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RELAXED VARIATIONAL PRINCIPLES AND 
ALGORITHMS FOR THE EQUILIBRIA OF 
ROTATING SELF-GRAVITATING FLUIDS 

Giles Auchmuty* 

1. Introduction. 

In this paper, we shall analyze some aspects of the variational principle for the axisym­

metric equilibria of a rotating self-gravitating fluid. The analysis is developed to justify 

certain relaxed Lagrangean formulations of the problem and to describe an iterative algo­

rithm for computing the solutions. 

These equilibrium solutions provide simple, hydrodynamical models of stars and plan­

ets. The physical basis of these theories is described in Tassoul {7]. Here our interest is in 

developing convergent algorithms for finding these solutions. 

In sections 2 to 5 we describe a variational principle for these equilibria, analyze the 

functional involved, derive the extremality conditions and prove that the local minimizers 

of this problem are, in fact, classical solutions of the hydrodynamical equations. The 

existence of such minimizers is proven. Much of this analysis is a variation of that of {1] 

but there are a number of new results, including convexity theorems, that are important 

for our purposes. 

In section 6 we introduce, and analyze, a relaxed Lagrangean for this problem which 

converts the variational principle into one of minimizing a functional which is convex in 

each of two variables separately. This formulation is then used in section 7 to develop an 

algorithm which generates strict descent sequences for the problem and the convergence 

of this algorithm is studied. 

I would like to thank the organizers of this conference and the C.M.A. for their hospi­

tality. 

*This research was partially supported by NSF Grant DMS 8901477 
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2. The Variational Principle. 

The axisymmetric equilibrium figures of a rotating self-graviting fluid obeying a given 

barotropic equation of state may be characterized by a variational principle for the density 

of the fluid. A description, and analysis, of this problem is given in Auchmuty and Beals 

[1]. There it is shown that there are minimizers of this variational problem and that the 

minimizing densities are continuous functions with compact support in space. 

Here we shall look at the problem of developing algorithms for constructing minima of 

this variational principle. To do this we shall pose the problem in the closed ball BR of 

finite radius R in space, and consider the case of the polytropic equation of state 

P = Kp'Y (2.1) 

with 'Y > 1, K > 0. Here p is the pressure and p is the density of the fluid. Let L"~ (BR) 

be the set of all (equivalence classes of) measurable real-valued functions defined on BR, 

whose absolute value is '"fth power integrable. It is a Banach space under the norm 

JJuJI~= jJu(x)J"~dx. 
BR 

Here, and henceforth, integration will be over the set BR unless otherwise indicated. 

The admissible set D of density distributions is the set offunctions pin L'Y (BR) obeying 

(Dl): p(x) ~ 0 a.e. on BR, 

(D2): J p(x)dx = M > 0, and (2.2) 

(D3): pis axisymmetric about the z-axis and symmetric about the plane z = 0. 

It is an (interesting) exercise in measure theory to prove that D is strongly closed in 

L'Y (BR)· D is a convex set in L (BR), so it is also weakly closed. 
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The rotation law is specified by giving the distribution of angular momentum per unit 

mass j. This should be a function of a Lagrangean variable of the system. Since we are 

restricting attention to axisymmetric figures, this Lagrangean variable will be 

mp(r)=M-1 J p(x)dx 

r(:~:)<r 

(2.3) 

This integral is over the region of cylindrical radius r about the z axis. Throughout 

this paper, (r,9,z) will be cylindrical polar coordinates of a point x in space, (xt,X2,xa) 

will be its Euclidean coordinates while r ( x) and jxj will be the cylindrical and spherical 

radii of x respectively. 

mp(r) defined by (2.3) is the proportion of mass inside a cylinder of radius r. We shall 

require 

(D4): j : [0, 1] --t [0, oo) is a continuously differentiable, non-decreasing function with 

j(O}=O. 

The condition that j be nondecreasing is the Solberg stability criterian (see Tassoul 

[7], Section 7.3). 

Define the functional [ : D --t R = [-co, oo J by 

E(p) = J [Kop(x)"l + ~p(x)P(mp(r))r-2 - ~p(x)V p(x)] dx (2.4) 

= E1(p) + T(p)- V(p). (2.5) 

Here Ko = K(-y- 1)-1 and V p(x) = J ~:~~. {2.6) 

Units are chosen here so that the gravitational constant G = 1. T(p) and V(p) are, 

respectively, the kinetic energy and the gravitational potential energy associated with the 

density distribution p. 

The variational principle is :find extremals (or critical points) of [ on D. In section 4 

it will be shown that these extremals will be the densities of possible equilibrium figures 
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for a self-gravitating fluid obeying the equation of state (2.1) and rotating with this given 

angular momentum per unit mass j(m). 

3. Analysis of the Functional. 

In this section, various functional analytic results about the quantities arising in this 

variational principle will be obtained. We need to develop a calculus for functionals defined 

on the domain D <;;; L~'(BR)· All integrals and measures will be Lebesgue integrals and 

measures. When terms are used here without definition, they should be taken as in Zeidler 

[8]. 

When p is in D, we define the cone of allowable directions at p to be 

Pp={t(u-p): t?O,uED}. (3.1) 

Pp is a closed, convex cone in L"(BR) as D is a closed convex set. For each h in Pp, 

there is a 8? 1 such that p +this in D for 0 :5 t < 8. The support, supp p, of a function 

pin Dis defined to be the set of all x in BR such that for each r > O, I{Br(z) (l E0 } I-:/= 0 

where Br(z) = {y E BR: lx- Yl < r},Eo = {x E BR: p(z) > 0} and IGI is the Lebesgue 

measure of G. 

LEMMA 3.1. Suppose pis in D and his in Pp, then h obeys (D3), 

(Hl): 

(H2): 

h(x) ? 0 a.e. on BR- supp p, and 

J h dx = 0. 

(3.2) 

(3.3) 

Proof: Each h in Pp obeys (D3) since (3.1) holds with u,p obeying (D3). Since p +this 

in D for 0 :5 t < 8, (2.2) implies that 

for 0 :5 t < 8. 
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Hence (3.3) holds asp obeys (D2). 

If a: is not in supp p, then there exists r > 0 such that IBr(:z:) n Eol = 0. Therefore 

p(:z:) = 0 a.e. on Br(x). 

Froni (D1), we must have (p+th)(x);::: 0 a.e. on Br(x) for 0 ~ t < 6, 

a:e. on Br(a:)., 

Since BR- supp u is an open set, (H1) follows. 

so h(x);::: 0 

0 

The essential domain of a functional~: D-+ (-oo,oo) is Do= {u ED: l~(u)l < oo}. 

~ is convex on D if 

~((1- t)u +tv)~ (1- t)~(u) + t~(v}, 

for all u, v in D and 0 ~ t ~ 1. 

When pis in D 0 , his in Pp, then~ is said to be differentiable in the direction h if 

exists. 

Let D P = { h E Pp : ~ is differentiable in the direction h at p}. Then D P will be a cone. 

~is said to beG-differentiable at p if Dp = Pp and there exists gin £"'Y' (BR) such that 

lim r1 [~(p + th)- ~(p)] = !gh dx 
t-o+ 

Here '"'!' = -r('"'l- 1)-1 is the conjugate index to '"'! and when this holds we shall write 

D~(p) =g. 

To simplify the notation, and some analysis, we shall define X = {p E L'Y(BR) 

p obeys (D3)}. X is a closed subspace of L'Y(BR)i hence is regarded as a Banach space in 

its own right with 

R .,;w=;:r 

IIPII~ = J lp(x)i'Ydx = 411" J J rfp(r,z)f'Ydr dz (3.4) 
0 0 
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upon using (D3) and cylindrical polar coordinates. 

Dis a closed convex subset of X. The dual space of X with respect to the usual pairing 

f(p) = < f,p > = J p(x)f(x) dx 

is X* = { u E L'1' (BR) : u obeys (D3)} with 7' being the conjugate index to 'Y· 

The first term in (2.4) is E1 : D ~ [0, oo) defined by 

E1(p) = Kc, jp"~dx 

= KoiiPII~ for pin D. 

(3.5) 

(3.6) 

RESULT 3.2. When 1 < 'Y < oo, E 1 is convex, strongly continuous and weakly lower 

semi-continuous ( l.s.c.) on D. It is G-differentiable with 

(3.7) 

Proof: The extension E1 of E 1 to X defined by (3.6) is convex and strongly continuous 

from the definition {3.4) of the norm on X. Hence it is weakly l.s.c. on X and thus on D. 

Then (3. 7) follows by a straightforward computation. 

Next consider the gravitational potential energy functional 

V(p} = ! J p V p dx. 
2 

0 

(3.8) 

RESULT 3.3. Tbe integral operator V :X -> X* defined by (2.6) is compact when ~ < 

'Y < oo. For such"{, t11e functional Vis weakly continuous and G-differentiable on X. It is 

strictly convex on D and there is a constant C1 such that, for all p in D, 

(3.9) 
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with f3 = :f. 

Proof: The integral operator V : L"'~(BR) -+ L"'~' (BR) defined by (2.6) is compact from 

the potential theoretic version of the Sobolev imbedding theorem when ~ - j < -.¢;. See 

Sobolev [6] Chapter 1. This inequality yields -y > ~- From the symmetry properties of the 

kernel, a direct analysis shows that when p obeys (D3) so does V p. Hence V maps X into 

x· compactly when 'Y > ~. 

If Pn converges weakly to p in X, then V p, converges strongly to V p in x• and 

2[V(p)- V(pn)] = J {(p- p,.)V p +Pn(V p- V p,)}da: 

so this converges to 0 as n -+ oo. Hence V is weakly continuous. From the symmetry of 

V, one finds that 

DV(p)h = j h(::c)V p(:r) dx 

for any p,h in X, so V(p) is G-differentiable on X. 

(3.8) may be rewritten as 

V(p) = ~ j j p(::c)p(y) dx dy 
2 lx-yl 

(3.10) 

for all p in X, so V (p) > 0 as p obeys ( Dl) and thus V is strictly convex on D, as it is 

quadratic in p. 

Applying Holder's inequality to (3.8), 

(3.11) 

provided q 2:: ~ upon using the continuity of V as above. 
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When p is in D and 1 < q < 7, then from the standard Holder type interpolation 

inequality 

I 

as II p lh = M and with a= 7,. Substituting this in (3.11) 
q 

IV(p)l:::; ~CM2(1-a)ll P JJ;a. 

Choose q = ~ in (3.12), then a= f and (3.9) follows 

The remaining term is the rotational kinetic energy functional 

(3.12) 

0 

(3.13) 

T is only defined on D. This integral is always non-negative when p is in D, but when 

-y <~,this integral may be infinite. Let Do= {p ED: T(p) < oo}, the essentialdomain 

of£ will be Do whenever 7 ~ ~· 

RESULT 3.4. When (D4) holds and 7 > 1, Tis weakly l.s.c. on D. 

Proof: Suppose {Pn : n ~ 1} C D converges weakly to a density pin D. Then there exists 

a constant C such that liPnli'Y :::; G. Let mn(r) = mp..(r) be defined by (2.3). Holder's 

inequality yields 

where () f 1 ifr(x) :::;rj 
Xi X = l 0 otherwise 

Here j = 1 or 2 and x is in B,.. Then a straightforward computation yields 
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forl::; q < oo and 0::; r 1 ::; r 2 <Rand with ¢(r) = [R2 - r2]i. Hence there is a constant 

c2, such that 

with a = (1')-1 • 

This implies that { m,. : n ~ 1} is a bounded equicontinuous family of continuous 

functions defined on [ O,R ]. Since p,. converges weakly top, m .. (r) will converge pointwise 

to m(r) for each r in [O,R] and j(m,.(r)) will converge uniformly to j (m(r)) on [O,R]. 

jl(m (r)) jl(m (r)} 
Thus ; converges uniformly to ; on [e, R] for any 0 < e < R and 

r r 

r j < )P(m .. (r)) tk _ ~· ( )P(mp(r)) d ,..:,n;., Pn x r2 - p x rZ x 

r(z)2:• r(z)2:• 

as p,. converges weak-ly to p in X. 

Call this last integral T.(p), then it is a nondecreasing function of e as e goes to zero. 

Also 

T.(p) = lim T.(p,.) ::; lim inf T(p,.). 
n-+oo n-+oo 

for any e > 0. Let ego to zero now, then Tis weakly l.s.c. at pin D as claimed. 0 

Finally we shall describe the derivative of T(p) and show that T is convex. To do this 

we shall use the fact that 

R 

T(p) = M fm' (r)P(mp(r)) dr 
2 P rZ 

0 

where m~(r) is the Radon-Nikodym derivative of mp(r). 

Also, we shall sometimes require that allowable perturbations h obey 

(H3): there exists S > 0 such that mh.(r) = 0 for 0::; r::; S. 

(3.14) 
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RESULT 3.5. Suppose 'Y > 1, p is in Do and (D4) holds. If h is in Pp and obeys (H3), 

then 

lim C 1 [T(p + th)- T(p)] = J h(x)Wp(r)dx 
t--+0+ 

where 

and Tis convex on Do and D. 

Proof: Assume p, h obey these conditions, then p + th is in Do for 0 ~ t ~ 1 and 

R 

(3.15) 

(3.16) 

C 1 [T(p + th)- T(p)] = M {[tm~(r)Lt(r) + m~(r)(Lt(r)- L0 (r))]r-2 dr (3.17) 
2t J 

li 

where Lt(r) = P(mp+th(r)) and we have used (3.14). 

The first integral on this right hand side converges, as t goes to O, to 

R R 

M Jm~(r)Lo(r) dr = -M fmh(r)~(Lo(r))dr. 
2 r 2 2 dr r 2 

(3.18) 

s 6 

Also 

lim Lt(r)- L0 (r) _ 2 '( ( )) ''( ( )) ( ) 
t-+O+ t - J mp r J mp r mh r 

as j is continuously differentiable and this function is continuous on [8, R]. Thus the 

dominated convergence theorem implies 

R R 

lim 2_ j m~2(r) [Lt(r)- Lo(r)}dr = J m~2(r) j(mp(r))j'(mp(r))mh(r)dr. 
t-+O+ 2t r r 

(3.19) 

6 5 

Combining (3.17)- (3.19), one obtains 

R 

lim r 1 [T(p + th)- T(p)] = Mjmh(r)j 2 (mp(r))r- 3 dr 
t-+O+ 

li 
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or 

DT(p)h = J hWp(r)dx 

where WP is defined by (3.16). Wp is the centrifugal potential in this problem. 

If p11 p2 are in D, then Tis convex on D provided 

cf>(t) = T((1- t)pl + tp2) ::; (1- t)T(p1) + tT(P2) = (1- t)¢(0) + t¢(1) 

If Pl and/or P2 is in D- D 0 , then this holds automatically, so we can assume p1 and P2 

Assume m1(r) = m2(r) for 0::; r::; 6, then from above one has 

where h = P2- P1 1 and W., = Wp,· 

Also, 

R 

cf>'(t)- cf>'(o) = M j m~(r)[Wt(r)- W.,(r)]dr 

li 

upon itegrating by parts. Here Wt(r) = w(l-t)Pt+tp.(r). 

Also~ Wt(r) = 2frR s-3 j(mt(s))j'(mt(s))mh.(s)ds, from (3.16) so 

Wt(r)- W,(r) = 21t 1R s-3 j(m,.(s))j'(m.,.(s))mh(.s)ds dr. 

Differentiating this with respect tor and substituting in (3.20) 

R t 

cf>'(t)- cf>'(o) =2M 1 r-3m~o(r)2 (! j(m.,.(r)j'(m.,.(r))dr)dr. 
!) 

(3.20) 
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Divide both sides by t, lett go to zero, then the dominated convergence theorem yields 

R 

4>"(0) =2M j r-3 mh(r)2 j(mo(r))j'(mo(r))dr. 
6 

From (D4), j'(m) ~ 0 for all m, so c/>11 ~ 0 and thus 4> is convex. Hence T will be 

convex for all such P1, P2. Letting li go to zero and approximating if necessary, T will be 

convex on D 0 • 

4. Extremality Conditions. 

In this section we shall show that the local minimizers of [ on D actually do provide 

axisymmetric equilibrium models of rotating self-gravitating fluids obeying the polytropic 

equation of state (2.1) whenever -y > ~- That is, they obey Euler's equation for the 

uniformly rotating motion of an inviscid, self-gravitating compressible fluid obeying (2.1). 

A function pin Do is said to be a local minimizer of [on D if, for each h in P-, /there 
p 

is a 6 > 0 such that 

&(p + th) ~ &(P) for 0:::; t < li. (4.1) 

THEOREM 1. Assume pis a local minimizer of [ on D0 , -y > ~ and (D4) holds. Then there 

is a real number .A such that p obeys 

R 

-yK0 p(x)1 - 1 + j s-3 j 2 (mp(.s))ds- V p(x) ~A a.e. on BR (4.2) 

r 

with equality holding here on any open set where p(x) > 0 and r(::c) > 0. 

Proof. Choose h in P- and assume it obeys (H3). Let cf>(t) = &(p + th)- &(P), then from 
p 

results 3.2, 3.3 and 3.5, one obtains c/>'(0) = f["YK0 p(x)'-1 + Wp(r)- V p(x)]h(x) dx. 
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Since p is a local minimizer this must be non-negative. There are sufficiently many 

allowable h's obeying {Hl)-{H3), that this implies there is a real>.. such that 

-yK0 p(:£)-y-l + Wp(r)- Vp(z)- >.. ~ 0 a.e for r{:£) ~ S 

with equality holding here on any open subset of {x: p(z) > 0}. Sis an arbitrary positive 

number so {4.2) follows as claimed. 0 

When a function p in D obeys ( 4.2), then 

(4.3) 

where >..is chosen so that the solution of this obeys {2.2). Note that the last term in (4.3) 

is a strictly monotone increasing function of .>.., for fixed p. 

LEMMA. H p in D obeys (4.3) and-y > ~. tben p is a continuous function on BR. If 

G0 = { x E B R : j:£j < R and p( z) > 0}, tben Go is open and p is continuously differentiable 

Proof. First consider the case-y> ~- When pis in L"~(BR) with-y> ~'then the Sobolev 

imbedding of theorem guarantees that V p is continuous on BR. 

From the definition {3.16) of Wp(r), one sees that Wp is an absolutely continuous 

non-increasing and non-negative function on (0, R). 

Thus>..+ V p(:£)- Wp(r) will be continuous on [0 R]. H limr .... o+ Wp(r) = w 0 is finite, 

then this combination is continuous and bounded on BR. When W 0 = + oo, then there 

exists a S > 0 such that lrl < S => 

>.. + Vp(z)- Wp(r) < 0 
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as >. + V pis bounded on BR. Hence the right hand side of (4.3) is again bounded and 

continuous on BR, sop will be. 

Since p is continuous, it is bounded on BR and G 0 is open. 

When pis continuous and bounded, then V p will be continuously differentiable on BR 

and Wp will be continuously differentiable on (0, R). 'l'hus the right side of (4.3) will be 

continuously differentiable on G 0 or on any open subset of BR on which p(:z:) = 0. Hence 

the lemma is proved. 

When ~ < 1 < ~, then a bootstrapping argument as in the proof of theorem A in 

section 4 of [1], shows that a solution of (4.3) will be in L"~ for some 1 > ~' and then the 

preceding argument applies. 0 

This result shows that (4.2) may be interpreted pointwise in the usual manner. On 

R 

IKop(:z:p-1 = Vp(:z:)- J j2(mp(s)) ds + >.. 
s3 

,. 

Taking the gradient of both sides here, 

j2(m (r))A 
1Ko grad p(:z:)'Y-1 =grad Vp(:z:) + : i,. 

r 
(4.4) 

where i,. is the unit vector in the cylindrical radial direction. Multiplying both sides by p, 

one obtains Euler's equation for a rotating, compressible, self-graviting fluid obeying the 

equation of state (2.1) 

(4.5) 

This holds as K = K 0 ("Y- 1) from (2.6). It shows that the local minimizers of£ on D 

actually are classical solutions of the Euler equation (4.5) on the set G0 • 
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5. Existence of Minima. 

Here we shall look at the question of minimizing [ on D and finding 

a= inf £(p). 
pED 

(5.1) 

We shall first show that when "' > ~,a is finite and there is a minimizer of£ on D. 

THEOREM 2. Suppose"'> ~ and (D4) holds, then for any M > 0, the infimum a of£ on 

D is finite and there is a p in D such that 

£(p) = inf £(p). 
pED 

(5.2) 

Proof. From (2.4), (3.9) and the fact that T(p) ~ 0, 

(5.3) 

with f3 = i"''· Thus"'> f3 provided"'>~ so in this case £(p)---> oo in D as J! p 11-y---> oo. 

Choose Po in Do, then from (5.3) with"'> ~'there is a C2 such that £(p) $ £(Po) 

and pin D implies II p 11-y $ Cz. The subset Dz of D obeying II p jj-y $ C2 is a weakly 

compact, convex set as X and L~'(BR) are reflexive. 

E1 and Tare weakly l.s.c. on D from results 3.2 and 3.4, while Vis weakly continuous 

on D from 3.3. Thus [ will be weakly l.s.c. on D and hence on D2. Since D 2 is weakly 

compact, [ attains its infinum on D2 and thus on D. So the theorem follows. 0 

The minimizer p here will depend on R - when R is smalL In [1], however, it was 

shown that for R large enough, the minimizer of £ on D will not change. In other words, 

even when R = oo there is a minimizer of £ on D and this minimizer has compact support. 

In [4], section 8, some lower bounds on this radius were described. 
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When ~ < 'Y < ~ and j(m) = 0, then by a simple scaling argument, one can construct 

a sequence of densities in D with lim £(pn) = -oo so a= -oo in this case. 
n-+oo 

The critical value 'Y = ~ is a classical stability criterion for non-rotating models and is 

discussed in Chandrasekhar [5], Section 2.10. 

6. Relaxed Variational Principles. 

The original variational principle (P) for these models is to minimize the non-convex 

functional 

£(p) = EI(P) + T(p)- V(p) (6.1) 

on the closed convex subset D of X. From the results of section 3, we know that each of 

E1, T and V, individually, is convex so that £ is the difference of two convex functionals. 

This enables the application of non-convex duality theory as described in [2] and [3]. 

Let V* : X* -+ [0, oo J be the conjugate convex functional of V. That is 

V(u) = sup j p(u- ~ V p)dx 
pEX 2 

(6.2) 

= { ~ < u, v- 1u > if u E V(X) 
oo otherwise. 

(6.3) 

As will be seen the explicit form of V* will not be needed. It is sufficient that V* is a 

convex and weakly l.s.c. functional on X* (see Zeidler [8], Section 51.3). 

More generally one may regularize this problem by defining Ve :X -+ [0, oo] by 

Ve(P) = jl.:_IPI'~' + ~pVp] dx with c > o. 
'Y 2 

(6.4) 

Then V;(u) will be a well-defined convex, continuous and weakly l.s.c. functional. 
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Consider the relaxed Lagrangean functional Ce: D x X* -+ [-oo,oo] defined by 

(6.5) 

with e ;::: 0, and the associated variational principle ( Q) of minimizing C, on D x X*. 

The basic facts about this functional may be summarized as follows. 

THEOREM 3. Suppose Ce is defined by (6.5), 1 > t and (D4) holds. Then 

(i) £, ( ., u) is strictly convex and weakly l.s.c. on D for each u in x•, 

(ii) £. (p, .) is convex and weakly l.s.c. on x• for each pin D, and 

(iii) £(p) =infueX• C, (p,u) for each pin D. 

Proof. (i) E 1 , T and J p"~ dx are convex and weakly l.s.c. on D from results 3.2, 3.4, and 

3.5. Also f pu is linear and weakly continuous for each u in X*, so (i) holds. 

(ii) v; is convex and weakly l.s.c. from the properties of dual functionals while J pu is 

linear and weakly continuous on x· when p is fixed, so (ii) follows. 

inf £, (p,u) = El(P) + T(p) + :_ jf !PI' dx + inf (V;(u)- jpu) 
ueX• "{ ueX• 

= El(P) + T(p) + ~ J IP!"Y dx- v.(p) 

as v;• = V. when V, is a proper l.s.c. convex function (see (8], Theorem 51.6). Using (6.4) 

this right hand side is, in fact, £(p ). 0 

From (5.1) and (iii) of this theorem 

(6.6) 

so the value o: of the variational principle ( Q) equals that of the original problem (P). The 

next result relates the minimizers of ('P) and (Q). 
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THEOREM 4. Let Ce be defined by (6.5) with"f> ~ 0, and assume 'Y > ! and (D4) holds. 

Then there exists pin D,u in x• such that£~ (p,u) =a as defined by (6.6). Moreover 

(p,u) obey 

u(x)=ep-r-l (x)+Vp(x) ,and (6.7) 

(6.8) 

a.e. on BR with equality holding in (6.8) on any open set where p(x) is positive. 

Proof. Choose p to be the minimizer of £ on D; from theorem 2 this exists when 'Y > ~. 

Define <5 :X* -+ ( -oo, oo] by 

<5(u) = v:(u)- J j)u. 

From (6.4) and (3.9), Ve(P) :5 :_ IIPII~+CoJJpJJ; where Co is a constant depending 
'Y 

on R. Let cf>(s) = ~s-r + C0 s2 , then its convex conjugate function is 

¢* is a non-negative, monotone increasing function and, when e > 0, 

cf>*(t) 
lim -- = v>O where p=min(__:r_,2). 

t->oo tP 'Y- 1 
(6.9) 

Moreover from [3], Lemma 2.2, it follows that 

<5(u) ~ ¢* (JJuJJ.) -11.011-r JJuJJ,.. 

Thus <5 is coercive so the problem of minimizing <5 on X* has a solution. Hence there 

exists u in x· such that 

£. (p,u) = inf Ce(p,u). 
ueX* 



36 

But a= £(p) = infueX• £,(p,u) from (iii) of theorem 3. Therefore a= £~(p,u) so 

there are minimizers of the problem Q. 

When g = 0, this result still holds with p = 2 in (6.9). 

At a minimizer (p, u) of£. on D X x· one must have 

where 8p and 8,. denote the partial subdifferentials of£. with respect top, u respectively. 

From (6.6), w E 8u .C(p,u) if and only ifw E {-p+v :v E 8V;(u) }. 

Since V, is convex, and weakly l.s.c.,v E 8V;(u) if and only if u E 8 V,(v), see [8], 

theorems 51.2 and 51.6. Thus 0 E 8u .C(p,u) if p E 8 V;(u) or u E 8 V. (p). 

That is u = t=IPI-r- 2 p + V pfrom the definition (6.4) of V,(p). Since p(x) ~ 0 a.e. 

for p in D, (6.7) follows. Using the same argument as in theorem 1, (6.8) follows as the 

extremality condition for minimizing 1:, (p, u) over pin D. 0 

7. A Descent Algorithm. 

The minimization of£ on D was shown in the last section to be equivalent to minimizing 

.C. on D x X*. The two problems have related minimizers and the same values. 

Computationally however it is advantageous to work with .C. instead of E. The original 

problem (P) a requires the minimization of the non-convex function E over the dosed, 

convex set D. To solve {Q), however, one minimizes the function .C. which is convex in 

each of p and u, over the convex domain D x X*. This can be regarded as a sequence of 

convex programming problems and leads to the following algorithm, 

Given p(o} in D, fork ~ 0 

(7.1) 
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(2) find p(k+l) in D obeying 

(7.2) 

(3) if p(k+l) = p(k) stop, else go to-1. 

Step 1 chooses u(k) to be a minimizer of the convex function Le (p(k), .) on X*. From 

the expression (6.5) for££, this minimizer obeys 

Since V, is proper, weakly l.s.c. and X is reflexive, this holds if and only if 

which is (7.1) as V, is differentiable. Thus (7.1) is the explicit formula for the solution of 

this minimization problem, and is the iterative version of (6.7). 

Similarly step 2 specifies p(k+l) to be the minimizer of a strictly convex, coercive 

function on the closed, convex set D. This minimizer exists, is unique and there is a 

constant Ak+l such that p(k+l) obeys 

(7.3) 

a. e. on BR with equality on any open set where p(k+I) is positive. This is proven just as 

in theorems 1 and 4. 

If p(k+l) = p(k) , then (p(k), u(k)) is a solution of the system (6. 7) - (6.8) so p(k) will 

be a solution of (4.2). The analysis of section 4 shows that any solutionof (4.2) defines a 

classical solution of our problem so the stopping criteria in step 3 is justified. 
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When p(k+l) =F p(k), then since Ce (.,u(k)) is strictly convex on D, it follows that 

(7.4) 

so {(p(k), u(k)) : k ;::: 0} is a strict descent sequence for .Ce. 

Using (iii) of theorem 3, and (7.1),.one has 

as u(k) minimizes .Ce (p(k) ,.) on X*. Thus the sequence {p(k) : k ;::: 0} generated by this 

algorithm is a strict descent sequence for £. 

These results may be summarized as follows. 

THEOREM 5 .. Suppose (D4) holds and {p(k) : k ;::: 0} is defined by this algorithm. If 

p(k+l) =F p(k), then £ (p(k+l)) < £(p(k)) while if p(k+l) = p(k), then p(k) is a solution of 

( 4.2). If"'{ > ~ this sequence is bounded in X and has at least one weak limit point. 

Proof. The descent results were proven above. When 'Y > ~. since £(p(k)) < £(p(o)) for 

all k > 0, (5.3) implies that IIP(k)II"Y is uniformly bounded. 

Since X is reflexive, this implies that {pC_k) : k ;::: 0} is a subset of a weakly compact 

set, so it has a weak limit point. 0 

One would like to prove that this weak limit point is at least a local minimizer of £ on 

D. This remains an open question but the following holds. 

THEOREM 6. Suppose 'Y > ~' (D4) holds and {p(k) : k;::: 0} is defined by (7.1)- (7.2). If 

this sequence converges strongly-to a pin D, then pis a solution of (4.2). 
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Proof. From (7.1) and (7.3), upon multiplying both sides by p(kH) , one has 

where (7.5) 

Since p(k) converges strongly top in X, then m(k) converges uniformly tom on [0, R] and 

so Wk+l converges uniformly to W on [8, R] for each 8 > 0. 

Choose A = {x E BR : r(x) ;?:: ri} where r 1 is chosen so that J p dx = ~. Then 
A 

r1 > 0. Integrate (7.5) over A and let k go to oo, then 

lim J {-yK0 (p(k+l) (x))1 - 1 + Wk+ 1 (r)- V p(k)(x)}p(k+l) (x)dx 
k->oo A 

= J [I'Ko(p(x)"Y- 1 + W(r)- V,O(x)]p(x)dx = lim Ak+l j p(kH) (x)dx. 
A k->oo 

A 

Thus there is a .X in R such that Ak converges to ). as k .......; oo since this last integral 

converges to ~M. 

Multiply both sides of (7.3) by a non-negative function h in X obeying (H3), and 

integrate over BR, then 

Let k go to infinity here, then 

j [f'K0 j)"- 1 + l-V- Vp] h(x)dx:?:: >. j h dx 

There are sufficiently many such h that 

{'Ko(p(x))'- 1 + W(r)- Vp(x):?:: >. a.e. on BR 
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upon letting S decrease to 0. 

Let A be an open set in BR such that p(:z:) 2:: J.Ll > 0 on A and choose h in X to obey 

(H3) and have support in A. Choose a subsequence {p(kj) : j 2:: 0} if necessary, such that 

p(k;) (:z:) converges to p(:z:) a.e. on BR. Then multiplying (7.3) by hand integrating over 

BR, one finds 

where OJ is the integral of this left hand side over 

Ej = {:z: E supp h : p(k;)(:z:) = 0} 

The measure of E; may be made arbitrarily small using Egoroff's theorem and this inte­

grand is integrable so OJ ~ 0 as j ~ oo. Taking this limit 

jhhKoP-1 -W-Vp]d:z:=.X j hd:z: 

There are enough such h to conclude that equality holds in (4.2) a.e. on any open set where 

p(:z:) is positive and r(:z:) 2:: 5. Thus pis a solution of (4.2) as claimed. 0 

The theorems in section 6 of [3] show that an iteration of this type will converge if 

one can guarantee sufficient descent at each step of the algorithm. That is, one has a 

good descent estimate for these iterates. It would be interesting to know whether such 

estimates hold for this algorithm, or if there are other methods of proving convergence of 

this algorithm directly. 
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