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LEAST GRADIENT PROBLEMS 

Graham Williams 

0. INTRODUCTION 

Suppose n S: R", n :;::: 2, is a given domain with Lipschitz boundary oil and ¢Y is a 

given continuous function ddined on flfl . Consider the problem of minimizing 

\Vu!dx 

amongst all functions tl defined on fl such that u = cP on an . 

Even if flfl and ¢Y are smooth, solutions to this problem are normally only Lipschitz 

continuous. If ¢Y is not smooth then typically the solution will be no more regular than 

<P even in the interior of fl . If ¢ is only continuous we cannot expect the solution to be 

differentiable. The natural class of functions in which to consider the above problem is 

, the set of functions of Bounded Variation. (For the precise definition of BV(fl) 

and some properties see [G].) 

If n = 1 then a little thought soon provides all the solutions (either all decreasing 

or all increasing functions satisfying the boundary values). The uniqueness and regularity 

results we discuss later in this report do not hold and so we will assume always that n :;::: 2 . 

Solutions to the above problem are known as functions of Least Gradient and were 

used by Bombieri, De Giorgi and Giusti [BDG] to prove some interesting results about 

minimal surfaces. We first describe the connection between functions of least gradient and 

minimal surfaces. 

Definition: If E is a measurable set in 1Rn we define the Perimeter of E by 

P(E) =sup {l div g dx : g = (g1, 92, ... , Yn), fg(x )I :::; 1, g; E CM1Rn)}. 

It is easily seen that if E has a smooth boundary then P(E) equals the (n-1 )-dimensional 

measure of an. (See [G} for this result and many other properties of the Perimeter.) 
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The result providing the link we are looking for is the co-area formula. 

THEOREM. ([FR],(G,p6]) Suppose u E BV (IRn) and for each t E 1R let 

At = { x E 1R n : u( X) ~ t}. 

Then 

JJRn IVul dx = i: P(At) dt. 

From this formula we might expect that if u has least gradient then each At should 

minimize perimeter and this is exactly what happens. 

THEOREM. ((BDG]) Suppose u is a function of leas~ gradient in n then for each 

t E IR, At= {x En: u(x) ~ t} is a set of least perimeter. 

That is, if E is any subset of n such that E and At agree outside some compact subset 

of n then P( At) ::; P( E) . 

By constructing functions of least gradient, Bombieri, De Giorgi and Giusti were able 

to show that the surface defined by xi+ x~ + x~ + x~ = x~ + x~ + x~ + x~ in 1R8 is a 

minimal surface with a singularity at the origin. It was already known that in 1R", for 

n ::; 7, minimal surfaces cannot have singularities ((S]). 

More recently Parks ([Pl),[P2]) proposed a method for the numerical calculation of 

minimal surfaces based on the construction of functions of least gradient. 

1. THE CONSTRAINED PROBLEM 

We now consider a new problem with the additional constraint t1mlt IVul ::; 1 a.e. 

m n . This was considered by Kohn and Strang [KS) and we first, briefly, -describe a.n 

application given by them. 

Consider a long bar, with a given constant exterior cross-sectiQn n, which is subjected 
.. . 

to a given lo~d having no vertical component and being constant up and down the rod. 

These assumptionS; ·mean that the problem can be considered as a two dimensional one 

with stress having no vertical component .. Additionally, elastic-plastic· theory puts on a 
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yield condition. If the stress exceeds a given constant (depending only on the material 

and which we take to be 1) then the bar yields plastically. In the steady state this has 

the effect of assuming that the stress never exceeds 1 in magnitude. If we assume the bar 

is solid then, by minimizing energy, we can find the stress in the bar. (There are many 

papers written on this very subject; for example see [T).) However we shall not assume the 

bar is solid and instead consider different (constant) cross-sections obtained by removing 

holes from the original cross-section n. Of course if we remove too much then it may no 

longer be possible to find a stress of magnitude smaller than 1 which still supports the 

given load. Our problem then is to find, if possible, a cross-section of smallest area for 

which there is a stress which will support the load. That is we look for the lightest weight 

bar which will support the load. 

Rather than vary the cross-section, we instead keep this fixed as n and then consider 

all possible stresses in n , noting that where they are zero we may remove materiaL In this 

2 dimensional setting stresses can always be represented single real valued functions, A 

function u gives a stress O" = ( 0"1 , 0"2 ) with 0"1 = ~~ and 0"2 = -- ~~ . The condition of 

prescribed load becomes u = f on an and the plastic yield condition becomes f'Vuf ::; 1. 

Thus if we define w : [0 , 1] _, lR by 

our problem is 

(P) Minimize 

tu(t) = { o, 
1, 

if t = 0, 
if t =/: 0. 

{- f w(f'Vuf) dx 1 1! = 1 on an, rvur ::; 1 a.e. in n ~. 
ln J 

Unfortunately this problem will typically not have a solution. Minimizing sequences of 

cross-sections have more and more holes giving increasing total area of hole but the area of 

the individual holes decreases to zero so that they disappear in the limit. Mathematically 

this phenomenon is well known and occurs because the integrand is non-convex and so the 

integral is not lower semi-continuous with respect to weak convergence. To overcome this 

difficulty we consider a new problem where w is replaced by its convexification w (the 



258 

largest convex function smaller than w ). In this case w(t) = t and so we consider 

Minimize {in I'Vul dx I u = f on an' I'Vul :::; 1 a.e. in f/,} . 

Provided the set is non-empty, ('P) will have a solution, minimizing sequences for (P) will 

be minimizing sequences for (P) and the minimum attained in (P) equals the infimum 

(perhaps not attained) in (P). 

In the particular application above, information about the solution 11 of (P) gives 

good information about functions giving near to optimal results in (P), that is about 

cross-sections having almost lightest weight. In regions where I'Vu I = 0 cross-sections 

should have a hole. In regions where I'Vul = 1 cross-sections should be solid. In regions 

where 0 < i'Vul < 1 cross-sections should have holes with average density about I'Vul 

and the material should be in the form of fibres aligned along the level sets of u . 

2. CHARACTERIZATION OF SOLUTIONS 

It is easy to show that, provided there is at least one function v satisfying v = f on 

an and lvvl :::; 1 a.e. in n' there is always a solution of (P). Solutions are automatically 

Lipschitz continuous with a Lipschitz constant depending only on the geometry of n. 

Simple examples show that in general Lipschitz continuity is the best that can be expected. 

Finally, given f and Q there is at most one solution. This uniqueness result is not trivial 

to prove because the integrand is only convex and not strictly convex and the proof involves 

a consideration of level sets (see below). 

It can be seen from the above that level sets of the solution are important and we 

would like a characterization of them similar to that given for functions of least gradient 

without the constraint I'V·ul :::; 1, The co-area formula still applies and so we expect that 

level sets should minimize perimeter in some class of sets. We need to show how to build 

in the gradient constraint on u when looking at the level sets of u . Kohn and Strang 

gave the idea for thiso 

If we assume that Q is convex then 

(1) I'Vvl :::; 1 a.e. in f/, lv(x)- v(y)i:::; lx- Yi for all :r,y E Sl. 
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If n is not convex then the same equivalence is true provided we replace ix- Y! by the 

length of the shortest path in n which joins X and y . With this change what follows 

holds for non-convex n but for simplicity we restrict ourselves to the convex case. 

It is possible to interpret (1) in terms of the level sets of v but the interpretation is 

complicated and the condition on the level set At involves all the other level sets As . We 

prefer a condition independent of the other sets A 8 • The main idea of Kohn and Strang 

was to attempt to satisfy only when X E an (and y E n ) and hope that for solutions 

it will then automatically hold for all :r E n and not just X E an . The major part of 

[SWZl] is devoted to proving this. 

Suppose n is convex and v satisfies 

(i) v = f on an' 
!v(x)- v(y)! S !x- Yi for x E on, yEn. 

Let A;= {x En I v(x) 2: t}. If p E an then 

either (I) f(p) < t, or (II) f(p) 2: t. 

In the case (I), if x En and !P- xl < t- f(p) then 

- f(p) = v( x) - S IP- xl < t - f(p) , 

That is v( x) < t and so x ~ A1 . 

In the case (H), if x E n and IP- xj S - t then 

f(p)- = v(p)- S !P- xl S f(p)- t. 

That is v(x) 2: t and so x EAt. 

Thus if we define 

we have 

= {x En I ::lp E an' IP- xl s f(p)- t}, 

Mt = {x En I::Jp E on, IP- xl < t- f(p)} 

v satisfies (i) and (ii) :::? L 1 <;;;; At and At n Mt = 0 for each t . 

(In fact the converse also holds.) 



260 

For each t consider the problem 

(2) Minimize { P( E) I Lt c; E and E n Mt = 0 } . 

It is possible to show that this problem always has a solution and may even have more 

than one. To obtain a unique set we now look at 

(3) Maximize { JEJ I E solves (2) } . 

This always has a unique solution which we denote by &t . Now define, for X E n 

u*(x) = sup{t I X E &t r 

THEOREM. ([SWZl]) u* is the unique solution to (P). 

Thus we have characterized the level sets of the solution as the sets solving (2) and 

(3) above. In the proof of the Theorem we can easily show that u* = f on an and 

Ju*(x)- u*(y)J :::; Jx- yJ for X E an and y E n. It is necessary to show this last 

inequality holds also for X E n, in which case the co-area formula implies we have the 

required solution. 

If x and y are in n then there are numbers s and t such that u*(x) = s and 

u*(y) = t. Further, possibly after shifting X and y slightly, we may assume that X E a&. 

and y E 8&t . We need to show Js - tJ :::; Jx - yJ. Since Jx - yJ ;:::: dist( 8£., 8&t) it is 

sufficient to show 

dist( a&., 8&t) ;:::: Js- tJ for all s, t. 

This now is a result about minimal surfaces and can be proved using techniques from 

minimal surface theory. 

3. THE UNCONSTRAINED PROBLEM 

We now return to the unconstrained problem of finding functions of least gradient. 

If we admit generalised solutions in BV(n) as is done for the minimal surface equation 
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([G,§l4]) then it is easy to prove the existence of solutions, Such solutions need not satisfy 

the boundary values, need not be unique and need not be any more regular than being 

in BV(S1), We would like conditions which ensure that we can find a unique continuous 

solution satisfying the boundary conditions. 

Parks ([Pl],[P2]) showed that if Q is strictly convex and the boundary data ¢; satisfies 

a Bounded Slope Condition then there is a Lipschitz continuous function of least gradient 

with boundary values <P. Further, under some additional technical conditions which are 

normally satisfied, the solution is unique, His method was to approximate J JvvJ dx by 

J ,jc;2 + JvvJ 2 dx, and then, using the Bounded Slope Condition, obtain uniform gradient 

estimates independent of c; , 

The idea in [SWZ2] is to construct the required solution via its level sets as was done 

in the constrained problem. The process is even simpler now since there is no necessity for 

the sets L 1 and l\11 , However, instead, we must try to ensure the solution satisfies the 

boundary values. 

Given ¢ continuous on an construct a new function g, continuous on lRn, such 

that g = ¢ on an and then set 

Gt = { x E lR" j g(x) 2: t}, 

Now consider the problem 

(4) Minimize 

There may be more than one solution and so let £1 be the solution to 

(5) Maximize { IEJj E solves (4)} 

and define 

u( x) = sup { t I x E ft } . 

We want to know that u is continuous and satisfies the boundary data. If this is the case 

then the co-area formula says u is the required solution. However it is not hard to see that 
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th~s will not always happen. For example, take n to be the square [0, 1] X [0' 1] in IR? 

and <P to be zero on three sides and non-negative (but not identically zero) on. the bottom. 

·Suppose also, for simplicity, that <P has a "bell-shaped" curve along the bottom (actually 

any curve will do). For each t > 0 the portion of C:t inside n will be a subinterval of 

the bottom side, but if t ::; 0 , C:t will contain the whole of n . Consequently the function 

u satisfies the boundary data but is zero inside n and so is not continuous up to an . 
To avoid the difficulty presented in this example we need a condition that will ensure OCt 

does not lie along on. The precise condition is given by the next Theorem. 

THEOREM. ([SWZ2]) If on is C2 and has strictly positive mean curvaturf in a dense 

subset of an ' then, for any continuous function <P defined on an ' there is a unique 

continuous function of least gradient in n having boundary values <P . 

Further, if the condition on on fails there is smooth boundary data, arbitrarily small in 

any ck norm, for which there is no continuous solution. 

If on is not C2 but only Lipschitz continuous then we can also give geometric 

conditions .on an which are necessary and sufficient for existence of continuous solutions. 

(Of course these conditions coincide with the one above when an is C2 .) 

The final question we consider in this report is the one of regularity of the solution 

u . In IR.Z the level sets of functions of least gradient are .straight lines. If we take any 

continuous function of (x, y) E IR? which is independent of x then its level sets will be 

straight (horizontal) lines and so it will be a function of least gradient on any set. Hence, 

generally, solutions can be no more regular in the interior than they are on the boundary. 

Indeed they may be even worse. 

Suppose n is the circle radius 1 and centre (0, 1) in IR?. Take boundary values <P 

on on so that </J(x, y) = lxl for y < 1 and 1 otherwise. Then the least gradient solution 

will be u( x, y) = Vfj for y < 1 and 1 otherwise. Thus even though the boundary data is 

Lipschitz continuous the solution itself is only Holder continuous with exponent ~ . 

However this example illustrates the worst that can happen. 



263 

THEORE1vL ([SWZ2]) Suppose ofl has strictly positive mean curvature (with respect 

to tl1e inner unit normal) and ¢; E C0•"'(8fl) for some a, 0 <a::::; 1. Then v. E Co,afZ(D). 

Examples as above show that these results are best possible. Other results allow the 

mean curvature of an to be 0 at some points but grow like a power away from these points 

and again optimal regularity is given. If we assume ¢; E C1•"'( aD), 0 < a: ::::; 1, and 

strictly positive mean curvature then u E Co,(Ha)/Z(Q") . For any regularity of ¢; higher 

than C1 •1 (afl) we can only expect to obtain the C0 •1 (TI) regularity of u given by the 

last result. 

Finally we mention that in some subsets of n the regularity of the solution can be 

improved beyond that mentioned above. 

(i) [PZ] If 2 ::::; T! ::::; 8' an is cn-l ' ¢; is cn-l and u is a Lipschitz continuous function 

of least gradient, then u is cn--3 on an open dense set of n. 

In fact Parks and Ziemer prove that if IVu(xo)l "'0 and u(xo) = t then u is C"-3 

and JVu(x )J cJ 0 in a neighbourhood of the component of 8ft = { x I u(x) = t} 

which contains Xo . 

(ii) If n = 2 the level sets of tl are straight lines and so interior regularity may be easily 

inferred from boundary regularity. Thus, in the case that ¢; E C0 '"'( oft) we have from 

above that u E C0 ·"'12 (TI). However in the example given v. fails to be in co,a only 

on approach to an . If we consider points X and y in the interior of n and consider 

the level sets of U which pass through X and y then because fl is convex these level 

sets (straight lines) must meet an at a positive angle which only depends on the 

distance of X and y from an . Thus the behaviour of u at X must be proportional 

to the behaviour of u at the boundary. 

If n = 2, fl is convex and¢ E C0 ·a(afl) then u E C0•"'(n)nco,af2 (TI). 

For n > 2 the same argument cannot be applied as level sets, while minimal sufaces, 

need not be straight lines or planes and even if they come from the interior of n they 

may still come into an in a tangential way. 
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