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REGULARITY FOR OBSTACLE PROBLEMS 

WITH APPLICATIONS TO THE FREE BOUNDARIES 

IN THE CONSTRAINED LEAST GRADIENT PROBLEM 

Graham Williams 

The constrained least gradient problem involves minimizing 

in j'Vujd:c 

amongst all functions u defined on a given bounded set D in IRn, satisfying given 

boundary values ¢> defined on aD and a gradient constraint jV'uj :::; 1 a.e. in D. This 

particular problem was considered by Kohn and Strang ([KSl], [KS2]) and they showed 

how such problems could arise if one tries to find a bar of constant cross-section which will 

support a given load and has lightest weight. This type of problem is non-convex and in 

most cases will not have a solution. However it is possible to convexify the integral leading 

to the constrained least gradient problem. Minimizing sequences for the original problem 

will be minimizing sequences for the new one and the infimum of values of the integral will 

be the same for each problem. The main advantage is that the convexified problem will 

have a solution. 

For applications to the problem above, that is of finding a bar of lightest weight which 

will support a given load, there are several additional things which can be learnt from 

solutions to the relaxed problem. Firstly, constructing the solution and evaluating the 

corresponding integral gives the minimum possible weight. (Usually this weight can't be 

achieved but at least one can then test a proposed design to see if it is close to the optimal 

weight.) Secondly, in regions where IVul = 0, and so u is constant, there is no need for 

material in the rod. Thirdly, in regions where IVul = 1 the stress is at a maximum, the 

rod will behave plastically and there is no hope of weight reduction. Finally, in the region 

where 0 < !Vul < 1 one may hope to reduce weight by using some type of fibred design 
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with the direction of f:he fibres being related to the solution u (see [KS2]). 

Thus two sets concerning the solution which are of particular interest and which have 

associated free boundaries are {X En I V'u = 0} and {X En IIV'ul = l}. 

Before addressing the nature of these sets there are some preliminary results about 

the solution which are needed. 

(i) If we assume that the set n and the given boundary data <P are such that there does 

exist at least one function v defined on n satisfying v = <P on an and IY'vl :::; 1 

a.e. in n ' then there will be a solution to the constrained least gradient problem. 

This follows easily because the integrand is convex and the constraint jV'vj :5 1 

places bounds on any minimizing sequence which ensure that there is a convergent 

subsequence. 

(ii) The solution given in (i) is unique. This does not seem to be trivial to prove because 

the function f(p) = IPI , while convex, is not strictly convex. It was proved in [SWZ1] 

using the characterization of the solution u which follows. 

(iii) The solution given in (i) is automatically Lipschitz continuous. That is there is a 

constant K (depending only on the geometry of n) such that ju(x)-u(y)j :5 Kjx-yJ 

whenever x and y are in n . It is not hard to show that even if we take smooth 

n and smooth <P we cannot expect better regularity than this. Thus solutions are 

normally not continuously differentiable. Unlike the results for elliptic problems, the 

regularity for the solution in the interior of n is generally no better than that for the 

boundary values. 

(iv) In [KS1] Kohn and Strang suggested an alternative characterization of the solution 

in (i). This characterization gives a lot of information about the solution u and 

the free boundaries mentioned above. The main result of [SWZ1] was to prove the 

characterization (which we next describe) correct. 

For any measurable set E in IR n we can define a notion of the ( n - 1) -dimensional 

measure of the boundary 8E. It is called the Perimeter of E and denoted by P(E). A 

precise definition and many of the properties may be found in the book [G] by Giusti. For 
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sets E with smooth boundaries P(E) returns precisely the value given by more traditional 

methods of calculating ( n - 1) -dimensional surface area. It is important to note, however, 

that P(E) is defined for all measurable sets and not just those with smooth boundaries. 

The key to the characterization of the solution u is the co-area formula ([FR]). This 

formula says that if u is any Lipschitz continuous function (actually bounded variation 

will do) and 

At= {X En I u(x) ~ t} 

then 

{ JV'uj dx = leo P(A1) dt. 
Jn -oo 

To minimize the left hand side it seems a good idea to minimize P(At) for each t. In 

the absence of gradient constraints this idea works and has been used by several authors 

to obtain results about sets of least perimeter (minimal surfaces) rather than functions of 

least gradient. In our case it is also necessary to build in the gradient constraint. 

Consider first the case where n is convex. If X and y are two points in n then the 

line between X and y also lies in n and JV'ul ::::; 1 along that line. Thus by integrating 

we have 

(1) ju(x)- u(y)j::::; jx- yj for x,y E fl. 

It is easy to see that the converse also holds. That is if (1) holds then jV'uj ::::; 1 a.e. m n. 

If fl is not convex then we must replace the straight line distance jx - yj by distance 

m il , that is, the length of the shortest curve which stays inside fl and connects X 

and y. With this replacement the equivalence above, and the results to follow, all hold 

for non-convex n . 
An essential idea of Kohn and Strang was to satisfy (1) only when X E an and yEn. 

To see how this constrains the level sets At we introduce new sets Lt and Mt . 
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tt = {X En j3p E an, IP- xj:::; ¢(p)- t}' 

Mt = {X En l3p E an, IP- xi< t- ¢(p)}. 

Suppose v is a Lipschitz continuous function defined on n and At= {x En I v(x)?: t} 

then 

v =¢on on and jv(x)- v{y)j :<:; jx- yj for x E on,y En 

Lt <;;;; At and At n Mt = 0 for inf ¢ :::; t :::; sup¢. 

We are thus lead to the following problem 

(2) Minimize { P(E) I Lt <;;;; E, En Mt = 0}. 

It is possible to show, for each t, that this problem has a solution. Indeed in some 

important cases there is more than one solution. We choose the one of largest volume (it 

exists and is unique) and call it Et . 

Now define a function u* on n by 

u * ( x) = sup { t I x E Et} . 

THEOREM. ([SWZl]) The function u*, defined above, is the unique solution to the 

c~nstrained least gradient problem. 

There is another way of viewing the sets Lt and Mt . If we let 

K = {vI v = cp on an' iv(x)- v(y)i:::; lx- Yi for X E an,y E Q} 

then K is precisely the set of functions above for which we obtained the equivalent for

mulation in terms of Lt and Mt. Now let F be the largest function in K and f be the 

smallest. It can easily be shown that 

F(x) = inf { cp(p) + jx- pj j p E an}, 
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f(x) =sup { <f>(p) -lx- PII p E BH}, 

Mt = {X En I F(x) < t}' 

Lt = { x EH J f(x) ~ t}. 

THEOREM. ([SWZl]) The solution of the constrained least gradient problem is also the 

unique solution to 

Minimize {L IVvldx I vis Lipschitz continuous and f(x) :S: v(x) :S: F(x)}. 

From the above it can be seen that the sets Et are important and any information 

about them should be helpful. Although the sets L 1 and M 1 need not be smooth and 

may have cusps it turns out, nevertheless, that the solution sets Et will be smooth. 

THEOREM. ([SWZ2]) For each t, BEt is C1 ' 1 near points of contact with BLt and 

BMt . Away from points of contact 8E1 is a minimal surface and so analytic if n :S: 7 . If 

n ~ 8 the part of 8Et away from the points of contact may have singularities. The set of 

such singularities bas dimension at most n - 8 and away from this set BEt is analytic. 

REMARKS. 

(i) If n = 2 each BEt, away from BL1 and BMt, is a straight line. 

(ii) Easy examples quickly show that C1,1 is the best that can be expected. 

(iii) The last Theorem actually applies not only to Et, which maximized volume amongst, 

possibly many, solutions of (2), but to all solutions of (2). 

We now turn our attention to some of the free boundaries mentioned earlier. First we look 

at the nature and location of sets where 'i7u = 0. 

THEOREM. Suppose u is a solution to the constrained least gradient problem. Then 

u is constant, with value t 0 on the open set S (and of course \lu = 0 on S) if and only 

if the problem (2) bas at least two distinct solutions for t = t 0 . In this case the largest 

sucb set S can be written as the difference of two solutions to (2). 

Finally we make some comments about the set where j\7uj = 1. 
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(i) Suppose u(x) = F(x). 

By the definition of F there is a point p in an such that F( X) = ¢(p) + lx -PI· 

Then since iu(x)- u(y)i ::5 lx- Yl for all y E Q and u(p) = if>(p) we see that if y 

is any point on the line joining x and p we must have u(y) = F(y) = ¢(p) + IP - Yl 

and !Vul = 1. 

Similar things happen if u ( x) = f( x) . 

Now define 

G = {X E n I f( X) < u(x) < F( X) } . 

Then the above shows that 

{X E n IIVul < 1 } ~ G. 

(ii) On G the constraints are not active and so u is actually a solution to the uncon

strained least gradient problem on G . 

(iii) It could be expected that IV'u(x)l < 1 for all x in G, or at least lu(x)-u(y)l < jx-y! 

when x, y in G. This is certainly the case for the analagous problem when J i'Vui dx 

is replaced by J 1Vul2 dx. However for the constrained least gradient problem this 

need not hold. An example is given in [SWZ1) where !Vul = 1 in a portion of the 

set G. On the other hand a good description is obtained in [SWZ1] of such subsets 

of G . They have to be rectangles (with particular orientation and placement) and u 

has to be a linear function with slope 1 on the rectangle. 

(iv) Note that 

u(x) = F(x) = t {=}X E aEt n aMt. 

On the other hand 8Et is C1•1 at such points of contact and so G must contain all 

points where 8M1 or 8Lt are not C1 •1 . For example points x where there are two 

distinct points p and q in an with F( X) = if>(p) + ix -PI = ¢( q) + lx- ql ' must be 

in G. 
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