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On Singular Variational Problems 

Ulrich Dierkes 

Abstract . We summarize recent results on singular variational problems which arise 

in connection with the n-dimensional analogue of the catenary problem. In addition 

we give some historical comments. 
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On Singular Variational Problems 

Ulrich Dierkes 

Since the time of Lagrange the equation of a heavy, flexible and inextensible surface of 

constant mass density has been derived by several authors, see Lagrange [L, pp. 

146-162] , Poisson [P, §I : equation d'equilibre de la surface flexible et non elastique pp. 

173-187], Cisa de Gresy [CG, pp. 274-276], and Jellett [J, pp. 349-354]. It turns out 

that there are several model problems available, which are due to different notions of 

flexibility and inextensibility, and which are all worth to be investigated. Here we are 

interested in the higher dimensional mathematical analogue of the catenary problem, 

Le. to find a surface M of prescribed area and boundary which is of constant mass 

density and which has lowest center of gravity. Assuming that the surface M is given 

as a graph u : 0 -1 IR+ , 0 c !Rn , and that the gravitation force acts in the -xn + 1 

direction, this problem amounts to minimizing the integral 

J ( u) = }- J" u ~ Du 12 dx 
L-10 fl 

in a class of nonnegative functions, which fulfill prescribed boundary conditions as well 

as the subsidiary condition 

for some given value of A0 . 

Note that we minimize in a class of nonnegative functions, because our competing 

surfaces may touch the "ground" xn+l = 0, but cannot penetrate it . Hence the 

problem is only singular elliptic. 

Also observe that the unconstrained problem of minimizing J( ·) with fixed boundary 

and prescribed A0 in general has no solution, even if A0 is close to the area of the 

corresponding minimal surface. In fact, for given E > 0 , 0 = B1 (0) c IR2 and arbitrary 
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constant boundary data, there are functions fn which are constant along an , such 

that A(fn) = ?r{l+c), J(fn) -1- rn, as well as f11(0,0) -1- rn, see Nitsche [NJ . 

Introducing a Lagrange multiplier ), the problem is reduced to the free variational 

problem 

J;, ( u) = i ( u + A) h + I Du 1 2 dx -1 minimum , 
!l 

in a class of nonnegative functions which is defined by boundary conditions. The Euler 

equation of J), is given by 

(l) inn' 

or, equivalently, if u + .>.. > 0 and u E c 2(n) , 

(1') eli [ Du ] 
v ~ 1+ I Dul"' 

In this form, equation (1) has been derived by Lagrange [L, pp. 158-162] , Cisa de 

Gresy [CG, pp. 274-276], and also Jellett [J, pp. 349-354], as the equilibrium 

condition for a heavy, inextensible and flexible surface of constant mass density, which is 

exposed to a vertical gravitational field. These authors base their arguments on a 

suitable variational principle. Lateron a different approach to describe the equilibrium 

of a flexible surface in a force field was given by Poisson [P, pp. 173-187] who uses 

direct arguments from mechanics. For surfaces in !R3 he introduces two independent 

"tensions" T and T' , which describe the forces inside the surface. Let the external 

force field be given by X. Y, Z, then he deduces the following equilibrium condition 
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(A) Xk + fx[T(l~] - ~[!p] = 0, 

(B) Yk -ix[¥) + ~[T'(t+p2)] = 0' 

(C) Zk + -l[~] + ~[y] = 0, 

where we have put p = ~, q = ~ and k = ~ l+p2+q2 . 

Poisson gives special interest to the case where T = T' i.e. when the tensions coincide. 

In fact in this case, one easily deduces from (A), (B), and (C) the relation 

Z-pX-

as well as the condition 

(E) Xdx + Y dy + Zdz + dT = 0 , 

i.e. the external force must have a potential U and T = U +c. From (D) and (E) 

Poisson deduces: 

(i) The min·imal surface equation, with 

X = Y = Z = 0 and T = c ; 

(ii) The equation for capillary surfaces by taking 

X _ ''{ _ 0 z _ a+bz - -) -~, 

as the equilibrium condition of a flexible surface which is covered by a heavy 

fluid; 

(iii) The equation of a heavy surface in a gravitational field , by taking X = Y = 0 , 

Z = gf , g =gravitation constant, and t denoting the density of the surface. 

The tension is then given by T = c- g<z and hence (D) yields 
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which is equivalent to (1) or (1') if one takes g< =1 . 

Note that, as a mechanical model, this is a simplification, however, from the geometric 

point of view, this problem has many interesting features. In fact (1') is an equation of 

mean curvature type with mean curvature given by 

H = H(u, Du) = {n(u +A)· F+!Duj 2}-l, 

and hence, if A = 0 , H is not a bounded. In addition, we think this problem 

may serve as a model problem for singular variational problems of, may be, more com

plicated nature. Let us also mention that equation (1) is of importance in architecture, 

since it provides a model for the so called "hanging roof" i.e. turning a positive solution 

u of down, gives the optimal of a cupola this 

stabit eontiguum rigidum inver sum"', Le. as the flexible so but inverted will 

stand the rigid arch (see Truesdell [T, p.57]). I·Iooke seems never to have pu-

blished this result its may be because the problem of the was still 

unsolved at those (Although there was some attempt Galileo who lutd 

proposed the and a as its solution. The of 

Galileo was critizised in 1646 by Huygens in a letter to Mersenne.) The 

problem of the rigid arch was apparently brought to Hooke's attention by the architect 

Sir Christopher Wren, the constructor of St. Paul's cathedral, London (the foundation 

stone was laid in 1675 and the structure completed in 1710). A rigorous proof that the 

and the arch represent the same type of curves was given by Jakob 

Bernoulli in 1704 in his note book: Thoughts, notes, and remarks, see (T, p.83] . Even 

up to now this principle of turning a hanging, heavy surface upside down, is one of the 

basic construction tools for nowadays architects to actually obtain the shape of 

light-weighted domes, which are capable of spanning large area, see the interesting 
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construction device and many beautiful pictures of Frei Otto and collaborators in Otto 

[0, Bd.I p. 158-161 and Bd.II p. 26-28] . 

Returning to the variational problem, we remark that by an obvious coordinate trans

formation we obtain the equivalent problem: 

(P) l u~l+ 1Dui 2 dx __, minimum,intheclass C={u~A,u=<p on 00} 
!l 

for some suitable function <p . 

Here we are primarily interested in problem (P) with A == 0 whence the corresponding 

Euler equation take the form 

(2) · [ u Du l d1v ------

~ 1+1Dui 2J 

or, equivalently, 

Observe that this case differs considerably from the case where .A > 0 since the inte

grand f(x,u,p) := u·Jl+Tpj2 ~ 0 , i.e. is only singular elliptic (or semi-coercive). 

For n = 1 the variational problem (P) is thoroughly investigated in the classical liter

ature on the calculus of variations (see Bolza [B, Beispiel I]) ; the determination of the 

catenary with the help of extremal principles is due to Jakob Bernoulli 1697): 

Let !J == (a,b) be an open interval and assume = A, <p(b) = B are prescribed 

boundary values. One then has to distinguish the cases .A > 0 and ;\, == 0 . If A > 0 

then (P) always has a solution which is either analytic, or of class c1•1 . In fact, all 

extremals of (P) are catenaries of the form y(x) = a: cosh(x~fl) with a:,/3 E IR, and 
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hence a solution consists of a suitable arc of one such catenary, or it consists of two 

catenary arcs touching the obstacle y = .A and the corresponding part of the obstacle 

itself. Physically this corresponds to a hanging chain, which either is "free" (i.e. 

analytic) or already touches the "ground" without becoming vertical. In case that 

..\ = 0 problem (P) either has a regular solution, which is given by a suitable catenary 

y(x) = a cosh(x~(J) , or (P) has no nonparametrically defined solution. In this case, 

however, the correspondig parametric variational problem (in the sense of Weierstrafi) 

admits the so called "discontinuous" solution which has been discovered by Gold

schmidt in 1831 in the celebrated paper [G] . This solution consists of suitable parame

trizations of the three straight segments (a,A) (a,O) , (a,O) (b,O) and \b,O) (b,B) . 

Lateran we give a BY-formulation of problem (P) where the boundary condition is re-

placed by a suitable penalty term in the variational integral. It is in this sense that we 

may interpret the Goldschmidt solution u0 = 0 as an analytic minimum of the nonpa.

rametric functional , (see the Definition of the Dirichlet problem (D)) which does 

not assume its boundary values cp( a) = A and = B . Note that also the Gold-

schmidt solution may be represented by a hanging chain which touches the 

ground and has sufficiently large arc length. 

Let us also mention that the catenary has a long prior to its characterization by 

extremal principles (i.e. its center of is as low as possible). In fact the history 

the contest to determing the started with Jakob Bernoulli's proposal in the 

Acta Eruditorum: "To the curve assumed by a loose string hung freely two 

points". This was also the starting of a long between the Bernoulli 

brothers, since the younger Johann succeeded in solving this "H'"c"c"" while there is no 

evidence that Jakob himself knew the solution in 1690 (although from 1697 to 1698 he 

succeeded in obtaining the general equation for a flexible line ). Besides Johann 

Bernoulli the problem of the catenary was solved by Leibniz and Huygens (all these 

authors used some important previous work by Pardies!); for further information on the 
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interesting history we refer to the excellent explanation in Truesdell [T, in particular, 

p. 64-88] or Euler [E, p. 64-88] . 

The equation (2) or (2') and the corresponding variationaL problem have only recently 

found some interest among modern analysts, although the problem is known since the 

time of Lagrange. Bohme, Hildebrandt and Tausch [BHT] proved several existence re

sults for the two-dimensional parametric problem, while Nitsche [N] gave a necessary 

condition on A0 for the area-constrained problem. Using previous results from [BHT] 

for the parametric variational problem, Dierkes [Dl] could prove existence of regular 

solutions for equation (2) in case n = 2 , assuming appropriate conditions on 0 and 

the boundary values cp • In fact the structure of the parametric equation permits a 

suitable maximum principle which makes a reasoning of Rado and Kneser from mini

mal surface theory applicable to this situation. Typically one has the following result 

Theorem 1. (Dierkes [Dl]) . Let 0 c IR2 be a bounded, convex, Lipschitz domain and 

suppose that cp E C0(80,IR+) satisfies cp(x) ~ ~ 82 + lxl 2 , for all x E an and some 

8 > 0 . Then there exists a positive solution u E Cw(O,IR) n C0 (IT,IR) of the 

Dirichletproblem 

{3) 

u = cp on an. 

We remark that Theorem 1 implies existence of a solution for (3) provided the 

prescribed boundary values over the boundary of a convex set lie strictly above the 

cone x3 = ~xi + x~ . Observe also that this cone is a regular solution for (2) in 

0\{0}, which has its only singularity at zero. We claim that this cone is a weak 

Lipschitz solution of (2) i.e. we have for x3 = c(xl'x2) = h~ + ~ the identity 
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for all cp E C~(BR(O)) , and arbitrary R > 0 . Indeed this follows immediately by 

replacing cp in (4) by cp0 := cp·rt8 , where cp E C~(BR(O)) and 

11 onBR(O)-B~O) 
rtg= ~[r-~] onBJO)-B 6; 2(o),with r:=~xi+x~ l 0 on B odOI 

and letting 5 _, 0 . 

More generally, it follows that the cones c!(x) := - 1-[xi + ... + x~J 112 are classical 

~n-1 
solutions of (2) on any domain 0- {0} c IRn, which are weak Lipschitz solutions of (2) 

or (2') in all of 0 i.e. 

for an cp E C~(O) and arbitrary 0 c !Rn. These cones provide examples that the 

necessary condition (6) in the following existence result is optimal for large n. 

Theorem 2. (Dierkes, Huisken [DH]) , Let 0 c fRn, n ~ 2 , be a bounded domain of 

class C2,a, a > 0 , with nonnegative inward mean curvature. Suppose cp E C2,a(I1) 

satisfies the inequality 
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Then the Dirichletproblem (3) has a globally 

if u E C0'1(IT) is a weak, nonnegative, solution 

we have 

( ) , ,1 --2)1/2 jAI 
6 sup<p:::\ +L H .("87\) 

&r/, n-1 

for eve'f"':J Caccioppoli set A c 0 , 

.solution u E C2,a(i1) , Moreover, 

with Lipschitz constant L , then 

Remarks. 1. The necessary condition (6) is only proved for positive u E C0'1(IT) . 

However, an inspection of the in in particular p.53] shows that u > 0 is 

only needed to apply standard elliptic regularity theory, which in particular yields the 

sup--estimate u S sup <p , On the other hand, this estimate can easily be derived by 
80 

testing equation against 'ljJ = - sup cp , 0) and assuming u ~ 0 only. 
an 

2. Let us check condition (6) by taking u(x) = c!(x), 0 = B1(o) and A= B1(o) 

c !Rn, Then L = --1-· cp =sup u = -- 1 , 71__lbl_~ =.! and (6) yields 
r---' &B 1 • n-1 CoAJ n 
~n-1 1 ~n-1 -

~ (1 + n-1) 1/ 2.n-l = .1_ which is (almost) sharp for large n. 

fn 
3. Because of the isoperimetric inequality it follows that 

n -11 n 11/n > ..,.-"'---;-~,.,. 
. I -

Thus it would be desirable to prove existence under (5) replaced by an inequality of the 

form 

· " IJI I r · bl m r cp ~ c 7C~TIKl1 10r a smta e constant c . 
80 n-1 

4. The proof of Theorem 2 uses Schauders fixed point theorem together with some 

interesting a priori estimates including a minimum principle based on a method due to 

Stampacchla. 

5. Another approach to the Dirichletproblem (3) via evolutionary existence techniques 

has been given by Stone [St] . 

Now let us turn to the variational problem (P) . Although the integral J(u) = 
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J u ~ 1 + I Du 12 may be defined for functions u E BV(n) (see e.g. Anzellotti [A]), it 
!l 

is not possible to find a minimum of J in BV(rl) . To get some idea what might be the 

right space to work with, let u E C1(n), u ~ 0, and observe that u h + JDu! 2 = 

h + !1 Dv 12 , where v = u2 . This simple observation leads to the definition of the 

classes BV!(n) and, more generally, Bvt +jrl) for any a> 0 . 

Definition. BV!(n) := {u E L2(n): u ~ 0, u2 E BV(n)}, and for any a> 0, 

Bvt +a(n) := {u E Ll+a(fl): u ~ 0, ul+o: E BV(fl)}. Furthermore we define for 

u E BV+ or u E BV+ resp. - 2 l+o: 

i u~l + IDuJ 2 :=sup { r[u g +1 + -21u2fn.g.]dx: g E c1(n,1Rn+l), lg(x)l ~ 11J n J!l n ~ l J. c 
1=1 

and 

This definition has several important features, some of which are reflected in the 

following 

I' 2 J u ah + I Du l dx . Purtherm01·e, let u E BV~..!. ( n) 
!l 1 , a 

and >7 ·- f(" t) E "'x"'+ . v .-~ t .h..~ u ll\ • 

0 ~ t < u(x)} , then we obtain 

r I XO!+liDr,oul = r UO! h + JDul 2 ' where lOu denotes the cha:racterist-J!M~' n Jfl 
ique function of U and 
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!lxiR 
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sup{ ~xiR+ 'Py div[x~+ 1 g(x)]dx : g E C~(OxiR+ ,lRn+l), I g(x) I ~ 1} 

(For details and proofs we refer to [BD] and [D2] . ) D 

Motivated by the trace formula for BV -functions we now reformulate the variational 

problem so as to obtain the following Dirichletproblem (D) : Let 0 c IRn be a 

given Lipschitz domain and suppose that r.p E Ll+a(&n), r.p ~ 0, are prescribed 

boundary values. 

Minimize 

(D) "' ' ) 1'.i \U = 
Ot 

a~, 2 1 
u .t + I Du I + -1 ' ,a 

in the class 1 

Then we have the following result. 

I u 1 +a - cpl +a I dH 
n-1 

Theorem 9. (Bemelmans, Dierkes [BDL Dierkes [D2]) . There exists a solution 

u E BV·ll-, (!1) the problem (D). If n ~ 6 then u E C0 (!1) n Cw({u > 0}). -.a 
IO' Furthermore, if o: = 1 and sup cp < 8 ('an) then I > 0 . 

on n-1 

Remarks. L The proof of Theorem 3 uses methods from nonparametric minimal sur-

face theory as well as the deep regularity result for one-codimensional minimizing cur

rents in Riemannian manifolds. 

2. If o: = 1 , one even has the estimate I {u = 0} I ~I fl I - J u dlfn 1 , which shows an -
that singular solutions really do occur under suitable boundary conditions. 

Concerning boundary regularity one has the following 

Theorem 4 . (Dierkes [D3]) . Suppose that fl c IRn is a Lipschitz domain which is mean 

convex near x0 E fJ!1 and let r.p be coniinuous at x0 . Then any solution u of (D) 
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satisfies lim u(x) = \O(x0 ) . Furthermore if 0 E c3 is mean convex, 0 < cp 
X --; x0 

E Cl,a(80) and u E C2(0f) n C0 (rl), where Ot := {x E 0: dist(x,80) < t}, then it 

follows that u E C0'1(IT <) . 

Note that the condition u E c2(o ) n C0 (IT ) is satisfied, if n ~ 6 for example. 
E £ 

The proof of the continuity part of Theorem 4 uses the fact that the current T = 8[ 17] 

which is associated to the nonnegative subgraph l1 of a minimizer u E Bv·1+· L (0) 
' a 

' ll . . . . b . .t I ' I! IRn -1-k mh· . bl . 10ca y mJmmizes mass m a su man11o .a " c · .. L1s property, a smta e max1-

mum principle, and the fact that there are no non trivial area cones in 

IRn+k n+k their support in a half space H c IR' , eventually yields the "'"·'""'"H 

result. The is established with the of suitable barrier 

functions. I-Iere a nevv a estima.te of the for solutions of or is nee-

ded. llile remark that this estim3,te does not follow from the results i.n or 

Besides the of solutions to no more is known about interior regu-

which are not differentiable . Hence one that (D) also has 

solutions which are not differentiable. In fact the situation is even worse, since we have 

the following 

Theorem 5. (Dierkes [D4],[D5],[D2]) . Let a, R > 0, n ~ 2, n E IN be arbitm·ry. Then 

there exist a 8 > 0, some r E (O,R) and a 1'Unction w .:: CO,l/2rT ). · ·- \ ·R,r' 

TR := BR(O)- B-:10), which minimizes ,r r 

E (u) = f ua h + 1Du! 2 + l+l J lul+a_wl+aldl/ 1 a T a 8T n-
R,r R,r 

in BV! +a(TR,r) . Furthermore, we have w = 8 on 8BR(O), w = 0 on BB/0) and 

w ¢ cO,l/2+E(TR ) for any E > 0 . 
,r 
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The proof of this result employs ideas from classical "field theory" developed by 

Weierstrafi for one dimensional variational problems and extended to the higher 

dimensional case by H.A. Schwarz, see [S, in particular p.224] and (DHKW, chapter 

2.8] . (Nowadays the word "field" has been replaced by several authors by "foliation" 

or "calibration", denoting more or less the same notions.). Here we work with a variant 

of a method due to Bombieri, De Giorgi, Giusti [BDGJ. The argument is to construct a 

local, .sing1tlar in with the help of an o.d.e. system, and finally, to prove 

that each element. of the field merely is of class cO,l/2 and minimizes E a in BV! +a. 

For details we refer to [D2], [D4], [D5] . 

We have already mentioned that the cones c~ are stationary for the integral 

= J u ,fl~l Du 1-2 dx . One sees immediately that the same holds true for the 

cones 

+ ... + and the 

Hence the arises whether these cones are 

this the construction of a singular field about the cone 

Theorem 6. (Dierkes [D2],[D4J,[D5]} . S·uppose that either 

a + n ~ 7 , and a ? 2 , n ~ 3 or a + n ~ 8 , and a ?. 1 , n ~ 2 hold true . 

Then the cones c~ minimize E a in BV! +a . If a= 1 , n $ 6 , or· n = 2 , a$ 5 

then ca do not minimize E . 
n a 

The proof of the non-minimizing property of c~ in the cases a== 1 , n $ 6 or n = 2, 

a$ 5 respectively, again uses field theory. This time a field is constructed which 

intersects the cone c~ . Assuming that c~ were minimizing one would obtain a 

contradiction to the regularity result in Theorem 3 by constructing a minimizer v 
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which would not be differentiable in the set {x: v(x) > 0} . 

Finally we are concerned with the question of stability. To this end let M: c IRnxiR+ be 

an n-dimensional submanifold and let 

E (M) := f.xa+l dH a M n n 

denote the parametric energy functional. The first and second variations of E a are 

given by 

(7) oEa(M,X) := ~x~+l {divX + ax~!lxn+l}dHn(x) 
and 

o2Ea(M,~v) := ~x~+1 {1V~I 2 - ax~!1v~+1~2 -IAI 2~2}dHn(x) 
respectively. 

Here X(x) = (X1 (x) , ... , Xn(x)) is a vector field with compact support on I, 

v = (v1 , ... , vn+l) denotes the unit normal on M, ~ E C~(M,IR) is arbitrary, and IAI 
denotes the length of the second fundamental form of M . 

Let C~ := {(y,c~(y)) : y E IRn} denote the graph of the cone c~, then an easy 

calculation yields 

IAI 2 =alxl-2 forall xEC~-{0}. 

Using the test function X(x) := x·lxi-2~2 , where ~ E C~(C~- {0} ), we infer from 

(7) the following result: 

Theorem 1. (Dierkes (D6]). C~ are stable, i.e. o2Ea(C~) ~ 0, if a+ n ~ 4 + .[8. 

This result is in fact optimal, since we have 

Theorem 8. ([Dierkes [D6]]) . Suppose C C IRnxiR+ is a stable n-dimensional cone 

with singularity at zero and let a + n < 4 + .[8 . Then C is a hyperplane which is 

perpendicular to {xn+l = 0} . 
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An important ingredient in the proof of Theorem 8 is an estimate for the Laplacian of 

I A 12 due to Schoen, Simon, Yau [SSY] . Finally we remark that Theorems 6 and 7 

yield the following interesting 

CoroUary. Let n = 2 and a E [2+.f8, 5] . Then the cones c~(xl'x2) = 

.[a (xi + x~) 1 /2 are stable but not minimizing with respect to E a . 
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