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METHODS FOR CHOOSING 

THE REGULARIZATION PARAMETER 

Mark A. Lukas 

1. INTRODUCTION 

Many inverse problems arising in practice can be modelled in the form of an operator 

equation 

(1.1) Kf = g, 

where the function g : JRd ~ lR is known only as discrete noisy data y; = g(x;) + ti, 

i = 1, ... , n. An example is the estimation of an unknown parameter function f (e.g. 

a diffusivity) in a partial differential equation L1u = h. Here the operator equation 

(1.1) is Kf = u(f) = g, where u(f) is the solution of the forward problem L1u = h 

subject to some boundary conditions, but g is known only at discrete points and with 

error. 

Suppose that equation (1.1) has a unique solution / 0 • In many cases (1.1) is ill­

posed, meaning that with respect to appropriate normed spaces, the inverse of J( is 

not continuous at f 0 • To obtain a reasonably good approximate solution, it is usually 

necessary to stabilize the problem. This is especially true given only discrete noisy 

data. 

A well-known and effective technique for stabilizing the problem is the method of 

regularization. This replaces the original problem by the minimization over f in a 



90 

suitable Hilbert space W of 

n 

(1.2) n-1 'fJKJ(xi)- Yi? + U(f), 
i=l 

where the stabilizing functional J(f) is either the squared norm J(f) =II f IIW or a 

squared seminorm. Typically, the space W is a Sobolev space wm•2 and J(f) is the L 2 

norm of sums of squares of derivatives off; for example, with m = 2 and d = 2, 

Clearly, minimizing (1.2) represents a tradeoff between fidelity to the data through 

the first sum of squares and smoothness of the approximate solution through J(f). The 

regularization parameter ,\ > 0 is the weighting factor between the two. In general, 

if ,\ is too small, then errors in the data will be severely magnified resulting in a very 

noisy approximate solution. If ,\ is too large, then the approximate solution, although 

smooth, will not be consistent with the data. The choice of ,\ is therefore crucial. 

It is possible of course to choose ,\ by testing a range of values and selecting the 

one which appears to give a good approximate solution with the correct degree of 

smoothness. However this is only a subjective choice, and on its own is not very 

satisfactory. It would be better to use some objective method of choosing A. For such 

a method to be reliable, the choice should be based on the given data and its influence 

on the resulting approximate solution. 

If K is linear and the functionals W---+ IR, f---+ Kf(x;) are bounded, then it is 

possible to explicitly write down the solution of (1.2), called the regularized solution 

fn>.· Because fn>. depends linearly on the data y;, i = 1, ... , n, the influence of the data 
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can be expressed in terms of the influence matrix A defined by 

for any data vector y. It is not hard to derive an explicit form for A. A spectral 

decomposition of A reveals how regularization achieves a filtering of the signal from 

the noisy data (see section 2). 

The situation is more complicated when K is non-linear. Though a unique regular-

ized solution fn>. of (1.2) exists under quite general conditions, it must be obtained by 

an iterative method. Furthermore, the degree of ill-posedness of (1.1) can depend on 

the solution fo, and the influence function y ---4 Kfn>. is non-linear. However, in princi-

ple it is possible to approximate this influence function locally by linearizing K fn>., and 

base the choice of A on this linearization. For the problem of estimating a diffusivity J, 

O'Sullivan and Wong (17] have developed such a method (see also section 9.7 in (22]). 

In this paper we will consider four important methods for choosing the regular-

ization parameter: the unbiased risk estimate, the discrepancy principle, generalized 

cross-validation (GCV) and generalized maximum likelihood (GML). We will confine 

our attention to linear problems involving functions of one variable, but from above it 

is clear that the results also have a bearing on non-linear problems. 

Our aim is to compare the above methods from a theoretical point of view by 

determining their asymptotic behaviour as the number of points n ---4 oo. To provide a 

basis for comparison, we need to decide on an appropriate loss function. For the most 

part, we will use the risk E R()..) defined as 

n 

ER(-\) En-1 L[Kfn;,(x;)- g(x;W, 
i=I 
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where E denotes expectation. Some results for other loss functions involving norms on 

the input error fn>-. - fo will also be mentioned. An estimate >.x performs well with 

respect to the risk criterion if the inefficiency ratio 

I 
ER(>.x) 

minER(>.) 

is close to 1. The method will be called asymptotically optimal ( ao) if I ---> 1 as n ---> oo, 

and weakly ao if I= 0(1). 

In some special cases, results about the asymptotic behaviour of the above methods 

have been known for some time. If]{ = I (the identity), then minimizing (1.2) is a 

well-known technique for data smoothing. In this case, Craven and Wahba [3] show 

that GCV is asymptotically optimal with respect to the risk. Davies and Anderssen 

[5] derive a similar result for the problem of periodic numerical differentiation. Wahba 

[19, 21] and Davies and Anderssen [5, 6] also derive some asymptotic results in certain 

cases for the discrepancy principle and GML. 

In this paper, we survey the results in [12] and [13] about the above methods. These 

results apply to an arbitrary linear operator I< with general smoothness conditions on 

f 0 , and use both the risk and more general loss functions. In loose terms, the results 

show that GCV is ao in many cases, while the discrepancy principle is mostly only 

weakly ao, and GML is in most cases asymptotically sub-optimal meaning that I -t oo 

as n ---> oo. Therefore, based on these asymptotic results, the GCV estimate is to 

be recommended. This estimate also has the practical advantage of not requiring 

knowledge of the error variance. If the error variance is known, then the unbiased risk 

estimate is also recommended. 
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2. THE REGULARIZED SOLUTION 

Assume that in (1.1), /{: L2 (0, 1) ----+ L2 (0, 1) is linear and 1-1. For simplicity, we 

use regularization of the form: minimize 

n 

(2.1) n-l ~(I<J(xi)- Yi) 2 + A II f lliv 
i=l 

over a suitable Hilbert space W, for example the Sobolev space W = wm·2 [0, 1]. Note 

that the main results of this paper also hold for regularization with the seminorm 

IIJ(m)ll£2 in place of the norm llfllw in (2.1). 

Assume that for each x E [0, 1], the linear functional f ----+ Kf(x) is bounded 

from W ----+ JR. Then there exists a representer 'TJx E W such that for all f E W, 

Kf(x) = (f,TJx)w. Define the kernel q by 

(2.2) q(x, t) 

Then it is known (see [9, 20]) that (2.1) has a unique solution fn>. (the regularized 

solution) which can be represented as 

(2.3) 

where 'f/i = 'f/x;, i = l, ... ,n, and Qn = [q(x;,xj)]. 

If for example /{ is an integral operator given by 

Kf(x) = t k(x,t)j(t)dt, 

and w = wm·2 [0, 1], then 'f/i and Qn are known explicitly as (see [20]) 

Tf;(t) = f r(x,t)k(x;,s)ds and 
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[Qn]ij = ll k(x;,t)r(t,s)k(xj,s)dsdt, 

where r( t, s) is the Green's function for a certain differential operator of order 2m. 

Define Kn : W --> JRn by (I<nf)i = I<f(xi). Clearly, from (2.2) and (2.3), the 

influence matrix A is given by 

(2.4) 

We now introduce a spectral decomposition which is important for the analysis 

of the regularized solution (see also [20]). From the definition, the matrix n-1 Qn 

is symmetric and non-negative definite. Therefore it has eigenvalues 5.; such that 

X1 ~ Xz ~ · · · ~ J.n ~ 0 and corresponding eigenvectors lP; such that 

where(·,·) denotes the usual Euclidean inner product. 

In terms of this spectral decomposition, it is easy to show from (2.4) that 

n 

(2.5) Ay = z:::;n-1(y, lP;) [5.;/(5.; + >.)] (/>;. 
i=l 

Since 

n 

y = "Ln-I(y,(/J;)lP; 
i=l 

and 5.;/(5.; + >.) is a decreasing sequence, (2.5) shows that I<nfn>. achieves a low pass 

filtering of the data. Note that). determines the effective cut-off frequency of this filter. 

The matrix n-1 Qn and its finite spectral decomposition above can be related to an 

operator Q with infinite spectral decomposition. Let Fn denote the empirical distri-
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bution function of the points x; and assume that Fn converges in the sup norm to a 

distribution function F with density bounded away from 0 and oo. Let L2 (F) denote 

the space L2 (0, 1) with inner product 

(g,h)L2(F) = l ghdF. 

Clearly the norms II · 11£2 and II · II£2(F) are equivalent. Let K* : L 2(F) -+ W be the 

adjoint of K : W -+ L 2(F). 

LEMMA 2.1 If K: W-+ L2(F) is bounded, then KK* = Q, where Q is the integral 

operator given by 

Qh(x) = l q(x, t)h(t)dF. 

Proof Since K : W-+ L 2(F) is bounded, domK* = L 2(F). By definition of 'T/:c and 

from (2.2), for all h E L2(F) 

KK*h(x) = (.,.,.,,I<*h)w (K'f/.,, h)£2(F) = Qh(x). 

We assume throughout that K: W-+ L 2(F) is compact with dense range. Then Q = 

KK*: L 2(F)-+ L2(F) is compact, 1-1 and positive. Hence Q has an infinite sequence 

of eigenvalues A1 ~ A2 ~ • • • > 0 with A; -+ 0, and corresponding eigenfunctions </>; 

that are orthonormal in L2 (F). We also assume that q(x, t) is bounded on [0, 1) X [0, 1). 

Suppose that the function t-+ q(x, t)g(t) is absolutely continuous for each x E [0, 1). 

Then we can write 

(2.6) 
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where g = (g(xt), ... ,g(xn)?, and 

IQg(x;)- n-1Qn9il 1l q(x;, t)g(t) d(F- Fn)l 

= 1l (F- Fn)(t) d[q(x;, t)g(t)]J, 

which -+ 0 as n -+ oo since Fn -+ F in the sup norm. This means that (2.6) is a 

consistent approximation of Qg(x;). Therefore, one can expect (under certain condi­

tions - see [7]) that the eigenvalues and eigenvectors of n-1 Qn will approximate the 

eigenvalues and eigenfunctions of Q. In the asymptotic analysis behind the results of 

this paper, estimates of certain functions of ::\; and </J; are obtained by comparison with 

the corresponding functions of A; and </;;. 

3. OPTIMAL REGULARIZATION PARAMETER 

We first introduce a class of norms which will be used to gauge the smoothness of fo 

or g =I< f 0 • It is known (see [10]) that the set HP = QP12(L 2 ) with the inner product 

defines a Hilbert space, which can also be represented as 

From this space we define another Hilbert space WP to be the completion of the set 

{JEW:KfEHp} 

under the inner product 

(Kf, Kv)Hp· 
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Note that for any f E Wp, llfllwp = IlK !IIHp· It can be shown that wl = w and 

H0 = L2(F), and for p > Jl, WP c W~< with continuous imbedding. Thus, as p 

increases, the WP and Hp norms become increasingly strong. In fact, in some cases WP 

and Hp can be identified with fractional Sobolev spaces (see [2, 11]). 

The above norms can be used to define the loss functions 

(3.1) 

where E denotes expectation. However, to simplify the presentation, we will concen-

trate on the risk loss function 

(3.2) ER(>..) 

Note that the risk is an approximation of 

(3.3) 

Asymptotic estimates of ELp(A) and ER(A), and their minimizers Ap and AR respec-

tively, are known (see [2, 10, 12, 16]), but here we only state the results for ER()..) and 

For convenience we will use the following notation. For two positive sequences an 

function 

D()..; a, b) 
).. ~ 1, 
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In addition to the earlier conditions, we will make use of the following assumptions. 

Assumption 1. The errors E; are uncorrelated random variables with mean EE; = 0 

and variance EE~ = u 2• 

Assumption 2. The eigenvalues A; of Q: L2(F)-+ L2(F) satisfy A;~ i-r, r > 1. 

Assumption 3. There exists E (0,1-l/r), p1 , •••. ,pJ ~ [O,s] and a sequence 

dn -+ 0 such that for all J, v E W, 

Assumption 3 can be interpreted as prescribing a degree of accuracy for the quadrature 

formula. 

Using Assumption 1 and (3.2), the risk can be decomposed as 

(3.4) ER(A) = b2(A) + v(A), 

where b2(A) is the squared bias 

(3.5) 

and v(A) is the variance 

THEOREM 3.1 (a) Suppose that Assumptions 1, 2 and 3 hold, and let fo E W,e, 

f3 ~ s. There exists a sequence An -+ 0 (known in terms of dn) such that 

and 



99 

uniformly in A E [An,oo). 

(b) Suppose that Assumptions 2 and 3 hold, and An ---+ 0 as n ---+ oo such that 

d~A;;·(s+l) ---+ 0. Then 

00 

v(>.) ~ 0"2n-1 2:::[>.;/(>.; + >-W ~ a 2n-1 D(>.; -1/r, -2), 
i=l 

uniformly in). E [>.n,oo). 

For the proof of Theorem 3.1, see Theorems 4.4 and 4.5 in [12]. 

Combining (3.4) and Theorem 3.1, it is clear that there exists a sequence A= A(n) 

such that ER(>.) ---+ 0 as n ---+ oo. Let AR minimize ER(>.), i.e. AR is optimal with 

respect to the risk. We now consider how AR behaves asymptotically. 

DefineS to be the set of functions for which the upper bound on b2 (>.) in Theorem 

3.1 is achieved in the sense that 

It is shown in [10] that there is such a set. 

COROLLARY 3.1 Suppose that the assumptions of Theorem 3.1 hold and AR min-

imizes ER(>.). Define 

(3. 7) 
0 < (3 < 2, 

(3 ?:. 2, 

and assume that ). * ?:. .\n. If either fo E WiJ, (3 ?:. 2, or fo E S n WiJ, 0 < (3 < 2, then 

).R ~ ).* and ER(>.R) ~ ER().*) as n---+ oo. 

Define the functions 111 (>.) and 112 (>.) by 

n 

111(>.) = n-1trA = n-1 :EJ....;f(5..i + >.) and 
i=l 
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n 

n-1:L:[.A;f(\ + AW. 
i=l 

These functions play a crucial role in several places. For example, from (3.6), the 

variance v(A) = a2 JL 2 (A). From Theorems 4.1 and 4.3 in [12], we have the following 

estimates. If Assumptions 2 and 3 hold and An -+ 0 such that J;A;;_-(s+l) -+ 0, then 

00 

(3.8) JLt(A) ~ n-1L).;j(A; +A) :::::! n-1 D(A; -1/r, -1) and 
i=l 

00 

(3.9) 112(A) "' n-1L:[A;j(>.; + A)F :::::! n-1 D(A; -1/r, -2), 
i=l 

uniformly in A E [An, oo ). 

Lastly in this section, we consider the question of existence and uniqueness of An. 

The following result is derived in [8]. 

THEOREM 3.2 A minimizer An of ER(A) exists, and if the sequence 

is non-increasing, then AR is unique. 

By examining the proof, it is clear that the condition in Theorem 3.2 can be relaxed 

to some extent without affecting uniqueness. Hence it is plausible that if n-2 (g, (/>;) 2 /At 

approximates (g, ¢Ji2(F/ AT and the latter is a non-increasing sequence, then AR will 

be unique. Therefore, we can expect that for a significant subset of g E H 2 , there will 

be a unique minimizer .\R. 
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4. UNBIASED RISK ESTIMATE 

Suppose that the error variance o-2 (or a very good estimate of it) is known. Define the 

random function R by 

and let ~u minimizeR(>..). Note that R(>.) can be computed from the spectral decom-

position in section 2. 

From Assumption 1 

( 4.1) 

and therefore it is clear from (3.4), (3.5) and (3.6) that ER(>..) = ER(>.). That is, R(> .. ) 

is an unbiased estimate of the risk E R().). Thus the minimizer Au of E R().) equals 

>.R, so the inefficiency I= ER(J..u)/ER(>.R) is identically 1, i.e. Au is optimal for all 

n. It is feasible therefore that ~u will be a good estimate of ).R· 

This estimate was proposed in this general context by Craven and Wahba [3] and 

Lukas [8]. Numerical experiments carried out in [8] indicate that ~u is very reliable, 

and is to be recommended. 

5. DISCREPANCY PRINCIPLE 

Like the unbiased risk estimate, the discrepancy principle method also assumes that 

IT2 (or a good estimate of it) is known. Define the discrepancy function D().) by 
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which from (2.5) can be expressed as 

n 

(5.1) D(>.) = >.2 ~::::n-2(y, cP;)2 /(X;+ >.)2. 
i=l 

The discrepancy principle states that for a good regularized solution fn>. the discrepancy 

D(>.) should be of the same order as the error variance u2 • From (5.1) it is clear that 

D(>.) is strictly increasing, with D(O) = 0 and D(>.) __.. Ei'=t n-2 (Y,cP;) 2 as>.__.. oo. 

Hence, if u2 < Ei'=t n-2 (Y,cP;)2 , there is a unique solution to the equation D(>.) = u2 • 

This solution is the discrepancy principle estimate ~D· 

Taking expectation of D(>.) as in (4.1) gives 

It is not hard to show (see [13]) that the equation ED(>.) = u2 has a unique solution, 

which we call the "expected" discrepancy principle estimate >.n. 

The discrepancy principle estimate was proposed by Morozov [14, 15] and has been 

investigated and extended by a number of authors. However, these investigations have 

largely been done in a deterministic framework. In the present probabilistic framework 

for the case of data smoothing, Wahba [19] shows that if fo is sufficiently smooth, 

then >.n is weakly ao in the sense that ER(>.n)/ER(>.R) = 0(1) as n __.. oo. Davies 

and Anderssen [6] extend this result to periodic numerical differentiation and certain 

convolution integral equations. 

The next result (proved in [13] as Theorem 3.2) shows that >.n is weakly ao in 

general. 

THEOREM 5.1 Suppose that Assumptions 1, 2 and 3 hold, fo E Wp, fJ ~ 2, or 
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fo E S n W,a, s :::; f3 < 2, and An---+ 0 in such a way that n-1 >.;;1/r ---+ 0 and 

if s ::::: f3 < 3 - 1/!·, 

f3 ?. 3- 1/r. 

Let,\* be as defined in (3. 7) and assume that A* ?. An and An ?. An. Then AD ~An~ 

A* as n ---+ oo and 

ER(AD) = 0(1). 
ER(An) 

The proof of this theorem begins by rewriting the equation ED(>.) = q 2 as 

and then makes use of the estimates of b2(A), J.lt(A) and J.tz(A) given in Theorem 3.1, 

(3.8) and (3.9) respectively. 

In (13] it is shown that AD is also weakly ao with respect to a range of the loss 

functions ELp(>.) so long as fo ¢ W2+o, 6 > 0, which can be interpreted as meaning 

that fo should not be too smooth relative to W. 

In addition to being weakly ao when fo is smooth, the following result (proved in 

[13] as Theorem 3.4) shows that AD consistently oversmooths with respect to the risk. 

THEOREM 5.2 Suppose that Assumptions 1, 2 and 3 hold and q(x, t) has the smooth-

ness properties of the Green's function of a self-adjoint linear differential operator of 

order 2p. Also suppose that 

d~nr(s+1)/(2r+l) -t O 

where hn = max{x;+l- x;}, and for all sufficiently large n, the minimizer >.n of ER(>.) 

is unique . If fo E w3, then for all n sufficiently large, AD > An. 
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With respect to the stronger loss functions ELp(J..), p > 0, however, J..n does not 

oversmooth. In fact it will usually undersmooth because, from Theorem 3.3 in [13], if 

fo E WiJ, {3 > 2, then >.nf >.P -t 0 as n -too. 

6. GENERALIZED CROSS-VALIDATION 

The GCV method has a significant practical advantage over the previous two methods 

in that it requires no knowledge of IY2• First, we briefly describe the motivating idea 

behind the method. 

Let ~~~ be the minimizer over W of 

n-1 2JI<f(x;)- Yi? + >.Jifll~, 
i# 

which is the same functional as in (2.1) but with the kth data point excluded. In-

tuitively, we would expect that for a good choice ~ of the regularization parameter, 

KJ~{(xk) should be closer to Yk on average than Kfn;..(xk) for other J... That is, 

]{ f~1)(xk) should be a good predictor of Yk· Define V(J..) to be the weighted sum of 

squares of prediction errors 

n 

(6.1) V(J..) n-1 "£)Kf~~(xk)- Ydw%, 
k=l 

where 

The weights Wk are required to reflect the fact that even for a good ~' for different k, 

Kf~~)(xk) will have different reliability as a predictor of Yk· For example, if](= I and 

the points x; are sparse about Xk, then J!1l(xk)- Yk has relatively large variability, 

so a small weight Wk is required to reduce the importance of the kth prediction error. 
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The GCV estimate ~Y is defined as the minimizer of V(>.) over>. > 0. The expression 

(6.1) is not suitable for computation, but it can be shown (see [22]) that V(>.) has the 

equivalent form 

This can be computed using the spectral decomposition in section 2. Also define the 

"expected" GCV estimate >.v to be the minimizer of EV(>.). 

The GCV estimate was proposed and investigated by Wahba [20]. In the case of 

data smoothing, Craven and Wahba [3] show that >.v is ao with respect to the risk (a 

gap in their argument being filled by Utreras [18]). Davies and Anderssen [5] extend 

this result to periodic numerical differentiation. We now describe some general results 

obtained in [12] (and foreshadowed in [11]) for the case of an arbitrary linear operator. 

The following result (proved in [12] as Theorem 5.1) shows that in general >.vis ao 

with respect to the risk. 

THEOREM 6.1 Suppose that Assumptions 1, 2 and 3 hold, fo E W~, (3 ~ s, and 

An -l- 0 as n -l- oo as in Theorem 3.1. Let).* be as in (3. 7) and assume that A* ~ An. 

Let An = .\n(n) minimize ER(A) over A ~ An. Then there exists a sequence Av = 

Av(n) of minimizers of EV(A) over A~ An such that as n -l- oo 

ER(Av) 
ER(An) --+ 1. 

The proof of this result begins in the same way as the corresponding result in [3], 

i.e. it is shown that 
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From (3.8) and (3.9), if..\---+ 0 as n---+ oo such that d~A.-(•+1) ---+ 0 and n-1 A.-l/r---+ 0, 

then 

Combining this with (6.2) means intuitively that for a certain range of ..\, the graph 

of EV(..\) tracks the graph of ER(>.). It is plausible therefore that the minimizers ..\v 

and AR will be close. 

Under much the same conditions as in Theorem 6.1, it is shown in [12] that ..\v is 

also ao with respect to EL0 (..\) defined in (3.3). Note that the asymptotic optimality is 

independent of the error variance u 2 , the eigenvalue decay rate r and the smoothness 

index (3 of fo. 

The situation is more complicated for the general class of loss functions ELp(>.) 

defined in (3.1). Basically, if fo fj_ W2+6, 8 > 0, and either foES n Wp, s S (3 < 2, or 

fo E Wp, (3 = 2 (meaning that fo should not be too smooth relative to W), then ..\v 

is weakly ao with respect to ELp(..\) for any 0 < p S (3. However, if fo E Wp, (3 > 2, 

then for any p > 0, ..\v is asymptotically sub-optimal in that ELp(..\v )/ ELp(..\p) ---+ oo. 

In [12], these results are applied to the case of periodic numerical differentiation. 

It is shown there that Davies and Anderssen [5] are incorrect in stating that .\v is 

always asymptotically sub-optimal with respect to the mean-square derivative error. 

As indicated above, ..\v will be weakly ao for a certain class of f 0 • 
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7, GENERALIZED MAXIMUl\1 LIKELIHOOD 

Like GCV, the GML method also has the practical advantage of not requiring o-2
0 The 

method derives from the following Bayesian model of the regularized solution fn). (see 

Wahba [22])0 

Suppose that E; is normally distributed and let f(t) be a Gaussian stochastic process 

b112 Z ( t) with mean 0 and covariance function 

where b is a constant and the kernel r s( t) = r( s, t) satisfies K r .( x) = 17x( s )o It is known 

that fn>. is the conditional expectation 

J~>.(t) E{f(t) I K f( x;) + E; = y;, i = 1, 0 0 0, n}, 

with).= o-2 /(nb)o In addition, the random vector Y with components Y; = K f(x;)+c; 

is normally distributed a.s 

Setting ,\ = (!2 / ( nb), this becomes 

Y '"-' N(O, b(Qn + n.U))o 

Then the GML estimate ~M is defined to be the usual maximum likelihood estimate 

of .\ given the random value y of Y 0 It can be shown that ~M is the minimizer over 

A> 0 of M(.A) defined by 

M(>.) 



which from (2.4) can also be written as 

M()..) 
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yT(I- A)y 
[det(J- A)Jlfn · 

Define the "expected" GML estimate )w to be the minimizer of EM()..). 

The estimate ~M was first proposed by Anderssen and Bloomfield [1 J in the context 

of numerical differentiation (see also Davies [4]). It was extended to an arbitrary linear 

operator by Wahba [21], where it was also generalized (hence the name GML) to the 

case where the stabilizing functional J(f) is a semi-norm. In [21] some asymptotic 

results for AM are derived under certain heuristic assumptions. For the case of periodic 

numerical differentiation, Davies and Anderssen [5] show that if fo is smooth, then AM 

is asymptotically sub-optimal with respect to the risk. In [13] this is shown to be true 

in general with respect to the risk and the other loss functions ELp(>.) defined in (3.1). 

A more precise statement of the result is as follows (see Theorems 4.2 and 4.3 in [13]). 

It shows that .AM is asymptotically undersmoothing. 

THEOREM 7.1 Suppose that Assumptions 1, 2 and 3 hold and let foE Wf3, j3 > 1, 

and 0 ~ p < 2- s- 1/r. If dn -+ 0 sufficiently quickly, then there exists a sequence 

An-+ 0, and a sequence of minimizers AR of ER(A), Ap of ELp(A) and >w of EM(A) 

and 

It is known that the situation is different if fo is "rough" relative to W (see [21]). 

If, for example, 
n 

'[Jg, (/1;) 2 / Ai ::::; n 
i=l 
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(which implies that fo r:f_ W), then >w may in fact perform reasonably well. However, 

from Theorem 7.1, on the whole ).M has unfavourable asymptotic properties. 
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