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'Degenerate· Holomorphic Mappings 
of Nondegenerate CR-manifolds1 

A. V. ISAEV 

Abstract. We announce the following result: the Jacobian of a locally defined holo­
morphic mapping between two real-analytic CR-manifolds M1 and M2 in eN, where 
Mt has a nondegenerate Levi form and satisfies a certain rigidity c~ndition, is iden­
tically zero, if it is zero at one point on Mt. We also give a description of the image 
of the mapping in terms of the geometry of M2. ' 

In,this note we consider real-analytic CR-manifolds in a complex space eN with 
nondegenerate Levi forms. Let us start with definitions. 

Definition ]. Let M be a req,l submanifold of eN, p E M, and Tp(M) '-.the 
tangent space to M at p. The complex tangent space T;( M) to M at the point p is 
:the maximal complex subspace of Tp(M), i.e. 

Definition 2. A real submanifold Min eN is called a CR-manifold if dime T;(M) 
is constant on M. The dimension dime T;(M) is the CR-dimension of M and is 
denoted by C R dim M. 

Definition 3. Let M be a CR-manifold in eN, and r(zbzb···,ZN,ZN)- its 
defining function, i.e. 

M =·{r = 0}, gradr =/= 0 on M. 

The Levi form £M(P) of M at p EM is the restriction of the Hermitian form 

to the complex tangent space T;(M). 
Suppose now that M is real-analytic and passes through the origin. Choose. local 

holomorphic coordinates (zt, ... , Zn, w1 = Ut + ivb ... , Wk = Uk + ivk) near the 
origin such that M is given by the equations 

(1) v = F(z,z,u). 

1 Mathematics Subject Classification: 32F25. 
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Here n = CRdimM, k = codim~ 111, n + k = N, z = (z1, ... , zn), u = (u1, ... , uk), 
v = (v1, ... ,vk), F(z,z,u) is a real-analytic vector-function defined in a neigh­
bourhood of the origin. Clearly, we can assume that grad F(O) = 0, and hence 
T~(M) = { w = 0}, w = u + iv. Therefore the Levi form of Mat the origin is given 
by the vector with matrix components 

LM(O) = ( 0~: ~(0)). 
We will consider manifolds with nondegenerate Levi forms. The nondegeneracy 

of a vector-valued Hermitian form is given by the following definition. 
D fi "t" 4 L t H( ') ( I 1 I k) I en b t e n1 1on . e z, z = < z, z > , ... , < z, z > , z, z E e a vee or-

valued Hermitian form in en. Then H is said to be nondegenerate if the following 
two conditions are satisfied. 

( *) The Hermitian forms < z, z' >1 , ... , < z, z' >k are linearly independent over 
R. 

(**)If for some z' E en H(z,z') = 0 for all z E en then z' = 0. 
For k = 1 ( *) trivially follows from ( ** ), and the definition coincides with the 

usual definition of nondegeneracy. Fork > 1 generally speaking neither of the above 
conditions implies the other. It should be also noted that the definition does not 
imply the existence of a nondegenerate linear combination of the components of H. 

Example 1. Consider the Hermitian form in C3 H(z,z') = (zlz; + ZzZ~,zlz; + 
z3 z~). It is given by two 3 X 3-matrices 

1 0) (0 0 1) 
00 '000. 
0 0 1 0 0 

The form His nondegenerate, but obviously every linear combination of the above 
matrices is degenerate. 

Suppose now that two manifolds M1 and M2 are given in the form (1), and 
in some neighbourhood U of the origin a holomorphi.c mapping f is defined. Let 
f(Ml) C M2, f(O) = 0. Assume further that the Jacobian JJ(O) off at the origin 
is zero. The problem we consider here is to describe the zero set of J f in U. A 
conjecture due to Vitushkin (1985) says that for the case of hypersurfaces (i.e. 
k = 1) with nondegenerate Levi forms Jf = 0 in U. The conjecture turned out to 
be true and was proved in [I). An interesting fact is that the Levi form of M2 is 
allowed to be degenerate. 

To formulate the results we note first that every real-analytic hypersurface M 
(with possibly degenerate LM(O)) after a suitable holomorphic change of coordinates 
near the origin can be written as 

(2) v =< z,z > + L Fj1(z,z,u), 
j;?:l,/;?:1 
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where < z, z >is a Hermitian form representing .CM(O), Fjz(z, z, u) is a polynomial 

of order j in z and l in z with coefficients depending on u, ::j~-},(0). = 0, j, l = 
1, ... , n. Further, if .CM(O) is nondegenerate then the equation {2} can be reduced 
to 

(3) 

(see [CM] for details). 

v =< z,z > + L Fj1(z,z,u) 
j?_2,1?_2 

Suppose now that two hypersurfaces l\1!1 and Mz with M1 having a nondegenerate 
Levi form are given in the forms (3) and (2) respectively. Then as it is shown in [I] 
the following is true: 

(i) lt = 0 in U, and moreover 
(ii) f(U) c ~T\;lz n { w = o}. 
In particular, iff is written as 

f: z ~ g(z,w), w 1-t h(z,w), 

then h = 0. 
If£ M 2 ( 0) is nondegenerate, the second statement immediately gives the following 

estimate: dimcf(U) ~ X, where X is the signature of LM2 (0) (the minimum of 
the numbers of positive and negative eigenvalues). In particular, if M2 is strictly 
pseudoconvex near the origin (x = 0), then f = 0. This last fact is known since 
1975· [P] and also follows from [V]. 

The proof of the above result is very technical a,nd involves detailed analysis of 
the power series defining f and M1, M2. In particular, it heavily relies on the 
representation (3) for M 1 • However, there is a short geometric proof of (i) due to 
Kruzhilin (unpublished) valid even for smooth hypersurfaces based on the technique 
of chains (special curves introduced in [CM]). Namely, it follows from [K] that a 
chain decreasing its angle with the complex tangent space near a point can not have 
finite length. 

There is a number of results of Baouendi, Bell and Rothschild for more general 
hypersurfaces and mappings (see [BBR], [BRl], [BR2], [BR3], [BR4]). In par­
ticular, if M 1 , M2 are given in the form (2) and M 1 is essentially finite, then for 
any holomorphic mapping f either (i) and (ii) above are true, or 

(4) 
fJh 
ow (0) =I= 0, 

and f is of finite multiplicity. For M 1 having a nondegenerate Levi form ( 4) implies 
that Jt(O) :f= 0. If M2 is only smooth, then in (ii) f(U) does not necessarily lie on 
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M2. In general, f(U) has only infinite order of contact with M2. Also, the condition 
h = 0 must be understood in terms of formal power series. 

Note that if the Levi form of M 1 degenerates, (i) may not be true, even if the 
Levi form of M2 is nondegenerate. 

Example 2. Let M 1 and M 2 be hypersurfaces in C2 given by the equations 

Then the mapping 

M1: v = lzl\ 
M2: v=lzj2. 

obviously maps M1 to M2 and has vanishing Jacobian only for z = 0. 
In the present paper we consider manifolds of codimension k > 1. The first 

difficulty that we encounter trying to generalize the result for hypersurfaces to the 
case of higher codimensions is that not every manifold with even nondegenerate 
Levi form for k > 1 can be given by an equation analogous to (3) (see [Bl], [B2], 
[B3], [L]). Generally speaking, the second order term may depend on u and terms 
of type Fj1, F11 may occur, i.e. we only have the representation (2) instead. At 
the moment we can not resolve this problem, and the possibility to write M 1 in the 
form (3) is our extra requirement. 

THEOREM. Let M 1 and M 2 be two manifolds of co dimension k ;:::: 1 in eN. Suppose 
that M2 is given in the form (2), M 1 is given in the form (3) and the Levi form of 
M1 is nondegenerate. 

Let f be a holomorpbic mapping defined in a neighborhood U of the origin such 
that j(M1 ) c M2 , j(O) = 0 and J1(0) = 0, 

f: Z1--4g(z,w), W1--4h(z,w). 

Then 
(i) Jf = 0 in U, and moreover 
(ii)' there exist an integer m ;:::: 1 and a linear change of coordinates of the form 

z 1--4 z, w 1--4 Sw, 

where Sis a real k X k-matrix, such that after applying it to M 2 one can write M2 

as the intersection M~ n M~', where M~ is given by the first m equations defining 
M2, M~' by the last k- m equations, and 

j(U) c M~ n {w' = 0}, 
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witb w' = ( w 1 , •.. , wm)· Herem = k- rank Z! (0). 

The statement (ii)' of the Theorem says that we can always rewrite the equations 
of 1\1!2 as certain combinations of the original ones and split them into two groups 
such that the manifold of codimension m :::; k defined by the first group being 
intersected with its complex tangent space at the origin contains 1(U). For the 
case of hypersurfaces this coincides with the statement (ii) above. 

Note that m may be strictly less thank, and therefore (ii) can not be generalized 
directly to the case of higher codimensions. An obvious obstruction for that is 
possible reducibility of manifolds in consideration. Indeed, take M 1 = M 2 = M = 
M 1 x M 2 , where MJ c cnj+ki, CRdimJvJi =nil codimliJvfi = kj, n1 + nz = n, 
k1 + k2 = k, and define a mapping 1 as f = P x P, with P : M 1 --t M 1 , p = id, 
f2 : M 2 --t M 2 , j2 ::::::: 0. 

However, even for irreducible manifolds (those which can not be represented as a 
direct product in any holomorphic coordinates near the origin) there are examples 
of holomorphic self-mappings with m < k. The followiu'g example is due to Ezhov. 

Example 3. Let 1vf1 = Mz = M C C5 be given by 

(5) 
v1 = lz1l2 - lzzl 2 , 

Vz = lz1l 2 - lz31 2 , 

and 1 be the following linear mapping 

z1 ~ z1 , Zz ~ z1 , z3 ~ Z3, 

w1 ~ 0, Wz ~ Wz. 

Here k = 2 and m = 1. It also can be shown that M is irreducible. Indeed; as it is 
proved in [ES], for manifolds of the form 

v =< z,z > 

(often called quadrics) the irreducibility is equivalent to the irreducibility of the 
algebra 2l consisting of pairs ( D, d) of complex n x n- and k x k-matrices respectively 
such that < Dz, z' >= d < z, z' > for all z, z' E en. 

It is an easy computation to show that for the quadric (5) the corresponding 
algebra 2t consists of pairs of the form 

0 
t 
0 

and being one-dimensional does not split. 

t E C, 
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The n1.apping f in the above example is linear. It turns out that this is a typical 
situation. Indeed, as we see from (ii)', the only obstructions for generalizing (ii) to 
higher codimensions are linear mappings. Namely, it is easy to note that the linear 
mappmg 

f: z t-t Az, w t-t Dw 

with A= *(0), D = g!(O), is a mapping between the quadrics 

M1 v =< z,z >1, 

M2 v =< z,z >2, 

where < z, z >j is the Levi form of Mj at 0, and it follows from (ii)' that if the 
image of j is in M2 n {w = 0} (i.e. if m = k, or equivalently D = 0), then the 
image off is in M 2 n {w = 0}. 

The proof of the Theorem is a generalization of the proof in [I] to higher codi­
mensions and is .. also based o~ analysis of power series. It is very likely that the 
Theorem is true under much weaker assumptions for the manifold M 1 . For exam­
ple, it would be interesting to :find a proof for essentially finite lvf1 dropping all the 
other conditions for its power series. 
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