Tmg(tu)t™ = 0 and Jim ¢({u)t™? = oco.
t— t— o0

A similar statement can be derived for ¢(u).
To describe the first method of the constrained minimization, we observe

that if v € X is a solution of (1), then
) = (A(w),u) — (V8(u),0) = (u) - §(u) = 0.

Consequently, we minimize the functional J subject to the constraint g(u) = 0. We

set

"'v:-{u _‘\ —\{”}-’ q 7/):”}.

I will be shown in Lemuma 2 that 1V 3£ 0. We now observe that

(12) J(u) = g(w) + ¢(u) for all v € X,
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and

(13) J'(w)u = d'(w)u — p(VE(u),u) = p((A(u),u) — (VE(u),u))

= pg(uv) = g'(w)u + ¢'(v)u.
Therefore for w € V we have
(14) J(u) = d(u), g'(w)u=—¢'(u)u
and moreover
m =inf{J(u); v € V} =inf{d(u); u € V}.

LEMMA 1. (i) There exists § > 0 such that ¢(u) = pky|jul|” 2 6§ > 0 foru e V,
(i) infyev J(u) 2 6%ZE.
(i) 22 I () 2 phiul” forw € 7,
(iv) v € V and J(u) = m, then u satisfies (2) and

3 —
P e = D)y < .
(64 «

PROOF: (i) u eV, then

K o )
p(IIUH + [lull”)-

o —

phyflufl” = (A(v),u)) = ¢(u) =

Since u # 0 and p < @ < 7, ||ul]] Z Const > 0 for u € V and (i) follows.

(ii) If w € V', then by (14)

T(u) = ¢(u) and ¢(u) = $(u) + p®(u) < G(u) + ——d(u) = ———d(u).

a—p o =7

Consequently, according to (i) we have

Sy
Py
IS
Na
Il
<
=
S
s
i
|
=3
<
——
I~
=
\/

@ - «
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and this implies (ii). The estimate (iii) follows {rom the step (i) and the preceding

inequality.

(iv) If w € V and J(u) = m, then there exists A € R such that
J'(u)v = Ag'(w)v forall ve X.

1t follows from (As), (14) and (7) that g'(v)w < 0. Since J'(u)u = 0, we must have

A =0, that is, J'{(u)v = 0 for all v € X and u satisfies (1).

LEMMA 2. There exists a unique function s : X — {0} — (0,00) in C1(X — {0}, R)
with the following property: if w € X — {0} and t > 0, then tu € V if and only if

t = s(u). The gradient of s satisfles the estimate

(PILACs(w)u)l| + IV (s(u)u)ll) s(w)*
(« = p)g(s(u)u) '

PROOF: The proof is similar o that of Lemma 3.2 in [19]. We give only an

IVs(u)l =

outline. We introduce a function P : (0,00) x X — R defined by
P(t,u) = a(u) — P(tu)t™F.

According to (10) we have
@' (tu)tu — po(itu) < __(a — p)é(tu)

tp—!-l = ip—H

9

’l/}t(i, u) = —

also

(Vo(tu), )

Pu(t,u)v = p(A(u),v) — pre;
Since @(u) is homogeneous of degree p, it is clear that for v € ¥ — {0}, tu € V if
and only if ¥({,u) = 0. Since ¢(tu)i~7 is strictly increasing funclion. there exisis a

unique value 1 = s(u) such that ¥+(s(u),v) = 0. We also have

(o — p)é(s(u)u)
- s{u)rt! <0

Pe(s(u), )

A
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and the result follows from the implicit function theorem.

To show that the constrained minimization leads to a solution of (2) we

must construct a suitable minimizing sequence.

LEMMA 3. There exists a sequence {u,} C V such that J(u,) —» m, v, — v in X

and VJ(u,) — 0in X*.

PROOF: The proof is identical to that of Lemma 3.4 in [19]. Therefore we only
sketch the main ideas of the proof. In this proof we use assumption (A44). It follows

from Ekeland’s variational principle [2], [9] that there exists {u,} C V such that
J(un) Em4nt

and

J(w) 2 J(un) — n-lllw — Un|

for all w € V. Since by Lemma 1(iii), {v,} is bounded, it follows from assumption

(Ag) that {V¢(un)} is also bounded. We now write for each v € X — {0}

(15)  J(0) = I(wn) = T(v) = I(a(w)0) + I(s(2)e) — I ()
2 J(0) = J(s(0)v) = n ™ la(v)v — unl.

Applying Lemma 2 we get
(16) lls(v)v — wnll = Cillv — unll and [s(v) — 1] = Ciflv — u.|l

for some Cy > 0, provided |jv — 1w, || is suiliciently small. To estimate J{v)—.J(s(v)v)
we observe that
[ (v) = J(s(v)v)| Z [s(v) = 1]IT(6(v)v)el,
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where 8(v) lies between 1 and s(v). On the other hand J'(un)un = 0, since u, € V

and consequently
(17) |7 (v) = J(s(v)e)l £ n™ Dljv — un|

for some constant D > 0, provided ||v — u,]| is sufliciently small. Combining (15),

(16) and (17) we obtain

for sowe constant Cy > 0. Taking ||z]] =1 and ¢t > 0 as small as ||v — u,|| we get

J(g +12) — J(un) -
i

V

b

Cy
n

which implies that J'(u,)z 2 —% and replacing z by —z we derive

Cy

T

7" (wn )]

A

and the result follows.

We are now in a position to establish the following existence result.

THEOREM 2. Suppose that A is a strongly monotone potential operator and that

U is strongly sequentially continuous. Let {u,} be sequence constructed in Lemma

3. Then u, — uw in X and u is a nontrivial solution of (2).

PROOT: Since A satisfies the condilion S;, we show as in Theorem 1 that u,, — u

in X and therefore J(u) = m, with u # 0, and the result {follows from Lemma 1.
If both functionals @ and & are homogeneous, then a constrained mini-

wizalion problem can be solved under different set of assumptions. In particular,

we need only the Géteaux differentiability for a and @.
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To illustrate this situation we consider the following minimization problem
(1) I = min{a(u); #(u) = 1}.

We follow here the approach from [7]. We assume that 4 : X — X" is homogeneous
of degree p — 1, p > 1, with a polential a sa.tiﬂying (3). We stress here that we do
not assume the continuity of A. The functional ® is defined on a linear subspace
D(®) C X. Moreover, we assumne that ¢ is homogeneous of degree o > p. Further

assuinptions on ¢ will be formulated in Theorem 3 below.

THEOREM 3. (i) Suppose that the problem (1) has a solution u, that is, there exists
u € IN®) such that a(v) = I and ®(u) = 1, and that ® has a linear continuous

Gétleaux derivative (®'(u),v) at all directions v € D(®). Then

(18) (A(u),v) = IZ(#'(x),v)

-
-7
’

for allv € D(®). If I > 0 then the "scaled minimizer” @ = &u, where & = (£1I)

satisflies the equation
(19) (A(ﬂ))v) = (‘I)'(ﬁ),v)

for all v € D(®).

(ii) Suppose that all weak limit points of every bounded subset of the level
set ®(u) = 1 belong to D(®). If & is weakly sequentially continuous, a and ®_
are weakly sequentially lower semicontinuous, then the constrained minimization

problen (1) has a nontrivial solution.

PROOI: The proof is similar to those of Proposition 2.1 and Theorem 3.2 iu [7].
Therefore we ounly sketch the main steps. To prove (i) we set d = ®'(u)r and for
o > 0 we have by the definition of the Gateaux derivative that

$(ou -+ eov) = (1 + ed + ofe)).

»
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There exists €, > such that 1 4 ed + o(€) > 0 for all |e| < €. Also, for such € there
exists ¢ = o(¢€) such that ®(ou + ecv) = 1. Consequently, if we set ¢ = (A(u),v),
we get

7 2 a(ou+ oev) = oTa(u 4 ev) = a(u) + e(c — %Id) + o(e).
Since this inequality holds for all |¢| < ¢,, we must have c— £Id = 0 and this proves
(18). Since for ¢ > 0 we have a(ou + €v) = cTa(u + eo~'v) and &(ou + ev) =

O (u + eo~1v), it is easy to see that
(A(ou),n) = LIeP*(V(cu),v).
: «

1
Therefore, if I > 0, then @ = gu, with & = (£1)"7 satisfies (19).
(ii) Let {u;} be a minimizing sequence. Since {u;} is bounded, we may assume that

uj; — uin X. According to our assumptions v € D(®) and a(u) £ I. We now have
®_(u;)=P4(u;)—1— @4(u)-1,
as 7 — oo, and cousequently

®_(u) S lim ®_(u;) = P4(u)—1.

J—oo

Therefore ®(u) = 1 and u # 0. Assuming that ®(u) > 1, we have 0*®(u) = 1, with
0 < o® <1, hence a(u) £ I £ a(ou) = ¢”a(u), which implies that 1 £ o? and we
arrive at the contradiction.

Remark. We now compare the constrained minimizations of Theorems
3 and 2. Tirst, under the assumptions of Theorem 3 T® is a potential operator
with a potential & of degree . Therelore we have

P(u) = —:-l-(\"‘I’(n),u}. )

«
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It is casy to check that a solution @ of the constrained minimization (I) satisfies the

equalion
? o(a) = o(a).
@
We now setl H(u) = %J(u), that is, I/ (u) = a(u) — ®(u). We show that
H(w) =inf{H(v); ve V}

10 g(v) = 0, then (A(v),v) — (V®(v),v) = 0, which is equivalent to Za(v) = &(v).
Let v # 0 satisfy g(v) = 0. Then in view of (3) and the last identity ®(v) > 0.
Hence there exisis o > 0 such that ¢® = ®(v). Let v, = o~ 'v. Then the equation

g(v) = 0 can be written as 0 = Lo a(v,), that is o = ({:—a(vo))ﬁ. Hence
Hw) = (1 - L)a@) = (1 = LYora(ve) = (1 — Z)(La(v.)) ™ a(wo)-
o a a’ta
On the other hand, for @ we have
T(5) = (1 — DysPa(u) = (1 — EY(EDN755 7
H(zg)=(1 a)cr au) = (1 a)(aI) .
Since ®(vo) = 1, we have I £ a(vo) and consequently
H(@) £ (1 - 2)(La(v.)) T afve) = H(v)
ot

and this justifies our claim.

4. Existence results for the equation (1).
As an application of the results of Sections 2 and 3. we prove the existence
of positive solutions of (1). We recall some basic properties of the p-Laplacian

Apu = Z ]_')i(l\_-’u.!"—zD,:ui).

=1
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All these properties can be found in J.L. Lions [11]. The p-Laplacian A, maps

WHP(R,) onto "V"l"’,(Rn) e U’i’yl’p(Rn))*, with % + -’%,- = 1. If we now set
Alu) = =Apu + c|uff?u,

where ¢ > 0 is a coustant, then for every h € W17 {here exists a unique u €
WHP(R,) such that A(u) = h. Furthermore, 4 is a strictly monotone potential

operator with a potential a : W1 P(R,,) — R given by

o) = %(/R V(a7 do + c/ﬂn ]u(:c)|7’d:c>. )

It is known that A : WUP(R,) — W17 (R,) is uniformly continuous on bounded
sets.

To formulate the assumptions on 7; : R,, — [0,00) (2 = 1, ;..,N), guaran-
teeing the existence of a compact imbedding of W'7(R,) in L% (Ry,), we distinguish
three cases. In what follows we denote by Q(=,[) the cube of the form

I .
Qz, ) ={y € Ry, ly; — 25| < 7 j=1,.,n}.

Case p < n.
a;ite;

{e1)r; €L (Rn), where p< q; < gi + & < ;—1’—’1—_} (i=1,..,N) and

gite

(b1) limjg) oo fQ(z,l) ri(y) % dy=0( =.1,...,N) for some [ > 0.

}oc.

Case p = n.
(ag) rs € L (R,,) for some 5; > 1 (i = 1,...,N) and

loc

(b2) gl sri(z)Sde =0(i=1,...,N) for some [ > 0.
I=l Q=) : )

Case p > n.

(0'3) T € L?Q(-(Rn) (7 = l,...,]V) and

([)3) ”“":r:l-—*eo j‘(.g(:,l) 1‘,-(.1:)(1:1,‘- =0 (i =1, ...,]V) some [ > 0.

>
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We assume that ¢; < ... < gy and that at least one of the functions r; is
not identically equal to 0.
The [unctionals ® : WIP(R,) — R, J: WIP(R,) = R, ¢: WIP(R,) —

R and (]) : WHr(R,,) — R are given by

N
°)=3 qi /R i)

J(w) = p(u(u> - i qi / ()l i) = /R V() de

) |
r ! (z)|u(z)|? dz
ve [ ute) dm"’;‘q‘i/m“( hu(z) % da,

N
TOEDY /R i) ()| do

and
N

h(u) = _2 ri(z u:z:‘”a::Ngi—:—p rs(z)|u(z)|¥ dz.
i) =30 -2 [ neute d > [ @t d

LY n

=1
To show that all these functionals are well defined we need some results on compact
imbedding of W'7T(R,,) inlo each space L% (R,) (2 = 1,..., N) defined by
LE(Ry) ={u: / ri(z)|u(x)|¥ de < oo}

R,

and equipped with the norm

L

Il = (] o)t w)"

LEMMA 4. (i) Case n. > p. Suppose that r; (1 = 1,...,N) satisly (a;) and (b;).
Then WHP(R,) is compactly imbedded in each space L% (Ry,).
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(ii) Case n = p. Suppose thatr; (1 = 1,...., N) satisfy (ay) and (b2 ). Then
WH(R,,) is compactly imbededd in each space LI (R,) for every q 2 n.
(iii) Case n < p. Suppose thatr; (i = 1,..., N) satisfy (as) and (bs). Then

WP (R,,) is compactly imbedded in each space L2 (R,,) for each ¢ 2 p.

PROOF: Case (i), is a special case of a slightly more general version of a result
due to Berger-Schechiter [6]. An independent prool of the compact imbedding of
W2(R,,) into L2(R,,) with r bounded and satisfying (b;) can be found in [12]. We
follow the method from [12] to show (ii) and (iii). Obviously, the proof of (ii) and

(ii1), presented here, can also be used to prove (i). For simplicity we set r = ;. In

both cases it suflices to show that [or every § > 0 there exists R > 0 such that

(20) 1 = xewml,, <8

for all f such that “f”ﬂ”vr(ﬂ,,_) < 1, where x¢ is the characteristic function of
the cube. Indeed, let {fm} be a bounded sequence in W1 P(R,,). We assume that
e, £ 1 lor all m 2 1. Consequently, we may assume that f,, — f in
WDLr(R,) and in view of standard Sobolev compactiness theorems there exists a
subsequence of {f,,}, denoted again by {/,,}, such that f,, — 7 in L9(Q(0, R)) in

case (ii) and fi, — f uniformly on Q(0, 1) in case (iii). On the other hand by (20)

we have
1
(/ Ifm - .ﬂqT d’L‘> ! (:: 25
R, —Q(U,R)
Combining this with the previous observation, we easily conclude that f,, — [ in
Li(R,,).

To prove (20) we cover R,, with cubes Q(z,1), z € Z™, where Z = {..., =2, -1,0,1,

2,..}. We may assume that (a;) and (b;) (1 = 2,3) hold with [ = 1. For > 0, in
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case (ii), we use (b3) to find N > 0 such that

/ r(z)'dz <7
Q

for each @ = Q(z,1) outside @Q(0,N). We now use the fact that if f € WH™(Q)

then f € LY(Q) for each n £ ¢ < oo and

”f”Lv(Q) s C(‘]a")”f”lﬂm(Q)

for some constant C(g,n) > 0. Hence by the Holder inequality we have

1 1
: , 7
[ismmtes ([ vra) ([ 7 az)” <t ctamir e oy

We now choose C(g,n)n* < § and add these inequalities over all @(z,1) outside
Q(0, V) to obtain (20) with R = N. In case (iii) we use (b3) to get fQ rdz < 7 for
each @ = Q(z,1) outside Q(0, N). We now repeat the previous argument using the
inequality || fi|pe(g) = Cl[f][wl,,(Q), which holds for all f € WHP(Q), wilth p > n,
o1 sowne constant C' > 0.

1t is evident that under the assumptions of Lemma 4, ® is Fréchet differ-

entiable and

(VB(u), v) Z/ ri(2)[u(2)|[% Pu(z)o(z) do

for all w and v in WHP(R,,).
4 is now readily seen that all asswinplions concerning regularity of ¢, ¢

and ¢ are satisfied. Thereflore each of Theorems | or 2 vield the existence result {or

(1).
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THEOREM 4. Suppose that the asswnptions of Lemma 4 hold. Then the equation

(1) has at Ieast one positive solution w in 'W17(R,,).

Since a solulion is obtained as a critical point of J, which has the property
J(u) = J(|u|), we may assume that u 2 0 on [,. The strict positivity of u follows
from the Harnack inequality.

I ¢ = 0 a suitable Sobolev space for the equation (1) is a space EV'?(R,,) =
{ completion of the space C5°(R,,) with respect to the norm ||Dul|,}.
Here C°(R,,) is the space of C°°-functions with compact supports. We only estab-

lish the existence result in case p < n. By the Sobolev inequality
lull e < SIDul,
wep

for all w € CF(R,) with a constant § = S(n,p). Consequently, FV7(R,) can be

regarded as a subspace of L%(Rn). Also, WHP(R,) C E'P(R,,) with continuous

injection. We now extend Lemma 4 to the space EV7(R,,).

LEMMA 5. Let p < n and suppose that r; (i = 1,...,N) satisfy (ay) and that
ri € LY(Ry). Then for eachi = 1,..., N the space EV?(R,,) is compactly imbedded
in Lg;}(Rn).

PROOF: The proof is similar to that of Lemma 4. For simplicity we set ¢ = ¢;,
r = r; and € = ¢. It suflices to show that {or every § > 0 there exists R > 0 such
that thg: inequality (20) bolds for all [ such that HDpr < 1. Indeed, let {fm} be
a boundéd sequence in E'7(R,,). We may assume that ||Dfn]|, < .lbfor allm 2 1.
Since p < ¢ + € < - we may assume that there exists f € EVP(R,,) such that

n—p?

fm = fin LIY(Q(0, R)) and Df,, — Df in L"(R,). Thus

/ = fltrda < ( / o — Fl1+e dw) ( / ni dw) :
Q(0,R) Q(0,R) Q(v,R)
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On the other hand by (20) we have

1
(/ [~ f{%d:n) < 26.
R, -Q(0,17)

Since f,,, — [ in LIT(Q(U, R)), the last two inequalities give the convergence of
T in LI(R,,).
To prove (20) we cover R, with cubes Q(z,1), 2 € Z™. For n > 0 we use (a;) to
find N > 0 such that
/ r(y) dy 21
Q

for every @ = Q(z,1) outside Q(0, N) and so that

/ r(y) dy < 7.
R, —-Q(0,N)

Il @ is any such cube we have by the Sobolev and Hélder inequalities that

(n=p)(a+e)
/Q I do < ( [ e dm> < ST D AT,
Jg Q

and cousequently, setting fo = Ttlﬂ fQ [(z) dz, we obtain by Poincaré’s inequalily

Jyrrae 22| s = saeas s [ [0 dw)qr{”) ]
<ot ([ 1 - sarr d>+(/(2L )"

g(n—p)

+( i) / ()]
§K(/Q|Df[7’dm>%</(grﬁ5 dm>ﬁ+zq-lsv</ﬁn [Df|pdm>%/Q r(x) do,

where J{ > 0 is a constant. We now add all these inequalities over all Q(z.1) ontside

QO,N) to get

/ |f17r d: < Knwie + 2q—15‘7/ rde Z Kn7 + 297089,
JR, -Q(0,N) R, —Q(U.N)
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We now choose 7 so that Kn# 42971599 < § and add these inequalities over all
Q(z,1) outside Q(0, N) to obtain (20) with R = N.

1t is clear that, in case p < n, Theorem 4 continues to hold for the
equation (1) with ¢ = 0, provided r; (i = 1,...,N) salisfy the assumptions of
Lemma 5. Obviously in this case a solution belongs to EV?(R,,). As an application

of Theorem 3 we consider the equation (1) with ¢ 2 0 and N = 1, that is,
(21) —Apu 4 clul? P = r(2)ul" P in R,

with the function r(z) varying in sigu.

THEOREM 5. Let p < n. If ¢ > 0 we suppose that v, satisfies (ay) and (by) for
some € > 0 and that r_ € L] (R,). If ¢ = 0 we suppose that r satisfies (a1 ) and

that v € L'(R,) and _ € L{ (R,). Then the equation (21) admits at least one

nontrivial solution in F*?(R,) if ¢ = 0 and belonging to WYP(R,,) if ¢ > 0.

PROOI: We only consider the case ¢ > 0. For a functional ®(u) =
Ili-fR,., r(z)|u(z)|? de we set D() = {u; [p |r(z)llu(z)|?de < oo}. It is obvious
that D(®) is a linear subspace of EV'P(R,,) containing C°(R,,). In view of Theorem
5 it suffices Lo show that weak limil points of every bounded subset of {$(u) = 1}
belong to D(®). Indeed, let u, be bounded sequence in {®(u) = 1}. We may

assume thal u,, — win WHP(R,) and v,,, — v in L7, (R,) and hence

l.im/ Jwm |97 dm:/ [w]?r o da
meee e, IR,

and

lim / [Um|ir_dz = lim [tm |7y do — g = / lulry do—g -
R. IR,

m—oo m—0co
LT
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By Fatou’s lemma we see that 7_[u|? € L’(R,,) and

/ [wlfr_dz £ lim / [ T d:c:/ [u]9ry d:c—i,
R,, m-—00 R-"

n

A

therefore v. € D(®). Since ¢ is ouly Géteaux differentiable at u in every direction
v € C&(R,,), the equation (21) is satisfied in the distributional sense, that is,

/ (IDu|"?DuDv + clu|""*uv) do = / w2y da
R, R,

for each v € CP(R,,).
According to Theorem 5 the equation (21), with ¢ > 0, has a solution in
WUP(R,,). Let us denote this solution by wu.. In Corollaries 1 and 2, below, we

examine the behaviour of u., as ¢ — 0.

COROLLARY 1. Let p < n and suppose that + 2 0 on R, r € LY(R,,) and that the
asswmption (ay) holds. Then ue — w in EYT(R,,), as ¢ — 0, where u is a nontrivial

solution of (22) with ¢ = 0.

PROOF: The function u. is a solution of the constrained minimization

i —1— v(zMr(z)de = 1}.
a(w) = inf{a(v); - / lo(@)|*r(z) do = 1}

13

Repeating the approximation argument used in the proof of Lemma 4 in [ 16 | we

conclude that
/ (|Duwel™ + clu ") de = ¢ / rlu.|? da.
R JR,

Consequently {u.} is bounded in EV7(R,). Therelore we may asswme that D, —
L A c LAy A
Du in LP(R,,), v. — uin LP(I() on every bounded subset I C R, and a.e. on R,,.

On the other hand in view of Lemma 5 u, — u in L2(R,) as ¢ — 0. To complele
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the proof it is sullicient to show that Du. — Du in LP(R,). We first show that

D, — Du ae. on R,,. To show this we consider

()// \ (IVucP 2 Diue — [Sul" "2 D) Di(ue — u) dz

117]

:/ Plue]?  un(ue — u) dw-—/ v]\"u!" *DiuDi(ue —u)de = J, + Js.
i

i

By the weak convergence of Du. we have limJ, = 0. The {ollowing inequality

CEE) i
(/ rluc)? dm) (/ rlue — ul? d:c>
IR, R.

vields that lim. .4 Jo = 0. Therelore

[Ja]

A

(22) lim/ Z V[P~ Diue — |VulP > Du)D ( —u)dz =0

c—0
Ry 5=y

aud cousequenily repeating the arguinent from [3] we see that linc.o Du. = Du
a.e. on R,. Applying the Udlder inequality we check that 3 &, [Vuc|?"2D;uc.Dju

=1

is equiintegrable and consequently

. p—2 P
}1_}11{1)/ L]Vu P~ D;u Dudm_/ [VulP dz.

R,,

R, =1

It now fullows from (22) that

lim/ [Vu,|P dz =/ [Vulf dz
= JR,, R,

and the result follows from the nniform convexity of the space L7(R,,).

I p=2(2 < n) this resull can be slightly improved by allowing r to vary

in sign.
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COROLLARY 2. Let 2 < n and suppose that v satisfies the assumptions of Theorem

5 with p = 2. Then v, — v in EV?(R,,), as ¢ — 0, where v is a nontrivial solution
of (21) with ¢ =0 and p = 2.
PROOF: The function u. is a solution of the constrained minimization

i 1 vlirde =
afu) =inf{a(o) > [ folrrde =1,

%,

where a(u) = 3 [o (|Dul* + cu?) dz and moreover

/ (DucDv + cucv) dr = / Pl ?uev do
Y

i

for each v € CJ°(R,,). Inspection of the proof of Theorem 5 shows that |u |7 €

L'(R,,). Repealing the approximation argument used in the proof of Lemma 4 in

[16] we conclude that

/ (IDuc]? + cu?)de = / rul de = q.
R, R,

Consequently {u.} is bounded in EV*(R,,). Therefore we may assume thal Du, —
Du in Lz(Rn), Ue — U I LZ(K) on every bounded subset K C R, and a. e. on Ry,.
On the other hand in view of Lemma 5 uc — uin L2, (R,) as ¢ — 0,

heuce by Falou’s lenuna

/n,,, Jul?r_dz = ll_xf}) /n,,, [ue|"ry do — g = /“:«n [u|?ry dz -9

Consequently, ]ulqrell(ﬂn) and 1 £ fR" |ul?r dz, so u # 0. 1t is easy to check that
u satisfes (22), with ¢ = 0, in the distributional sense.

Remark. Il p = 2 the existence result obtained in Theorem 5 is more
general than in [7] ( see Proposilion 4.1 there ). For related existence results we

refer to papers |14~ 15].
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The above discussion shows that the solution u is obtained either by
applying the mountain pass theorem or by a constrained minimization. However,
we were unable to show whether these to methods give rise to the same or different

solntions.

5. Exponential decay at infinity.

Inspection of the proof of Theorem 1.1 in [10] show that il r; (1 = 1, ..., V)
are bounded for |z| > R for some 12 > 0, then any solution of (1) converges to 0 as
|#| — oo. { p > n this follows from the fact that w € W?(R,,). To establish the
exponential decay at infinity of a positive solution of (1) we apply the maximum
principle (see Lemma 3.1 in [21]). First we observe that for u € C*(R,,) we have

A,,'u, = (p — Z)IVuIY"“ Z DguDpuDju - ‘VUIP—2 Z Di;u.

i,k=1 i=1

Let H(z,6) = []i_, coshéz; for = € R, and § > 0. Then by a direct computation

we check that

A (HY) = p~(PD (6.

Therefore there exists §, > 0 such that for 0 < § < §, and all z € R, we have

—A (H Y+ B~ = g=(r=D(0(67) 4 ¢) > 0.

THEOREM 6. Suppose that the functions v; (i = 1,...,N) satisfy the hypotheses
of Lemma 4 and that thev are bounded for |z| 2 R for some B > 0. Then il

u € WHP(IR,) is a positive solution of (1), we have

v —sS" x| .
(23) u(e) £ Ce™ Ll in R,
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for some constants C > 0 and § > 0.

PROOT: The proof is a modification of the proof of Proposition 4.4 in [19]. Let

M = maxg, u(z) and we choose R; Z R and 0 < §; £ 6, so that
N c
—c+ E ri(z)u? P S —=
‘ i=1 1(w) - 2

for |z| 2 R; and

N
—Dp(Hy)+ (=Y raut P HIT >0

1=
on R, for 0 < § <6, where H,(z,6) = M~ H(z — R,6)"! and R = (R,...,R). We

now define an open set
D(L) = {z € Ry; Ry < |z| < L, u(z) > Hi(z,6)}
for Ry < L. It is clear that
N
—Bp(u—Hy) < —(c= Y rut?) (P~ B ™) <0
i=1
on D(L) in the distributional sense. We now deduce from Lemma 3.1 in [21] that

u(z) — Hy(z,6) = max((),rxrfi)i(u(m) — Hy(z,6)))

on D(L) and letting L — oo the result follows.

We now proceed to estimate the gradient of w.
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THEOREM 7. Let u be a positive solution in W1P(R,,) of the equation (1). Suppose
that r; (i = 1,...,N) satisfly the assumptions of Theorem 6. Then there exists a
constant A > 0 such that

/ ]Vu(sc)"'eA PR dr < oo.

N

PROOF: Let % : R, — [0,1] be a C'~function with properties: ¥(z) = 1 for
2] £ k, ¥(z) = 0 for || Z k+ 1 with |V bounded independenily of k. Taking
v = uGPY?, with G(z,p) = []i_, coshAz;, 0 < ), as a test function we get

(24) / Va2 DauDuGry? de + p / |VulP=2 > " DaunD;GGT ¢ de
Rh.

" i=1 i=1

+ p/ [Fulp~? Z DiunGTDypp? ™ d 4 / cu?’ GPY7 do
JR

Rfl
N
:/ Zri!u[q"Gpd)"d:c.
R 3

Let us denote the second and third integral on the lefl side by J; and Js, respectively.

n i=1

A straightforward application of the Holder inequality gives for € > 0

7 L.
[Ji] S (p—1)ev—T / [Vu|"GP+7 dz + e"p/ uP| VG |PY? dz
Ra

R,

and

|2l = (p— 1)671”——1 / [Vu|PGT4" do + e—p/ uP GP| V4 |F d.
IR, R

luserting these two estimales into (24) and choosing (p — 1)emT = 1, we gel

]’) 7], Puf dr

(25) 1/ [Vu|"GPy de + / (eGT — (4(p - 1)) YT @
®, o

2

W

N
< (/,1(1;_1))?—1/rp u”G’”]VW”dw—F/P N rusi GryP de.
SR Yuoi=i
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Let § > 0 be the constant from the estimate (23). Since |[VG? = O(A?)GP, we see

that there exists 0 < Ao < min;<;<n(gi6) such that
eG” - (4(p - V) VGP 2 567

for all € R, and 0 < A < A,. Letling k — oo and using Theoremn 7 we derive from
(25) that
I\Y

] : )
- / [Vul?G? dz + i/’ w”GTde £ /
2 Jm, 2 /e, R

aud the result follows.

ru? Gl dz < oo
1

v i=

6. Existence of infinitely many solutions.
To obtain the existence ol infinitely many solutions we apply the
Lusternik-Schnirelman theory of critical points. We assume that the {unctions r;

(# =1,..., N} are nonnegative and salisfly the assumptions of Lemma 4.

LEMMA ‘6. Suppose that S 7

Lt i=

subspace E,, of WHP(R,,) the set

1 ri(x) > 0 on R,. Then for any m-dinensional

Py ={u € WHP(R,); J(u) 2 0} N B,

is bounded.

PROOT: Let E,, = span {W, ..., ¥ 1, where ¥; € WI(R,) (i = I....m) are

linearly independent. Suppose that I, is unbounded. Therefore, there exists a

sequence {u;} in Py, such that ||ujlly.., — co as j — oo. Since u; = 310 1795,
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this implies that |t7] — oo, where t7 = (f]lt;’n) and we may assume that =; =

o
H . =
lim; oo 137 (i=1,..,m)and 3" 7 = L. For every u; we have

" dg,

(26) Kepz [ 2 S ru(eiuste)

R, .—1
where I{ > 0 is a constant independent of j. Since {¥;} (z = 1,...,7n) are linearly
. . o S .
independent lim;_o | >, F"}—Twi’ > 0 ou a set of positive measure. According to

our assumption on {r;} there exists 7} such that

m j

(27) 1'()]|m|/_d|’|‘1/|>0

on a set of posilive measure. On the other hand the inequality (26) yields that

m.

K|ti|p—a > / |Z il w ()% da.

Letting 7 — oo we derive from this inequality that

m j

7;,(:1') hm 1L4 n JI‘JJ i(z) =0

a.e. on R, contradicting (27) and this completes the proof.

Remark. If there is an open set O C R, such that ry(z) = 0 on O
(i = 1,..., V), then Lemma is not true. In fact, il supp ¥; C O for (z = 1,...,m),
then the inequality (26) takes the form Y o, |¢;|” 2 0, which shows that the set P,
is unbounded.

We now introduce a sequence of subspaces E,, € ]I"l"’(H,,) with dim I,
= m and F,, C E,., for each m. We asswne that lincar manifold gencrated

by Um/ T is dense in WHP(R,). By E¢

c we denote a topological and alge-

braic complement of E,. We sct I = {h; h : WHP(R,) — WHP(R,), h(0) =
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0, h is an odd homeomorphism, and h(B) C {u; J(u) 2 0}}, where B denotes the
unit ball in W4T(R,,) centered at §.

The following theorem is an inunediate consequence of Theorem 2.13 in

11].

THEOREM 8. Suppose that Zfil ri(z) > 0 on R,. Then

S ol S
- l;‘e'll‘)' ueaégE'f (h(u))

-1

is a critical value of J. Moreover, ¢,, £ ¢y and o, £ ¢y, for all m.

Here o, > 0 is a constant such that J(u) 2 . for ||u]| = po, where p, is
sufliciently small.

Let S(IW'P(R,)) denote the class of closed subsets of WHP(R,) — {0}
symunetric with respect to origin. We say that a set 4 in Z(WH?(R,)) has genus
m, devoted by v(A) = m, il m is smallest integer for which there exists an odd
mapping & € C*A,R, — {0}). 7(4) = oo if there exists no finite such m and
v(&) = 0. For properties of genus we refer to papers [8] and [13]. By I's, we denote
the following subset of D(W1P(R,,)):

IF'm = {‘K - W ’p(Rn));
I{ is compact, symmetric with respect to the origin and for all A € T,

YK Nh(ER)) = m}.

We are now in a position to state the lollowing existeuce result which follows fromn

Theorem 2.8 in [1].
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THEOREM 9. Suppose that Y ;_, r,(:r:) > 0 on R, and let
by = inf max J(u).
m =, e
o S by £ by is a critical value of J. Moreover, if bypy1 = .. = bmgs =

Then 0 <
b, then v(I) 2 s, where K = {u € W'(R,,); J(v) = b, J'(u) = 0}
According to Theorems 2.8 and 2.13 in [1] we also have ¢ < by In

T'heoremn 10, below, we show that both sequences b, and ¢,, converge to infinity

In the proof we use some ideas from the proool Theorem 3.14 [1] ( see also the proof

of Theorem 4.3 in [4]).

ri{z) > 0 on R,,. Then limm—soo ¢m = o0

THEOREM 10. Suppose that y Ln_l

PROOF: Let
I ={ue W' R,)-{0}; | (|Du]” + clul")d= \/ Z—v () u(z)| de}.
R, Ra 51

FFirst we show that there exists b > 0 such that
/ Z {(z)|u(z)]? dz 2
R 1
‘ Rn) (1, =

for all w € M. Indeed, by a compact imbedding of WHP(R,,) into L% (

) (see Lemma 4) we have {or each k&
. 1

. ; ‘ ,
“dx *k /v(/ g |7 1:’:)'1,- " n / Dl | ; >
) ;4;1 .an,iul ¢ 4 = (P (| D] clul Il

1
—E (/ v—77|tth' d’l)

1, N
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and this implies that

/ L7k|1llq*dT<ZB‘“</ L—r,w dT) -

"k 1 n.l._

Since p < g for k= 1,..., N, our claim easily follows. We now defline
do = Inf{}|ufljyen; v € M NEL}

We now show that d,, — oo asm — oo. ln the contrary case there exists 0 < d < oo
and u,, € M NLEE such that |Jum|| i, S d, so we may assume that u,, — 0 weakly
in WHr(R,,) and strongly in LE(R,,) ( = 1,..., N). Obviously this coniradicts the
previous slep.

For It > 1 we define the mapping h, : ES — ES, by hyp(u) = R dpu foru € ES,.
We check that h,, can be extended to an application belonging to I'*. Indeed, it is
easy to see that for each u € WP(R,) — {0} there exists a unique F(u) > 0 such
that f(u)u € M and J(tu) 2 0 for all 0 £ ¢ £ A(u). This B(u) can be found as a
unique root, of the equation

N
(28) t”/ (1Duf? + clu|") dz — Z/ 2-'r,i""lu["" dz = 0.
R = Jr. @

Therefore for an arbitrary uo € £S5, N B — {0} we have

R dyy S dyy = 00 {[[ull s v € M 0 ES} £ Bluo)lluo -

Counsequently, this implies that

(1M

ho(EE, NBYC {v e W”’(Rn); J(u) 2 0}.

Tor an € > 0 we define by Z, a set of all sums u + » with v € R~V d,,. (£, N 1) and

v € e(Eyn N B). We now show that

(29) Ze C{WIP(R,) — {0} - M}
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In the contrary case there exists a sequence R 'dpu; + €jv; € M with ¢; — 0, as
j — oo. Since u; and v; are bounded in WHP(R,), €;v; — 0 in WH?(R,,) and we
may assume that 7' du; — R dpu weakly in WP(R,,) and strongly in L% (R,,)

for7=171,..., N. By the previous step of the prool we must have
Moy
bz Z r / | R s + €5v5]% da.
i 9 Jm,

Also, 77 d,,,u € M. On the other hand we have 0 < R™'d,,, < f(u), s0 J(R™ dmu)

> 0, that is,

. N
ul” + clul”) dz ri(R™1dp )% 7P u|¥ de
. (0wl -+ cur) 4 >Z/R (R d )T Pl d

and we arrive at a contradiction. We can now define the extension of h,, by

hm(u) for u € EE,,

eu for uw € L.

() = {

It follows from (29) that h,(B) C {u € WPP(R,); J(u) 2 0}. To complete the

proof we show that inflepnpe J (R (u)) — co, as m — co. Let w € 9B N EE,, then
N
J(hm(u)) = (R dn)7 (min(l, c)— Z —Il/ (R dp )% P |u] da:) .
: 9 JR
=1 "
Onu the other hand by (28) we have

N N
ZZ’./ (R d )T P |u|? de < R‘(‘““”)Z—p—/ 738 "P|u|% dz
= 9 IR, i=1 9 /R

< R™97P) max(1, ).

Ilence

J (R () 2 (R dy)" (max(L, ¢) = B9 max(1, ¢))

and taking R sufficiently large, our claim follows.
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