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A LANCZOS TYPE ALGORITHM FOR INVERSE 
STURM-LIOUVILLE PROBLEMS 

F. Natterer 

Abstract 

The Lanczos algorithms can be used to find a symmetric tridiagonal ma
trix from its eigenvalues and the first components of its normalized eigen
vectors. The direct application of this method to discretized Strum-Liouville 
problems is useless since the finite difference eigenvalues behave quite differ
ently asymptotically than the eigenvalues of the continuous Strum-Liouville 
problem. We suggest a multiplicative asymptotic correction for the discrete 
equation. The corrected equations can still be solved, at least approximately, 
by an algorithm similar to the Lanczos algorithm. Numerical experiments 
show that this approach leads to results of modest accuracy. 
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1 Introduction 

We consider Sturm-Liouville-problems in the standard form 

-y" + q(x)y = )..y, 
y(O) = y(1r) = 0 . 

(1.1) 

Let >.1 < >.2 < ... be the eigenvalues and y1 , y2 , • • • the normalized eigen
functions. We consider the inverse problem 

Given >.~:,(ylt)'(O), k = 1,2, ... , find q (1.2) 

See [3] for this and similar problems. 
A method for solving (1.2) which suggests itself is to discretize (1.1 ). 

Let Xt = h£, e = 0, ... , n, h = 7r /n. We approximate (1.1) by 

-Yt+I + 2yt- Yt-1 
h 2 + QtYt f=l, ... ,n-1 

(1.3) 
Yo = Yn = 0 

where Qt = q(xt) and Yt approximates y(xt)· The derivative at x = 0 is 
approximated by Yd h. Thus the discrete inverse problem reads: Given 
n - 1 eigenvalues .>. 1 , ... , An- 1 and the first components y}, ... , y~- 1 of the 
normalized eigenvectors of (1.3), find q1 , ... , Qn-J· This is an inverse prob
lem for a tridiagonal matrix which can easily be solved by the Lanczos 
algorithm, see [3], [4], [7]. 

Unfortunately, such an approach is quite useless. The reason is that the 
asymptotics of (1.1), (1.3) are quite different. This means that only the 
first few eigenvalues of (1.1) are close to those of (1.3). See [1] for a survey 
on finite difference methods for Sturm-Liouville-problems. 

One of the remedies is to correct the high eigenvalues of (1.3) by in
troducing additional terms. The method of asymptotic corrections ([8], see 
also [1] and the references therein) consists in an additive correction of (1.3) 
which is derived from the well-known asymptotics of (1.1). 

In the present note we suggest a multiplicative correction of (1.3) simply 
in the following way. Fork large the solutions of (1.1) are close to sin kx, 
see [5], [6]. Thus it seems reasonable to replace -y" by a finite difference 
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expression which is accurate for the functions l,x, sinkx, coskx. It is 
easily seen that 

-y(xl+l) + 2y(xt)- y(xt-I) 
(h sinc¥)2 

. sin x 
smc= -

x 

is such an expression. Similarly, y'(O) is given accurately by 

y(xi) 
h sinc(hk) 

for y =sin kx. Thus we replace (1.3) by 

-y:+l + 2y} - y}_ 1 + qtcky} = >..~cc~cy} , 

y~=y!=O 

where 

( hk) 2 
c~c = h sine 2 

l=l, ... ,n-l, 

{1.4) 

(1.5) 

Here, the dependence of y, >.. on k has been made explicit. Note that for 
hk small, c~c ""h2 , hence (1.5) is close to (1.3) for these k. 

We consider the problem of finding q1 , ... , qn-1 from >..1 ... , An- 1 and 
YU(h sine hk) where yk are the eigenvectors of (1.5) normalized such that 

n-1 

h L: (y~)2 = 1. 
l=1 

In the next section we show that this can be done, at least approximately, 
by a Lanczos type method." 
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2 A Lanczos type method 

Introducing the ( n - 1) x ( n - 1 )-matrices 

2 -1 vi 
-1 2 -1 

T= -1 2 -1 U= Vh 

-1 2 y;,_! 

Q = diag (qt), C = diag (ck), M = diag (ck,\k), 

(1.5) can be rewritten as 

TU+QUC=UM, 

n-1 
YI 

n-1 
Yn-! 

(2.1) 

and U is approximately unitary. Thus we arrive at the problem of comput
ing a unitary matrix U and a diagonal matrix Q from (2.1), the first row 
of U and the matrices T, C, M being known. Note that the elements in 
the first row of U are determined by 

y~ = (yk)'(O) h sine (hk). 

This can be done by an algorithm similar to the Lanczos algorithm (see [4]) 
in the following way. Write 

) ( 

UJ J 
U= : 

/3n-2 , 
Ctn-1 Un-1 

Then, (2.1) reads 

n 1u 1 + j31u2 + q1u 1C = u1M , 

f3t-1 U£-1 + Ct£Ut + ftUf+J + QtUtC = UtM , f = 2, ... , n- 1 (2.2) 
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Multiplying the first equation with u1 we get 

a1(u11u1) + q1(u1C,u1) = (u1M,u1) 

where we have neglected ( u2 , u1) since U is close to being orthogonal. This 
determines q1 • Once q1 is known we get 

u2 = (u1M- a1u1- (u1M,u1))//31. 

Now assume q1, ••• , qt-l and u1, ... , Ut to be already determined. Then, 
multiplying equation l of (2.2) by Ut yields 

Ot( Ut, Ut) + qt( Ut0, Ut) = ( UtM, Ut) 

where ( Ut-ll Ut), ( ul+11 ut) have been neglected. This determines qt. Ut+l 

is in turn computed from 

Ut+l = (utM- f3t-1Ut-l- OtUt- qtUt0)/f3t · 

Proceeding in this fashion we can compute q11 ... , q,._1. 

3 Numerical example 

The Sturm-Liouville-problem 

" 4v2 -1 .X -y +4x2y= y, y(a) = y(b) 

has the solution 

where J.,, Y., are the Bessel functions of first and second kind, respectively. 
The eigenvalues are the roots of 

d ( Jv(v'Xa) , Yv(v'Xa)) 
et J.,( v'Xb) , Yv( v'Xb) · 

The Lanczos type algorithm from section 2 applied to (1.5) for n = 10 
yields for a = 1, b = 4 the following result: 
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t Xt q(xi) IJt 

2 1.6 1.46 1.31 
4 2.2 0.77 0.85 
6 2.8 0.48 0.61 
8 3.4 0.32 0.51 

This is not a very satisfactory accuracy. For n = 20, the results exhibit 
instabilities which make them useless. 

However, for a fair evaluation of these results one has to keep in mind 
that an uncorrected discretization {i.e. c~e = 1 in (1.5)) does not even 
produce the correct order of magnitude of the qt. Thus, our results are not 
quite disencouraging. 
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