ASPECTS OF DESIGN FOR REPEATED MEASUREMENTS

R. MEAD

The design of trials and investigations is extremely important and includes the choices of experimental or observational units, the form and timing of measurements, the choice of applied or environmental treatments and the interrelationship of these three components. It became obvious later during the workshop that many difficulties of analysis could be attributed to design deficiencies (in a broad sense).

The general principles of design, applicable to all investigations are:

- (a) efficient use of resources
- (b) asking many questions
- (c) reducing σ^2 .

The consequent statistical principles are:

- (i) Using appropriate amounts and forms of replication.
- (ii) Using random allocation of treatments to units within stated design restriction to provide a valid basis for inferences and for estimating σ^2 .
- (iii) Using small "blocks" to control random variation.
- (iv) Using factorial structure with the implied priority ordering of effects.
- (v) Using the minimum necessary number of levels of quantitative factors.

The aspects discussed in this paper are (i), (iii) and (v).

1. REPLICATION AND RESOURCES

Replication for comparative mean values must provide adequate power; for random variance σ^2 and a difference that should be detected, d, this implies a replication, n, where

$$\sqrt{2\sigma^2/n} < d/3 \, .$$

Note that n may include implicit, as well as explicit, replication, derived from treatment structure or regression.

For a given replication level there will be a total amount of resources, represented by the total degrees of freedom (N-1) in an analysis of variance. These resources are used in three ways:

(i) Asking treatment questions

(ii) Estimating σ^2

(iii) Controlling variation.

Only for (ii) are there limits on the number of degrees of freedom. The minimum df necessary for estimating σ^2 are about 10; the maximum df useful for estimating σ^2 are about 20 (for justification of these statements see *t*-tables). A trial with less than 10 df for Error is of doubtful value. A trial with many more than 20 df for Error is inefficient and should be redesigned by asking more treatment questions or improving the control of variation to utilise the surplus degrees of freedom.

2. REPEATED MEASUREMENTS AND INTERDEPENDENT INFORMATION

Increasingly more and more measurements are recorded and it is important to ask how much more information is provided by repeated measurement through time of a single variable. In extreme situations technology permits literally thousandfold repetitions. Of course the replication of units per treatment is not increased at all by repeated measurements, a fact frequently ignored by experimenters (see Mead (1988) chapter 6 for more discussion of this issue).

Two examples of repeated measurements are given below. In the data on brood areas in hives for honey bees it is clear that, for diet 3, hive 8 consistently gives much lower error than hives 7 and 9. The repetition of this occurrence does not substantially increase the available information. The experiment included nine experimental hives, three hives of each of three diets. The brood area in each hive was measured on five occasions, giving the results shown.

]	Brood Are	a	
Hive	Diet	Time 1	Time 2	Time 3	Time 4	Time 5
1	1	368	920	944	1084	1108
2	1	308	980	1014	1008	894
3	1	284	500	754	908	518
1	0	CO 4	074	000	400	202
4	2	684	974	808	490	208
5	2	288	624	570	280	334
6	2	468	778	638	310	178
7	3	444	1330	1010	748	448
8	3	280	290	248	118	80
9	3	380	828	830	598	432
	•					

The data on daily rat growth are extracted from a much larger study in which daily weights were recorded for ten weeks. It is clear that the intermediate values between days 28 and 35 provide virtually no information additional to that for days 28 and 35, the occasional deviation from the linear trend giving doubt about the value showing the deviation, rather than additional information. Plainly there are fluctuations in an individual rat's weight both between and within days and we need to understand the general patterns of such fluctuations to be able to make the most informative measurements.

			г)aily ·	weigh	tofr	ate		·
Treat	M/F	Day 28	29	30	31		33	34	35
		.			-				
	1	4 54	10	40	F 4	50	00	05	07
0	1	45	49	49	54	58	60	65	67
0	1	44	47	45	52	54	57	61	63
0	1	30	32	31	36	37	40	42	46
0	1	39	43	46	48	50	54	57	60
0	1	54	57	59	62	66	68	70	74
. 0	0	44	48	50	54	57	61	66	70
0	0	44 50	$\frac{40}{54}$	58	62	64	68	71	75
0	0	$\frac{50}{44}$	$\frac{54}{48}$	52	$\frac{02}{54}$	56	58	63	65
1									
0	0	51	60	64 50	69 50	72	77	81	85
0	0	47	57	56	58	61	65	68	71
1	1	45	51	54	58	63	68	70	75
1	1	38	42	46	48	51	55	57	60
1	1	47	51	56	59	62	66	67	73
1	1	50	55^{-1}	60	62	67	70	72	78
1	1	44	47	52	55	58	62	65	68
	-	~ ~		<u> </u>	~~~	00	~-	~~	00
1	0	37	41	44	48	51	55	59	63
1	0	54	57	61	64	69	73	78	83
1	0	56	61	65	69	74	78	84	89
1	0	60	63	71	72	78	83	88	90
1	0	48	54	60	63	67	71	75	78
					" han bit galar har was it of it 100% it in a				

3. GROUP TERMINATION STUDIES

In some repeated measurement trials, groups of experimental units are sacrificed (killed, terminated, destructively harvested) and there are two sets of measurements. Repeated measurements on live units and single measurements on recently dead units. In the rat trial referred to above groups of between 5 and 7 rats were killed after 5, 6, 7, 9, 11 and 14 weeks of the trial. Particular design choices for such trials are:

- (i) Decisions about group sizes.
- (ii) Decisions about termination times.
- (iii) Decisions about "blocking" groups, and adjusting for differences between groups.

4. CHOICE OF MEASUREMENT TIMES (NO SACRIFICE)

We assume that the interest is in the overall response pattern through time, that individual animals have varying response patterns, and that response curves will be fitted for each animal and the variation between the resultant response curves used as a basis for interpreting differences between mean response curves.

If the total number of measurements (times \times units) is fixed then standard theory on the choice of levels of a quantitative factor indicates clearly that we should choose more animals and fewer observation times, the number of observation times being set at p or p + 1, where p is the number of parameters in the response curve family to be used for fitting. Usually p will be two or three. However, this particular form of restriction on total number of measurements is not often realistic.

If the total number of animals (units) is fixed, then, in a trivial sense, more observations means more information. However, the increase may be negligibly small. Often there will be benefits of information from thinking about the patterns of variation between months, between days, between hours, between minutes and even between seconds. For example suppose that we know that there is a within-day variation of ± 3 and a linear trend of 20 over a seven-day period. The "obvious" procedure of one measurement per day may be considerably less efficient than three spaced measurements on the first and last days. The latter system would hope to average out, systematically, the withinday variation and also use the theoretical advantage of two well-located observation points.

5. CONTROLLING VARIATION BETWEEN TERMINA-TION GROUPS

When several groups of animals are to be killed at pre-determined times it should be hoped that the experimenter uses some form of blocking to attempt to control possible variation between the termination groups. Even if this blocking is carefully chosen it may become apparent as the experiment progresses that the groups are more different than had been hoped. Consider the following data from the rat growth experiment. The individual rat weights for the last three termination groups are shown at the beginning of the experiment, and at weekly intervals up to the point when group 4 are about to be sacrificed.

			Week	r	-	
Group	4	5	6	7	8	
·						
4	45	67	93	109	129	
	55	79	98	114	130	
	41	61	84	101	118	
	44	69	90	105	124	
	43	77	98	114	132	
5	51	78	90	118	137	
	44	69	92	105	127	
	58	87	112	131	151	
	58	85	112	127	142	
	55	81	104	118	136	
6	43	64	86	103	119	
	40	60	80	100	119	
	51	82	108	127	142	
	53	82	111	132	155	
	49	72	95	113	131	

The differences between the three groups are not very distinct

at week 4, but by week 8 the separation of groups 4 and 5 is almost complete. Clearly the blocking control of variation for groups 4, 5 and 6 would be most effective if based on the week 8 information, or even better on the joint information of week 4 and the week 4 to 8 difference.

However blocking for groups 1, 2 and 3 must be determined earlier and in a blocking form that includes the animals for groups 4, 5 and 6. If we attempt sequential blocking we must consider how the resultant data might be analysed. One possible approach would be to start with a coarse blocking division (into perhaps just two blocks) and to produce one, or more, subsequent subdivision of each block into sub-blocks. This could be modelled by a sequence of (fixed) block effects

$$b_i + b_{ij} + b_{ijk}$$

with

$$\sum_i \, b_i = 0\,, \qquad \sum_j \, b_{ij} = 0\,, \quad ext{each} \, \, i\,, \, ext{ etc.}$$

6. ANALYSING LIVE MEASUREMENTS FOR TERMINATION GROUPS

There are two types of problem. The first is detecting if there are differences between the termination groups which would make the interpretation of the simple time means unreliable. The second is adjustment of time means.

Detection of group differences can be achieved using models

$$y_{ijk} = \mu + g_i + \epsilon_{ijk}$$
, each time, j ,

or

$$y_{ijk} = \mu + g_i + t_j + \theta_{ij} + \epsilon_{ijk} \,,$$

where i, j, k represent group, time, and animal within group, and g_i, t_j and θ_{ij} represent group differences, time differences and group \times time interactions. Adjustment of time means to allow for group differences can be made using a model

$$y_{ijk} = \mu + g_i + t_j + \epsilon_{ijk}$$

or by a regression approach as used for supplementing partial information on one variable (parallel river flows, partial and whole animal carcase weights),

$$y_{ijk} = \alpha + \sum_{\ell < j} \beta_\ell y_{i\ell k} + \epsilon_{ijk} .$$

7. CHOICE OF GROUP SIZES FOR TERMINATION GROUPS

We have to consider the choice of group sizes in the context of two different sets of comparisons. For measurements on dead animals we have n_1 observations at time 1, n_2 at time 2, n_3 at time 3, and so on. For measurements on live animals we have n_1 observations for both times 0 and 1, n_2 for the three times 0, 1 and 2, n_3 for the four times 0, 1, 2 and 3, and so on. The gradual reduction of live animals results in an inevitably biassed distribution of information. If we consider a compromise criterion balancing the needs of both forms of measurement information, we should expect to find that we reduce the unevenness of the live information with a corresponding introduction of unevenness in the dead information.

We consider three specific small scale situations and a hypothetical general "rule".

A. TWO TERMINATION GROUPS: BOTH RESPONSES LINEAR

The number of observations are:

	Time 0	Time 1	Time 2
Death Life	$n_1 + n_2$	$n_1 \\ n_1 + n_2$	n_2 n_2

The variances for the linear regression coefficient are

Death
$$\operatorname{Var}(\tilde{\beta}) = (\sigma^2 + \sigma_S^2) \left(\frac{1}{n_1} + \frac{1}{n_2}\right) + \sigma_\beta^2$$

Life $\operatorname{Var}(\tilde{\beta}) = \sigma^2/(n_1 + 4n_2) + \sigma_\beta^2$,

Life

where σ_{β}^2 is the variance of true slopes over animals, σ_S^2 is the between subject (animal) variance component and σ^2 the within animal variance. In fact only the multiplying factors need to be considered.

The resulting variance factors for various alternative splits of a total of 20 animals, and the % increase in variance for death measurements compared with a 10/10 split, and the % increase of the reciprocal of variance for life measurements are shown below.

Group Sizes n_1/n_2	De Var. factor	ath	ear Response Var. factor	Life % Increase (Var ⁻¹)
10/10 9/11 8/12 7/13 6/14 5/15	.2000 .2020 .2083 .2198 .2381 .2667	$^{+1\%}_{+4.15\%}$ $^{+9.9\%}_{+19.05\%}$ $^{+33.33\%}$.0200 .0189 .0179 .0170 .0161 .0154	+6% +12% +18% +24% +30%

If the two forms of information are assumed to be of equal importance then a reasonable compromise design would suggest

 $n_1: n_2 = 3: 5.$

B. TWO TERMINATION GROUPS; DEATH LINEAR, LIFE QUADRATIC

The results for death are unchanged. For the life response we can consider the variance of the linear or quadratic coefficient or the generalised variance for the model

$$y = \alpha + \beta(t-1) + \gamma(t-1)^2$$
.

The variances are

$$\begin{aligned} \operatorname{Var}(\tilde{\beta}) &= \sigma^2 \left(\frac{N+n_2}{4n_2 N} \right) + \sigma_{\beta}^2 \\ \operatorname{Var}(\tilde{\gamma}) &= \sigma^2 \left(\frac{N+5n_2}{4n_2 N} \right) + \sigma_{\beta}^2 \\ \operatorname{G.V.} &= \sigma^2 / (4n_2 N^2) \,, \end{aligned}$$

where $N = n_1 + n_2$. For the same n_1/n_2 splits the increase in information (= variance⁻¹) are

n_{1}/n_{2}	$\operatorname{Var}(\widetilde{eta})$	$\operatorname{Var}(\widetilde{\gamma})$	G.V.
9/11	+6.5%	+2.7%	+10%
8/12	+12.5%	+5.0%	+20%
7/13	+18.3%	+7.1%	+30%
6/14	+23.5%	+8.9%	+40%
5/15	+28.7%	+10.6%	+50%

C. THREE TERMINATION GROUPS; BOTH RESPONSES QUADRATIC

The numbers of animals are

	Time 0	Time 1	Time 2	Time 3
Death Life	$n_1 + n_2 + n_3$	$n_1 \\ n_1 + n_2 + n_3$	$n_2 \\ n_2 + n_3$	$egin{array}{c} n_3 \ n_3 \end{array}$

For the model,

Death	$y = \alpha + \beta(t-2) + \gamma(t-2)^2$
Life	$y = \alpha + \beta(t-1) + \gamma(t-1)^2 .$

The variance-covariance matrices are

Death

$$\begin{pmatrix} n_1 + n_2 + n_3 & n_3 - n_1 & n_1 + n_3 \\ n_3 - n_1 & n_1 + n_3 & n_3 - n_1 \\ n_1 + n_3 & n_3 - n_1 & n_1 + n_3 \end{pmatrix} \qquad \text{G.V.} = (4n_1n_2n_3)^{-1}$$

Life

$$\begin{pmatrix} 4n_3 + 3n_2 + 2n_1 & 2n_3 - n_1 & 6n_3 + 2n_2 + n_1 \\ 7n_3 - n_1 & 6n_3 + 2n_2 + n_1 & 8n_3 - n_1 \\ 6n_3 + 2n_2 + n_1 & 8n_3 - n_1 & 18n_3 + 2n_2 + n_1 \end{pmatrix}$$

The values of the determinants $(= \text{G.V.}^{-1})$ for life and death information, for varying n_1 and n_3 $(n_2 = 30 - n_1 - n_3)$ are

				~	×
			_	n_1	
Death		10	8	6	4
			- 		
	00				100
	20				192
	18		230	259	230
	16	256	314	314	256
n_3	14	336	358	336	269
	12	384	384	346	269
	10	400	384	336	256
TIC		10		0	4
Life		10	8	6	4
	20				1386
	18		1138	1188	1258
	16	974	1020	1066	1131
n_3	10	862	902	943	1004
	12	$\frac{332}{749}$	785	821	877
	10	636	667	698	730
	±0	000	001	000	
L	00004				

		10	8	r	n ₁ 6		4
		1011.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.					
	20						266
	18		262		308	306	294
			293	315	322	313	
	16	249	320	327	334	313	290
n_3			323	330	325	308	
	14	290	323	326	319		270
			316				
	12	288	301		284		235
	10	255	256		235		187

The Products of the two determinants are

The optimum compromise information appears to be in the range n_1 (5-8) n_2 (6-10) n_3 (13-17).

A possible rule of thumb for optimum compromise design group numbers could be to equalise the products of the Life and Death numbers across times. That is choose n_1, n_2, n_3, \ldots to make

$$n_1 N$$
, $n_2(N - n_1)$, $n_3(N - n_1 - n_2) \dots n_5^2$

as nearly equal as possible. The resulting designs would require:

Two groups	n_1/n_2	7.64/12.36
Three groups	$n_1/n_2/n_3$	6.83/8.85/14.32
Four groups	$n_1/n_2/n_3/n_4$	6.42/7.65/9.90/16.02
Five groups	$n_1/n_2/n_3/n_4/n_5$	6.17/7.04/8.38/10.85/17.56

The effect of autocorrelation of observations might lead to a possibly even greater value for the last group size because of the increased dependence on the extremes for the Life measurement, but this effect would be small. There is no effect, of course, on the Death measurements.

REFERENCE

Mead, R. (1988) The Design of Experiments: Statistical Principles for Practical Application. C.U.P.

> Department of Applied Statistics University of Reading Whiteknights, PO Box 217 Reading RG6 2AN UK