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A LANCZOS TYPE ALGORITHM FOR INVERSE
STURM-LIOUVILLE PROBLEMS

F. Natterer

Abstract

The Lanczos algorithms can be used to find a symmetric tridiagonal ma-
trix from its eigenvalues and the first components of its normalized eigen-
vectors. The direct application of this method to discretized Strum-Liouville
problems is useless since the finite difference eigenvalues behave quite differ-
ently asymptotically than the eigenvalues of the continuous Strum-Liouville
problem. We suggest a multiplicative asymptotic correction for the discrete
equation. The corrected equations can still be solved, at least approximately,
by an algorithm similar to the Lanczos algorithm. Numerical experiments
show that this approach leads to results of modest accuracy.
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1 Introduction
We consider Sturm-Liouville-problems in the standard form

-y +q(z)y =My,
w(0)=y(r) =0 . 1

Let A\; < Ay < ... be the eigenvalues and y*,%?,... the normalized eigen-
functions. We consider the inverse problem

Given M\, (¥*)(0), k=1,2,..., find ¢ (1.2)

See [3] for this and similar problems.
A method for solving (1.2) which suggests itself is to discretize (1.1).
Let 2, = hé, £=0,...,n, h=n/n. We approximate (1.1) by

—Yet1 + 2y — Yo
2 h2 + QeYe

Ayl) l=1,...,n-‘1

(1.3)
Yo =Y = 0

where g, = ¢(z,) and y, approximates y(z,). The derivative at z = 0 is
approximated by y;/h. Thus the discrete inverse problem reads: Given
n — 1 eigenvalues A, ..., A\,—; and the first components y?,...,y?" of the
normalized eigenvectors of (1.3), find ¢i,...,¢.—1. This is an inverse prob-
lem for a tridiagonal matrix which can easily be solved by the Lanczos
algorithm, see [3], [4], [7].

Unfortunately, such an approach is quite useless. The reason is that the
asymptotics of (1.1), (1.3) are quite different. This means that only the
first few eigenvalues of (1.1) are close to those of (1.3). See [1] for a survey
on finite difference methods for Sturm-Liouville-problems.

One of the remedies is to correct the high eigenvalues of (1.3) by in-
troducing additional terms. The method of asymptotic corrections ([8], see
also [1] and the references therein) consists in an additive correction of (1.3)
which is derived from the well-known asymptotics of (1.1).

In the present note we suggest a multiplicative correction of (1.3) simply
in the following way. For k large the solutions of (1.1) are close to sin kz,
see [5], [6]. Thus it seems reasonable to replace —y" by a finite difference
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expression which is accurate for the functions 1,z, sinkr, coskz. It is
easily seen that

=y(Te41) + 2y(xe) — y(201) . sin
s sinc = 1.4
(h sinckk)? (14)
is such an expression. Similarly, y'(0) is given accurately by
y(z1)
h sinc(hk)
for y = sin kz. Thus we replace (1.3) by
“Yin T -yt aay =hay,  E=1.n-1, 0
yk — gk — 0 ( . )
0 — Yn =

where

2
= (h sinc %ﬁ) .

Here, the dependence of y, A on k has been made explicit. Note that for
hk small, ¢, ~ h?, hence (1.5) is close to (1.3) for these k.

We consider the problem of finding ¢i1,...,¢,-1 from X;...,A,-; and
y¥/(h sinc hk) where y* are the eigenvectors of (1.5) normalized such that

n—1

hy () =1.

=1

In the next section we show that this can be done, at least approximately,
by a Lanczos type method.
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2 A Lanczos type method

Introducing the (n — 1) x (n — 1)-matrices

2 -1 ooy
-1 2 -1
T = -1 2 -1 , U=vh|: : ,
-1 2 y111_1 y::}
Q = diag (¢;), C =diag(c), M =diag (cchs),
(1.5) can be rewritten as
TU + QUC = UM , (2.1)

and U is approximately unitary. Thus we arrive at the problem of comput-
ing a unitary matrix U and a diagonal matrix @ from (2.1), the first row
of U and the matrices T, C, M being known. Note that the elements in
the first row of U are determined by

vt = (81)(0) h sinc (hE) .

This can be done by an algorithm similar to the Lanczos algorithm (see [4])
in the following way. Write

a; B (51

T = Bi as éz ’ U
. IBTA——2

,Bn—2 Qn-1 Un—-1

Il

Then, (2.1) reads

Uy + ﬂl’llz + q1u10 = ulM s
Be1tte—1 + aeug + Lotigyy + queC =uM , £=2,...,n—1 (2.2)

Br—2Un—2 + Qn_1Un_1 + gu1Un-1C = Uy 1 M .
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Multiplying the first equation with u; we get
a1(u1,w) + @(uiCw) = (M, u)

where we have neglected (uz,u;) since U is close to being orthogonal. This
determines ¢;. Once g; is known we get

U = (ulM - QiU — (’U,IM, ul))/ﬂl .

Now assume ¢i,...,¢e—; and u;,...,u, to be already determined. Then,
multiplying equation £ of (2.2) by wu, yields

ar(ug, ue) + qe(ueC,up) = (ueM, up)

where (ug_1, %), (uz+1,u;) have been neglected. This determines g;. wug4q
is in turn computed from

Ugpr = (UM — Beosus—1 — apug — queC)/Be

Proceeding in this fashion we can compute g;,...,gn-1.

3 Numerical example

The Sturm-Liouville-problem

—y" n 4y

wr ¥=M, y(e)=y()

has the solution
v = VT (e J,(VAzZ) + oY, (VAx))

where J,, Y, are the Bessel functions of first and second kind, respectively.
The eigenvalues are the roots of

det ( J(V2a) , Y.,(\/Xa)>
"\ J(VAb) , Y, (VAb) )

The Lanczos type algorithm from section 2 applied to (1.5) for n = 10
yields for a = 1, b = 4 the following result:
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Te

1.6
2.2
2.8
3.4

0 DN o~

This is not a very satisfactory accuracy.

9(ze)
1.46
0.77
0.48
0.32

instabilities which make them useless.

However, for a fair evaluation of these results one has to keep in mind
that an uncorrected discretization (i.e. ¢ = 1 in (1.5)) does not even
produce the correct order of magnitude of the g,. Thus, our results are not

quite disencouraging.

qe
1.31
0.85
0.61
0.51

For n = 20, the results exhibit
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