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A search for a good definition of surface leads to the 
rectifiable currents of geometric measure theory. with interesting 
advantages and dis<ldvant<tgcs. 

For details and references see f\1organ 's Geometric Measure 
Theory: a Begjnner's Guide. Academic Press, 2nd edition, 1995. 

1. What is an inclusive definition of a general surface in 
K'? We want to include smooth embedded manifolds with 
boundary, as in Figure 1, and we want to be able to allow 
singularities, as in Lhe cube and cone of Figure 2. We might allov,; 
any smooth embedded stratified manifold, i.e .. a set which is a 
smooth embedded 2-dimensional manifold, except for a subset 
which consists of smooth embedded curves, except for a set of 
isolated points. We might go farther and allow any set which is a 
smooth embedded 2-dimensional manifold except for a set of 2-
dimensional measure 0. 

Unfortunately for such surfaces it is hard to prove the 
existence of area-minimizers or solutions to other geometric 
variational problems, because such classes of surfaces are not closed 
under the limit arguments used to obtain such solutions. What good 
is a sequence of surfaces with areas approaching an infimum, if 
there is no limit surface realizing the least area? Moreover, there 
are more general sets which deserve to be called surfaces. We begin 
with a lower-dimensional example of a compact, connected 1-
dimensional "curve" in R:Z which is not a stratified manifold, and 
actually has a singular set of positive 1-dimensional measure. The 
construction is based on a Cantor set C in R1 of positive measure, 
differ:ing from the usual Cantor set in the rapidly diminishing size of 
the segments removed. 
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Figure 1 
The nicest surfaces are smooth, embedded manifolds. 

Figure 2 
Surfaces such as the cube and cone have mild singularities. 
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2. Cantor set C of positive measure. To construct a Cantor set 
C of positive measure, start with the unit interval as in Figure 3a. 
Remove the middle 1 I 4. From each of the remaining two pieces, 
remove an open segment in the middle of length 1/16. At the kth 

step, remove from each of the remaining zk pieces an open segment 

in the middle of length ~ ·z-2k. In countably infinitely many steps 
you remove total length 

leaving a compact Cantor set C of length I/2 as in Figure 3b. 

)--t!-( }.o-r<--

Figure 3 
Start with the unit interval. Removing infinitely many open 

segments of rapidly decreasing length leaves a Cantor set C of 
positive measure. 
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3. A "curve" with a singular set of positive measure. We 
now construct a curve which is singular on our Cantor set C of 
positive measure. Let A consist of a nice smooth path from (0,0) to 
( 1,0) above the x-axis, together with its reflection below the x-axis, 
as in Figure 4a. Replace every segment removed in the previous 
construction of the Cantor set C by a suitably scaled copy of A, as in 
Figure 4b. The resulting "curve" is an embedded manifold except 
for the singular set C, which has !-dimensional measure 1/2. 

u. 

-<>-
A 

b. 

Figure 4 
Inserting bifurcating paths A into the gaps of a Cantor set C of 

positive measure yields a "curve" with a singular set of positive !­
dimensional measure 
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Similarly one could add infinitely many handles of finite total 
area to the sphere to produce a 2-dimensional surfaceS with a 
singular Cantor set of positive 2-dimensional measure, as in Figure 
5. Note that Sis the limit of smooth submanifolds without 
boundary, namely, spheres with a large finite number of handles. 

Figure 5 
Adding infinitely many handles of finite total area to the sphere can 

produce a surfaceS with a singular Cantor set of positive 2-
dimensional measure. 
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4. Rectifiable sets. A good class of 2-dimensional subsets of R3 
which includes all of the surfaces we have considered or would ever 
want to consider and has nice closure properties under limit 
operations is the rectifiable sets of H. Federer. What do they 
include? To begin with they include the image of any reasonable 
function f from planar domains into R3. The defining function f is 
not required to be differentiable, merely Lipschitz: 

(1) lf(x) - f(y)l s Clx-yl , 

allowing for example the upper cone as the image of 

f: R2 ----" R3 
X >--> (X, lXI). 

This Lipschitz condition (1), by bounding the amount of stretching, 
is just right for producing surfaces of finite area. To obtain the full 
class of rectifiable sets, allow arbitrary (measurable) subsets of 
countable unions of such images of Lipschitz functions, as long as 
the total area remains finite. Such rectifiable sets include our 
example of a sphere with infinitely many handles. 

It is a very fortunate theorem of real analysis that Lipschitz 
functions are differentiable almost everywhere. As a result, 
although rectifiable sets can be quite intricate, they turn out to have 
a kind of measure-theoretic "approximate" tangent plane at almost 
every point, which is good enough for doing lots of geometry. For 
example, one can define an orientation of a rectifiable set simply as 
a measurable orientation of (almost every) tangent plane. So far 
there is no coherence from point to point, and a smooth piece of 
surface has infinitely many "orientations." We will see that 
incoherent orientations can be detected by the extra boundary they 
introduce. 

5. The structure theory. The fundamental role of rectifiable 
sets is exposed by a general structure theorem of Besicovitch and 
Federer. The theorem says that every subset E of R3 of finite 2-
dimensional measure can be decomposed as a rectifiable set and a 
purely unrecUfiable sec which is invisible from almost all directions 
(whose projections onto almost all planes have measure 0). So 
rectifiable sets form a fundamental and inclusive class of surfaces. 
The question is whether we can do geometry with them. 
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6. Hausdorff metric unsuitable. How can you say when two 
rectifiable sets are close together? The standard Hausdorffrnetric 
distance between two compact subsets of R3 is defined as the greatest 
distance between any point of one and any point of the other. 
Rectifiable sets need not be compact, and the Hausdorff metric is 
practically useless, as shown by the following example of radically 
different rectifiable sets So and S 1 which are close together in the 
Hausdorff metric. Let So be the unit sphere. Let S 1 be a countable 
collection of tiny spheres of radius at most E, centered in So, dense in 
So, with total area£. Then the Hausdorff distance between So and S1 is 
at most c:, even though So is the round sphere of area 4n and S 1 is a 
fragmented (though in some sense boundaryless) set of area at most E. 

7. Rectifiable currents. So how can we apply geometric concepts 
to rectifiable sets? The vvay to define boundary and topology for 
oriented rectifiable sets is to view them as currents, linear 
functionals on smooth differential forms cp. Since an oriented 

rectifiable setS has an approximate oriented tangent planeS at 
almost every point, one can integrate a differentail form cp over S: 

and thus viewS as a current. The space of currents so arising from 
rectifiable sets is called the space n, 2K1 of 2-dimensional rectifiable 
currents. One allows integral multiplicities, but finite total area and 
compact support. 

The general concept of currents was a generalization, due to G. 
de Rham, of distributions. H. Federer and W. Fleming introduced 
rectifiable currems in 1960 in their foundational paper on 
geometric measure theory, which won the AMS Steele prize for 
fundamental importance. 
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8. Boundary. The boundary of a current S. denoted aS, may be 
defined as an abstract current by the formula 

a S ( cr) = S ( dcp ) . 

By Stokes's theorem, this definition agrees with the usual one for 
smooth oriented manifolds with boundary. Of course there is no 
reason in general that the boundary aS of a rectifiable current S 
should be a rectifiable current. If it happens to be, then the original 
current S is called an integral current. 

The boundary of the unit disc with the standard orientation is the 
unit circle with the standard orientation, and therefore the unit disc 
is a nice integral current. Suppose however the disc is decomposed 
into the infinitely many concentric annuli · 

An= {1/(n+l) < r s 1/n} 

of Figure 6 and they are given alternating orientations. Then the 
boundary includes infinitely many circles (with multiplicity 2), has 
infinite length, hence is not a rectifiable current, and therefore the 
disc with this incoherent orientation is not an integral current. This 
example shows how incoherent orientations may be detected by the 
additional boundary they introduce. 

Figure 6 
Giving alternating orientations to concentric annuli creates lots of 

extra boundary. 
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9. Topology and flat norm. The notion of boundary leads to a 
topology on the space of rectifiable currents given by H. Whitney's 
flat norm ::r on currents, defined by 

lJ'(S) = inf {area T + vol R: S- T = a R}. 

For example, the two discs D1, D2 of Figure 7 are close together in 
this topology because their difference S = Dz - D1 together with a 
thin band T bounds a region R of small volume. (Whitney wanted to 
distinguish the flat norm from another larger sharp norm: as a 
music major, he borrowed the terms "flat" and "sharp," indicating 
lower or higher notes, from musical terminology.) 

Figure 7 
The two discs D1, D2 are close together in flat norm lJ' because their 
differenceS = Dz- D1 together with a thin band T bounds a region R 

of small vol urn e. 
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10. The compactness theorem. The almost miraculous payoff 
from the notions of boundary and topology from currents is 
Fleming's compactness theorem inside a ball Bin R3: 

l Rectifiable currents S in B : areaS s c, length aSs c} 

is compact under the flat norm [!'. In other words, any infinite 
sequence of our rectifiable surfaces in the room you are sitting in, 
with bounds on the area and boundary length, has a convergent 
subsequence. Consequently, reasonable geometric variational 
problems have solutions, as we will now illustrate with area­
minimizing surfaces. No such compactness holds for smooth 
submanifolds. 

11. Existence of area-minimizing surfaces. Let C be a closed 
bounded rectifiable curve of any number of components in R3. 
Then C bounds a rectifiable current of least area. 

Proof The curve C lies in some large ball B about 0. It is easy to 
show C bounds some rectifiable current, for example the cone over 
C as in Figure 8. Let Si be a sequence of rectifiable currents 
bounded by C with areas converging to the infimum. By projecting 
the surfaces back into B if necessary, which does not increase area, 
we may assume all the Si lie in B. By the compactness theorem, we 
may assume the Si converge to some limit S. It is easy to show that 
areaS slim area Si, and hence S provides an area-minimizing 
surface. 

Figure 8 
Any closed rectifiable curve C bounds some surface, for example the 

cone over C. ]. Bredt. 
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12. The regularity theorem. For a given boundary curve, we 
now have an area minimizer S in the class of rectifiable currents. 
The big remaining question is whether S is a reasonable surface. 
The answer due to Fleming (1962) and R. Hardt and L. Simon ( 1979) 
sounds too good to be true: 

An area-minimizing surface (rectifiable current) bounded by a 
smooth curve in R3 is a smooth submanifold with boundary. 

Thus it turns out that although we allowed all kinds of singularities, 
area-minimizing rectifiable currems do not have any. Such 
complete regularity fails for other classes of surfaces, such as 
classical mappings of the disc. For the boundary pictured in Figure 
9, a circle with a tail, the area-minimizing disc passes through itself. 
The area -minimizing rectifiable current has higher genus, has less 
area, and is embedded. It flows from the top, flows down the tail, 
pans out in back onto the disc, flows around front, and flows down 
the tail to the bottom. There is a hole in the middle that you can 
stick your finger through. Incidentally, this surface exists as a soap 
film, whereas the least-area disc does not. 

Figure 9 
A classical area-minimizing disc need not be embedded, but the 

area-minimizing rectifiable currentS always is embedded. Here S 
has higher genus and less area than the disc. ]. Bredt. 
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If the boundary curve is badly knotted, it bounds no embedded disc, 
and the area-minimizing surface will necessarily have high genus. 
The presumed area-minimizing (orientable) surface bounded by a 
trefoil knot is pictured in Figure 10. 

Figure 10 
The area-minimfzing (orientable) surface bounded by a trefoil knot 

is presumably this embedded surface of genus 1. j. Bredt. 

13. Higher dimensions. The theory of rectifiable currents 
generalizes to_ m-dimensional surfaces in RD. Area-minimizing 
hypersurfaces remain smooth submanifolds through R7; for n 2: 8, 
area-minimizing hypersurfaces in RD can have (n-8)-dimensional 
singular sets. In higher codimension, singularities occur, even for 2-
dimensional surfaces in R 4. 
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14. Failings of rectifiable currents. For all their virtues, 
rectifiable currents have their failings too. Rectifiable currents must 
be oriented, while many physical surfaces need not be oriented. W. 
Ziemer's rectifiable currents modulo two yield a similar theory of 
unoriented surfaces. 

Figure 11 
Bill Ziemer (right), who introduced flat chains modulo 2, with his thesis 
advisor, Wendell Fleming (left), and the author (center), at a celebration 

in Ziemer's honor at Indiana in 1994. Photo courtesy of Ziemer. 

Physical surfaces such as soap films often consist of pieces of 
surface meeting along whole singular curves. These curves, 
although not part of the given boundary, unfortunately count as 
boundary for rectifiable currents. Explaining the structure of soap 
films required a new theory of (M,c,r5)-minimal sets developed by F. 
Almgren and ]. Taylor. 

Crystal surfaces often exhibit an infinitesimal corrugation well 
modeled by the varifolds of Almgren and W. Allard. 

15. Open questions. There are many fundamental open 
questions. For example, for the existence of area-minimizing 
surfaces in R3, is there a simple direct proof that stays inside the 
class of smooth submanifolds? Are area-minimizing surfaces in 
general dimensions stratified manifolds, or can they have fractal 
singular sets? 

Frank.Morgan@williams.edu 
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Kelvin's 100-year-old Conjecture Disproved by Weaire and Phelan 

Excerpted from the new edition of Geometric Measure Theory: a Beginner's Guide 
by Frank Morgan, to appear in May, 1995. © 199.!:>, Academic Press. 

This year brings striking news of the disproof of Lord Kelvin's 
100-year-old conjecture by Denis Weaire and Robert Phelan of 
Trinity College, Dublin. Kelvin sought the least-area way to partition 
all of space into regions of unit volumes. (Since the total area is 
infinite, least area is interpreted to mean that there is no area­
reducing alteration of compact support preserving the unit 
volumes.) His basic building block was a truncated octahedron, 
with its six square faces of truncation and eight remaining hexagonal 
faces, which packs perfectly to fill space as suggested by Figure 
13.13.1. (The regular dodecahedron, with its twelve pentagonal 
faces, has less area, but it does not pack.) The whole structure 
relaxes slightly into a curvy equilibrium, which is Kelvin's candidate. 
All regions are congruent. 

Figure 13.13.1. . Lord Kelvin conjectured that the least-area way to partition 
space into unit volumes uses relaxed truncated octahedra. Graphics by Ken 
Brakke on the Brakke Evolver from Brakke's early Geometry Center report. 
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Weaire and Phelan recruited two different building blocks 
from certain chemical "clathrate" compounds: the regular 
dodecahedron and a tetrakaidecahedron with 12 pentagonal faces 
and 2 hexagonal faces. The tetrakaidecahedra are arranged in three 
orthogonal stacks, stacked along the hexagonal faces, as in Figure 
13.13.2. The remaining holes are filled by dodecahedra. Again, the 
structure is allowed to relax into a stable equilibrium. Computation 
on the Brakke Evolver shows an improvement over Kelvin's 
conjecture of about 0.3%. Weaire and Phelan thus provide a new 
conjectured minimizer. Weaire's popular account in New Scientist 
gives further pictures and details. 

Figure 13.13.2. The relaxed stacked tetrakaidecahedra and occasional 
dodecahedra of Weaire and Phelan beat Kelvin's conjecture by about 0.3%. 
Graphics by Ken Brakke on the Brakke Evolver from Brakke's early Geometry 
Center report. 
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In greater detail, the centers of the polyhedra are at the points 
of a lattice with the following coordinates modulo 2: 

0 0 0 
1 1 1 
.5 0 1 
1.5 0 1 
0 1 .5 
0 1 1.5 
1 .5 0 
1 1.5 0 

Given a center, the corresponding polyhedral region is just the 
"Voronoi cell" of all points closer to the given center than to any 
other center. The relaxation process also needs to slightly adjust 
the val umes to make them all 1. 

Incidentally, Kelvin's particular tr~ncated octahedron is 
actually a scaled . "permutohedron," the convex hull of the 24 
permutations of (1,2,3,4) in R3 = { x E R4 : 2: Xi = 10 }. 

Proving the new Weaire-Phelan conjecture could take a while. 
After all, the single bubble was proved minimizing by Schwartz in 
1884, and the double bubble remains conjectural in 1994. Will 
Weaire-Phelan's "infinite bubble" take another century? 

Brakke, Kenneth A, Century-old soap bubble problem solved! 
Imagine That! 3 (Fall, 1993), The Geometry Center, University 
of Minn., 1-3. 

Weaire, Denis, Froths, foams and heady geometry, New Scientist, 
May 21, 1994. 
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